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Abstract
For the face-milled spiral bevel and hypoid gears by the completing process method, in order to ensure that the tooth thick-
ness and the tooth space width change in proportion to the cone distance, a novel taper design method is proposed. After the 
computation of blank dimensions of a gear pair according to ISO standard, the root angle of the wheel and the root angle of 
the pinion are redesigned based on the machining principle of the completing process method. Thus, the redesigned mean 
spiral angles of the wheel concave and convex tooth surface can be both equal to the original designed mean spiral angle of 
the wheel; likewise, the redesigned mean spiral angles of the pinion concave and convex tooth surface can be both equal to 
the original designed mean spiral angle of the pinion. By this, the ratios of the wheel tooth thickness and tooth space width 
to the wheel cone distance are more stable, and the ratios of the pinion tooth thickness and tooth space width to the pinion 
cone distance are more stable, too. Finally, this method is applied to a face-milled spiral hypoid gear pair, and the redesigned 
spiral angles of the wheel and the pinion are equal to the original designed mean spiral angles. For the wheel, the ranges of 
the ratios of the chordal thickness and the chordal space width to the cone distance are reduced more than 39% compared 
with those modified by ISO standard; for the pinion, the ranges of the ratios of the chordal thickness and the chordal space 
width to the cone distance are reduced more than 45% compared with those modified by ISO standard.

Keywords Taper design · Completing process method · Spiral bevel and hypoid gear · Blank modification · Spiral angle

1 Introduction

Gears are essential transmission components in many areas 
such as aviation, automobile, engineering machinery, and 
so on [1–3]. In recent years, for face-milled spiral bevel and 
hypoid gears, the completing process method is widely used 
for increased efficiency, cost reduction, machining accuracy 
improvement, and tooth strength enhancement. The “com-
pleting process method” is an advanced manufacturing 
method, also named the “duplex helical method”, “duplex 
spread-blade method” and “double-cut method”. It includes 

only two processes: (a) finish machining of the wheel and 
(b) finish machining of the pinion. Compared with the tradi-
tional “five-cut method”, the “completing process method” 
is characterized by only one cutter for machining both the 
concave and convex flank of the pinion simultaneously 
[4–6].

For the standard-depth-taper face-milled gear pair, the 
tooth space width and the tooth thickness width change in 
proportion to the cone distance at any particular section 
along the face width. As Fig. 1 shows, the spiral angle �mV 
at the concave mean point PV along the pitch cone and the 
spiral angle �mX at the convex mean point PX along the pitch 
cone are equal, and they are both equal to the designed mean 
spiral angle. Now the concave tooth line and the convex 
tooth line tilt to each other [7]. But with the completing pro-
cess method, the cutter cuts the concave flank and the convex 
flank simultaneously. Assuming that the concave tooth line 
mm stays the same, then the convex tooth line turns into n′n′ 
from nn . If by the formate method, the concave tooth line 
mm and the convex tooth line n′n′ are approximately two 
concentric circular arcs, and do not tilt to each other any 
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more [8]. Therefore, the completing process method leads 
to less material removed from the heel and more material 
removed from the toe, resulting in thicker tooth thickness 
width at the heel and thinner tooth thickness width at the 
toe than normal. In essence, the spiral angle �mV and �mX 
become unequal, so the tooth space width and the tooth 
thickness width cannot shrink in proportion to the cone dis-
tance, which affects proper meshing of gear pair. Hence, the 
gear blank dimensions need to be redesigned. Since the val-
ues of the cutter diameter, the pressure angle and the spiral 
angle are determined, the root angle is the only parameter 
that can be modified.

The Gleason Company proposed the completing process 
method in the 1930s and disclosed the calculating instruc-
tions for the generated small face-milled spiral bevel gears 
duplex helical method (SGDH) in 1965 [9]. The improved 
method was applicable to large-module face-milled spiral 
bevel gears up to 1978 [10]. But the manufacturing princi-
ples are not publicly disclosed.

In recent years, scholars have continued research into the 
completing process method. Shtipelman pointed out that 
when both gear and pinion were generated by the duplex 
method, the gear and pinion dedendum angles had to be 
computed so that the spiral angles at the opposite sides of the 
gear and pinion teeth would have initial values, respectively 
[11]. In [7], the abnormal contraction of the tooth thickness 
width and tooth space width caused by the duplex helical 
method was introduced, and the formulas of the duplex taper 
were derived. In [8], the duplex contraction of the exact 
duplex helical method by the Gleason Works was intro-
duced, and the calculating formula of the sum of the root 
angle of the gear and pinion was deduced, and the sum was 
distributed according to tooth depth ratio of inclined point. 
In [12], the basic machine settings of the spiral bevel and 

hypoid gears generated by the duplex helical method were 
determined, and the hypoid gear dimensions were modified 
based on the root angle of the pinion. In [13], three reference 
points were used to calculate the basic machine-tool settings 
for spiral bevel and hypoid gears manufactured by the duplex 
helical method, and the resulting new mean dedendum of the 
pinion was different from the mean dedendum of the hypoid 
gears’ blank dimensions, and the modified mean dedendum 
was used. For the completing process method, some other 
studies were also carried out, such as meshing performance 
analysis [14], tooth surface reconstructing method [15], 
tooth surface modification [16], and flank deviation correc-
tion [17]. These studies lay a foundation for the develop-
ment of the completing process method. But the machining 
principle of the completing process method is not taken into 
account in the existing gear blank modification method.

This paper proposes a novel taper design method for 
face-milled spiral bevel and hypoid gears by the completing 
process method based on the machining principle. The root 
angles of the wheel and the pinion are redesigned after the 
computation of blank dimensions of a gear pair according 
to ISO standard. The wheel is cut by the formate method, 
an appropriate root angle of the wheel is searched by itera-
tion so that the spiral angle �mWV at the wheel concave mean 
point and �mWX at the wheel convex mean point along the 
pitch cone are both equal to the original designed wheel 
mean spiral angle. The pinion is cut by the generating 
method, and in the same way, an appropriate root angle of 
the pinion is searched by iteration so that the spiral angle 
�mPV at the pinion concave mean point and �mPX at the pinion 
convex mean point along the pitch cone are both equal to the 
original designed pinion mean spiral angle. In this way, the 
ratios of the wheel tooth thickness and tooth space width to 
the wheel cone distance are more stable, and the ratios of the 
pinion tooth thickness and tooth space width to the pinion 
cone distance are more stable, too.

In order to ensure that the change of the whole tooth 
depth along the face width is relatively even, the root line is 
tilted about the root mean point. Thus, the mean addendum 
and the mean dedendum stay the same before and after the 
redesign.

The goal is blank modification for the completing pro-
cess method, and the machine-tool settings in this paper are 
calculated based on the conventional primary cradle-type 
generator. Gear blank design is the first step of gear develop-
ment. After the step of blank modification, the machining 
principle of the completing process method will be stud-
ied, and it will be based on the CNC free-form type gen-
erator. Then, the machine-tool settings of the completing 
process method on the CNC free-form type generator will 
be determined based on the contact characteristics [18] for 
good performance. The method is applicable to face-milled 
spiral bevel and hypoid gear by the completing process 

Fig. 1  Pitch plane of face-milled spiral bevel gear
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method. After redesign by this method, a duplex taper will 
be developed.

2  Redesign of Wheel Root Angle

The original design of the blank dimensions is accomplished 
according to ISO standard [19]. The redesign process of the 
wheel root angle is as follows.

2.1  Determination of Wheel Cutter Parameters

The wheel can be cut by the formate method or by the gen-
erating method [20]. Since the wheel is usually cut by the 
formate method to increase efficiency in actual production 
[21] when the pitch angle is larger than 70°, the wheel is cut 
by the formate method here. If this method is to be applied 
to the wheel by the generating method, then the formulas in 
Sect. 2.2 and Sect. 2.3 are replaced by the formulas of the 
generating method.

The inner blade angle and the outer blade angle of the 
wheel cutter are equal to the pressure angle at the concave 
root mean point and the pressure angle at the convex root 
mean point, respectively. The inner blade angle of the wheel 
cutter is positive, and the outer blade angle is negative. The 
cutter radius of the wheel rcW is selected from standard 
specifications. The point width of the wheel cutter can be 
determined by the following equations.

If the backlash is not considered, the tooth space width of 
the wheel should be equal to the tooth thickness width of the 
pinion [22]. Figure 2 is the pitch plane of the wheel. The outer 
circular tooth thickness of the wheel SeW and the outer circular 
tooth thickness of pinion SeP are already determined during the 
original computation of blank dimensions. The mean circular 
tooth space width of the wheel cd can be calculated as follows:

where RmW is the mean cone distance of the wheel, and ReW 
is the outer cone distance of the wheel.

The mean pitch normal chordal tooth space width of the 
wheel ab can be obtained by the following equation:

where �mW is the mean spiral angle of the wheel.
The point width of the wheel cutter can be determined as 

follows:

where hfmW is the mean dedendum of the wheel, and can be 
calculated by the original designed parameters because it 
does not change.

2.2  Determination of Wheel Machine Settings

Since the blade angles of the wheel cutter are equal to the 
corresponding pressure angle at the root mean point, the 
axis of the wheel cutter is perpendicular to the root cone of 
the wheel, which means that there is no tilt angle [23]. The 
wheel machine settings (shown in Fig. 3) can be determined 
as follows:

Vertical:

Horizontal:

where LmW = RmW cos
(
�W − �fW

)
+
(
tzRW − tzW

)
cos �fW.

Cradle angle:

Radial distance:

Machine root angle:

Machine center to crossing point:

where �fW is the root angle of the wheel, tzRW is the root apex 
beyond crossing point of the wheel, tzW is the pitch apex 
beyond crossing point of the wheel.

(1)cd ≈
RmW

ReW

SeP

(2)ab = cd cos �mW

(3)WW = ab − hfmW
(
tan �cWX + tan �cWV

)

(4)VW = rcW cos �mRW

(5)HW = LmW − rcW sin �mRW

(6)qW = arctan

(
VW

HW

)

(7)sW =

√
V2

W
+ H2

W

(8)ΓMW = �fW

(9)ΔXW = tzRW

Fig. 2  Point width of wheel cutter
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2.3  Calculation of Wheel Mean Point Parameters

With the formate method, the tooth surface of the wheel is 
a complete copy of the conical surface of the wheel cutter 
[24]. Any point on the cutter surface can be expressed by a 
set of parameters 

(
hc, �c

)
 , and hc represents the height from 

the cutter top plane to this point along the cutter axis, and �c 
represents the rotation angle in the cutter transverse plane. 
With the coordinate of the wheel pitch mean point on the 
rotation projection plane given, the corresponding parame-
ters 

(
hc, �c

)
 on the cutter surface can be obtained by iteration, 

with which the position vector rc and the normal vector nc of 
this point in the cutter coordinate system can be expressed. 
Then the position vector rW and the normal vector nW of the 
wheel pitch mean point in the wheel coordinate system can 
be obtained through coordinate transformation. The position 
vector and the normal vector of the wheel concave mean 
point PWV and convex mean point PWX can be calculated by 
the following equations.

(10)rW = MWMMMcrc

Here, the transfer matrix from the cutter coordinate system 
to the machine coordinate system is:

The transfer matrix from the machine coordinate system to 
the wheel coordinate system:

2.4  Calculation of Spiral Angle

With the position vector and the normal vector of a point on 
a gear tooth flank given, the spiral angle at this point along 
the pitch tooth line can be obtained. As Fig. 4 shows, x is the 
gear axis, and � is the directed angle in yz plane, which can be 
determined by the following piecewise function.

In the axial section plane xr , N is the unit normal vector 
at that point perpendicular to the pitch cone, pointing to the 
outside of the pitch cone. L is the normal vector along the pitch 
cone generatrix, pointing to the gear heel. T is the unit tangent 
vector at that point along the pitch tooth line. These vectors 
can be obtained as follows:

(11)nW = mWMmMcnc

(12)MMc =

⎡⎢⎢⎢⎣

1 0 0 HW

0 −1 0 VW

0 0 −1 0

0 0 0 1

⎤⎥⎥⎥⎦

(13)mMc =

⎡
⎢⎢⎣

1 0 0

0 −1 0

0 0 −1

⎤
⎥⎥⎦

(14)MWM =

⎡⎢⎢⎢⎣

cosΓMW 0 − sinΓMW −ΔXW

− sinΓMW 0 cosΓMW 0

0 −1 0 0

0 0 0 1

⎤⎥⎥⎥⎦

(15)mWM =

⎡⎢⎢⎣

cosΓMW 0 − sinΓMW

− sinΓMW 0 cosΓMW

0 −1 0

⎤⎥⎥⎦

(16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y > 0, z > 0 ∶ 𝜃 = arctan (z∕y)

y > 0, z < 0 ∶ 𝜃 = arctan (z∕y) + 2𝜋

y < 0 ∶ 𝜃 = arctan (z∕y) + 𝜋

y = 0, z > 0 ∶ 𝜃 = 𝜋∕2

y = 0, z < 0 ∶ 𝜃 = 3𝜋∕2

y > 0, z = 0 ∶ 𝜃 = 0

y < 0, z = 0 ∶ 𝜃 = −𝜋

(17)N =
{
− sin � cos � cos � cos � sin �

}

Fig. 3  Wheel machining principle
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where n is the calculated normal vector at this point, and � 
is the pitch angle.

Then the spiral angle at this point along the pitch cone 
can be obtained by this:

If the calculated 𝛽 > 𝜋∕2 , then � = � − �.
The spiral angle �mWV at the wheel concave mean point 

and �mWX at the wheel convex mean point along the pitch line 
can be determined by the above method.

This method can be applied to any type of bevel gear, if 
� is replaced by other cone angle, then the calculated spiral 
angle is along that cone angle.

2.5  Redesign of Wheel Root Angle

The demand for the wheel blank by the completing process 
method is: the redesigned wheel concave mean spiral angle 
�mWV and the redesigned wheel convex mean spiral angle 
�mWX along the pitch cone are equal, and both equal to the 
original designed mean spiral angle �mW . The constrain can 
be expressed by the following equation:

This equation is equivalent to two independent constrains. 
When the two independent variables, that is the wheel root 
angle �fW and the wheel root mean spiral angle �mRW , are 

(18)T = N × n∕|N × n|

(19)L =
{
cos � sin � cos � sin � sin �

}

(20)� = a cos (L ⋅ T)

(21)�mWX = �mWV = �mW

assigned new values, the wheel machine settings are recal-
culated, then new �mWV and �mWX are obtained. Through 
iteration like this, the appropriate new wheel root angle �′

fW
 

and new wheel root mean spiral angle �′
mRW

 can be searched 
finally. The iteration is based on the secant method.

During iteration, the initial value of the wheel root angle 
can be given the original designed parameter, and the initial 
value of the wheel root mean spiral angle can be calculated 
by the original designed parameters.

3  Redesign of Pinion Root Angle

3.1  Determination of Pinion Cutter Parameters

The cutter radius of the pinion rcP is selected from standard 
specifications.

The inner blade angle �cPX and the outer blade angle �cPV 
of the pinion cutter are equal to the pinion convex and con-
cave mean root pressure angle, respectively. The inner blade 
angle is negative, and the outer blade angle is positive.

After the wheel root angle is redesigned, the coordinate 
of the redesigned wheel concave mean point and the rede-
signed wheel convex mean point are determined. But these 
two points are two endpoints of the mean tooth space circu-
lar arc of the wheel. Then the convex mean point is turned 
an angular pitch about the wheel axis so that these two points 
become two endpoints of the wheel mean tooth thickness 
circular arc. Thus, the circular tooth thickness gh (shown in 
Fig. 5) can be determined.

The mean normal chordal tooth thickness of the wheel 
can be calculated as follows:

If the backlash is not taken into account, the pinion tooth 
space width should be equal to the wheel tooth thickness 

(22)ef ≈ gh cos �mW

Fig. 4  Spiral angle at any point

Fig. 5  Point width of pinion cutter
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width at the pitch plane. The pinion cutter pitch width ef  
should be equal to the pinion mean normal chordal tooth 
space width. So the point width of the pinion cutter can be 
estimated by the following equation.

where hfmP is the pinion mean dedendum.

3.2  Determination of Pinion Machine Settings

The axis of the pinion cutter is perpendicular to the pinion 
root cone, so there is no tilt. The pinion machine settings 
(shown in Fig. 6) can be determined as follows:

Vertical:

Horizontal:

where LmP = RmP cos
(
�P − �fP

)
.

Cradle angle:

(23)WP = ef − hfmP
(
tan ||�cPX|| + tan ||�cPV ||

)

(24)VP = rcP cos �mRP

(25)HP = LmP − rcP sin �mRP

Radial distance:

Roll ratio:

Machine root angle:

Here, �mRP is the pinion mean root spiral angle, and RmP is 
the pinion mean cone distance, and �P is the pinion pitch angle, 
and �fP is the pinion root angle.

3.3  Calculation of Pinion Mean Point Parameters

The pinion is cut by the generating method, and the cradle 
rotates with the cutter on it, which can be imaged as a generat-
ing gear that meshes with the pinion with line contact at the 
roll ratio. Any point on the cutter surface can be expressed 
with a set of 

(
hc, �c

)
 . As the same with the wheel, hc represents 

the height along the cutter axis from the cutter top plane to this 
point, and �c represents the directed angle on the cutter trans-
verse plane. When the coordinate of the pinion mean point 
on the rotation projection plane is given, the corresponding 
parameters 

(
hc, �c

)
 on the cutter surface can be solved by itera-

tion. The rotation angle of the generating gear can be deter-
mined through meshing equation. The position vector rc and 
the normal vector nc of this point on the cutter in the cutter 
coordinate system can be expressed in the pinion coordinate 
system by transfer matrix, and becomes the position vector �P 
and the normal vector nP on the pinion flank, which can be 
calculated as follows:

Here, the transfer matrix from the cutter coordinate system 
to the generating gear coordinate system is:

(26)qP = arctan

(
VP

HP

)

(27)sP =

√
V2

P
+ H2

P

(28)RaP =
LmP

RmP sin �P

(29)ΓMP = �fP

(30)rP = MPPdMPdMMMGMGcrc

(31)nP = mPPdmPdMmMGmGcrc

(32)MGc =

⎡⎢⎢⎢⎣

sin �mRP cos �mRP 0 sP cos qP
cos �mRP − sin �mRP 0 −sP sin qP

0 0 −1
�
tzP − tzRP

�
sin �fP

0 0 0 1

⎤⎥⎥⎥⎦

Fig. 6  Machining principle of pinion
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The transfer matrix from the generating gear coordinate 
system to the machine coordinate system is:

where �GP represents the rotation angle of the generating 
gear about the axis zG , and its value is positive if the rotation 
direction is in accord with the right-hand rule, otherwise 
negative.

The transfer matrix from the machine coordinate system 
to the fixed pinion coordinate system is:

The transfer matrix from the fixed pinion coordinate 
system to the moving pinion coordinate system is:

where �P represents the rotation angle of the pinion about 
the axis xP , and its value is positive if the rotation direction 
is in accord with the right-hand rule, otherwise negative.

In the machining process of the pinion, the generating 
gear and the pinion accord with meshing equation [25], 
through which the rotation angle of the generating gear 
�GP and that of the pinion �P can be obtained.

The meshing equation can be simplified as follows:

(33)mGc =

⎡
⎢⎢⎣

sin �mRP cos �mRP 0

cos �mRP − sin �mRP 0

0 0 −1

⎤
⎥⎥⎦

(34)MMG =

⎡⎢⎢⎢⎣

cos�GP − sin�GP 0 0

sin�GP cos�GP 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

(35)mMG =

⎡
⎢⎢⎣

cos�GP − sin�GP 0

sin�GP cos�GP 0

0 0 1

⎤
⎥⎥⎦

(36)MPdM =

⎡⎢⎢⎢⎣

cos �fP 0 sin �fP −tzP
sin �fP 0 − cos �fP 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦

(37)mPdM =

⎡⎢⎢⎣

cos �fP 0 sin �fP
sin �fP 0 − cos �fP
0 1 0

⎤⎥⎥⎦

(38)MPPd =

⎡⎢⎢⎢⎣

1 0 0 0

0 cos�P sin�P 0

0 − sin�P cos�P 0

0 0 0 1

⎤⎥⎥⎥⎦

(39)mPPd =

⎡⎢⎢⎣

1 0 0

0 cos�P sin�P

0 − sin�P cos�P

⎤⎥⎥⎦

Then the rotation angle of the generating gear can be cal-
culated using the following equation:

Then the rotation angle of the pinion:

where

(
xG
G
, yG

G
, zG

G

)
 is the position vector in the generating gear 

coordinate system that rc is turned into by the transfer matrix 
MMG and MGc , and 

(
nxG

G
, nyG

G
, nzG

G

)
 is the normal vector in the 

generating gear coordinate system that nc is turned into by 
the transfer matrix mMG and mGc.

3.4  Redesign of Pinion Root Angle

With the coordinate on the rotation projection plane given, 
the position vectors and the normal vectors of the pinion 
concave mean point and the pinion convex mean point can 
be obtained by the above equations. According to the cal-
culation method of the spiral angle in Sect. 2.4, the pin-
ion concave mean spiral angle �mPV and the pinion convex 
mean spiral angle �mPX along the pinion pitch line can be 
calculated.

The demand for the pinion blank by the completing pro-
cess method is: the redesigned spiral angle �mPV and �mPX 
are both equal to the original designed pinion mean spiral 
angle �mP , which can be expressed as:

This equation contains two independent constrains. When 
the pinion root angle �fP and the pinion root mean spiral 
angle �mRP are changed, the pinion machine settings are 
recalculated as well as the spiral angle �mPV and �mPX . This 
iteration is executed till the above constrain is satisfied, then 
the redesigned pinion root angle �′

fP
 and the redesigned pin-

ion root mean spiral angle �′
mRP

 are finally determined. The 
iteration is based on the secant method.

(40)U sin�GP + V cos�GP = W

(41)tan
�GP

2
=

U −
√
U2 + V2 −W2

W + V

(42)�P = RaP ⋅ �GP

(43)

⎧
⎪⎨⎪⎩

U = Ty cos �fP

V = −Tx cos �fP

W = −Tz
�
1∕RaP − sin �fP

�

(44)

⎧⎪⎨⎪⎩

Tx = yG
G
nzG

G
− zG

G
nyG

G

Ty = zG
G
nxG

G
− xG

G
nzG

G

Tz = cG
G
nyG

G
− yG

G
nxG

G

(45)�mPX = �mPV = �mP
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During the iteration, the initial value of the pinion root 
angle can be given the original designed value, and the initial 
value of pinion root mean spiral angle can be calculated with 
the original designed parameters.

4  Redesign of Other Relevant Blank 
Dimensions

With the redesigned wheel root angle �′
fW

 determined, the face 
cone of the pinion needs to be parallel to the root cone of the 
wheel; in the same way, with the redesigned pinion root angle 
�′
fP

 determined, the face cone of the wheel needs to be parallel 
to the root cone of the pinion. Then the wheel face angle and 
the pinion face angle are redesigned as follows:

where �′
aP

 is the redesigned pinion face angle, and �′
aW

 is the 
redesigned wheel face angle, and Σ is the shaft angle.

With the mean addendum and dedendum of the gear pair 
staying the same, after the wheel root angle and the pinion root 
angle are redesigned, some other relevant blank dimensions 
change subsequently. The following equations apply to both 
the wheel and the pinion.

(1) The unchanged mean addendum ham and dedendum hfm
:

where b represents face width, and hae represents outer adden-
dum, and hfe represents outer dedendum, and �a represents 
face angle, and � represents pitch angle, and �f  represents root 
angle, and the values of these parameters before redesign are 
used.

(2) After the redesigned root angle �′
f
 is determined, the 

corresponding changed parameters are:

Dedendum angle:

Outer dedendum:

Inner dedendum:

(46)

{
��
aP

= Σ − ��
fW

��
aW

= Σ − ��
fP

(47)

⎧⎪⎨⎪⎩

ham = hae −
b

2
tan

�
�a − �

�

hfm = hfe −
b

2
tan

�
� − �f

�

(48)��
f
= � − ��

f

(49)h�
fe
= hfm +

b

2
tan ��

f

Root apex beyond crossing point:

(3) After the redesigned face angle �′
a
 is determined, the 

corresponding changed parameters are:
Addendum angle:

Outer addendum:

Inner addendum:

Face apex beyond crossing point:

Outer diameter:

Crown to crossing point:

Front crown to crossing point:

Here, the symbol “ ′ ” means the redesigned value, and if 
without this symbol, it means using the original designed 
value.

5  Numerical Examples and Discussion

A spiral hypoid gear pair is redesigned by this new method 
after blank design of standard depth taper according to ISO 
standard. And the results are compared with those of the 
duplex taper modified by ISO standard. The basic param-
eters of this gear pair is shown in Table 1.

Through iteration, the redesigned wheel concave mean 
spiral angle �mWV and the redesigned convex mean spiral 
angle �mWX are both equated to the original designed wheel 

(50)h�
fi
= hfm −

b

2
tan ��

f

(51)
t�
zR

= tz +
(
Re sin � − h�

fe
cos �

)
∕ tan ��

f

−Re cos � − h�
fe
sin �

(52)��
a
= ��

a
− �

(53)h�
ae
= ham +

b

2
tan ��

a

(54)h�
ai
= ham −

b

2
tan ��

a

(55)
t�
zF

= tz +
(
Re sin � + h�

ae
cos �

)
∕ tan ��

a

+h�
ae
sin � − Re cos �

(56)d�
ae
= de + 2h�

ae
cos �

(57)t�
xo
=

d�
ae

2 tan ��
a

− t�
zF

(58)t�
xi
= t�

xo
− b

cos ��
a

cos ��
a
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mean spiral angle. The original designed wheel mean spi-
ral angle �mW  is 35.836°, and the redesigned wheel root 
angle by iteration �′

fW
 is 75.3628°, and the redesigned 

wheel root mean spiral angle �′
mRW

 is 35.9427°. The wheel 
mean point parameters are compared between redesign by 
the new method and modification by ISO standard in 
Tables 2 and 3.

After the redesign of the wheel, the point width of the 
pinion cutter is estimated at 4.709 mm. Through itera-
tion, the redesigned pinion concave and convex mean 
spiral angle are both equated to the original designed 
pinion mean spiral angle. The original designed pinion 

mean spiral angle is 43.850000°, and the redesigned pin-
ion root angle �fP is 10.9948°, the redesigned pinion root 
mean spiral angle �mRP is 43.8498°. The pinion mean point 
parameters are compared between redesign by the new 
method and modification by ISO standard in Tables 4 and 
5. It can be observed that for the duplex taper modified by 
ISO standard, the wheel concave and convex mean spiral 
angle are not equal to the original designed wheel mean 
spiral angle; and after redesign by the new method, the 
wheel concave and the convex mean spiral angle are both 
equal to the original designed wheel mean spiral angle. 
Likewise, both the pinion concave and convex mean spiral 
angle become equal to the original designed pinion mean 
spiral angle after redesign, though they are not for the 
duplex taper modified by ISO standard.

After the wheel and pinion root angle are redesigned, 
the other relevant blank dimensions are changed as Table 6 
shows.

The wheel chordal thicknesses and chordal space widths 
along the wheel pitch cone are shown in Table 7. The pin-
ion chordal thicknesses and chordal space widths along the 
pinion pitch cone are shown in Table 8.

The ratios of the wheel chordal thickness to the wheel 
cone distance at a series of sections along the wheel pitch 
cone are plotted in Fig. 7a. For the duplex taper modified by 
ISO standard, the range of the ratios of the wheel chordal 

Table 1  Basic parameters of gear pair

Pinion Wheel

Offset (mm) 26
Shaft angle (°) 90
Spiral hand Left Right
Number of teeth 7 39
Mean spiral angle (°) 43.85 35.836
Average pressure angle (°) 22.5
Pitch angle (°) 11.889 77.997
Outer cone distance (mm) 211.297 217.301
Method Generating Formate

Table 2  Comparison of 
parameters of wheel concave 
mean point

Parameter Modified by ISO standard Redesigned by new method

Position vector (mm) (36.8527, − 182.4101, − 10.5846) (36.8527, − 182.5949, − 6.6752)
Normal vector (− 0.4775, 0.4847, − 0.7329) (− 0.4697, 0.4848, − 0.7378)
Pitch mean spiral angle (°) 34.955313 35.836014

Table 3  Comparison of 
parameters of wheel convex 
mean point

Parameter Modified by ISO standard Redesigned by new method

Position vector (mm) (36.8527, − 182.7131, − 1.1863) (36.8527, − 182.6991, 2.5513)
Normal vector (0.2486, 0.6085, − 0.7536) (0.2597, 0.5982, − 0.7581)
Pitch mean spiral angle (°) 35.415733 35.836015

Table 4  Comparison of 
parameters of pinion concave 
mean point

Parameter Modified by ISO standard Redesigned by new method

Position vector (mm) (181.0077, 36.5858, 4.5474) (181.0077, 36.5859, 4.5465)
Normal vector (− 0.7052, 0.3409, − 0.6217) (− 0.7031, 0.3464, − 0.6210)
Pitch mean spiral angle (°) 43.994136 43.849999

Table 5  Comparison of 
parameters of pinion convex 
mean point

Parameter Modified by ISO standard Redesigned by new method

Position vector (mm) (181.0077, 36.6076, − 4.3690) (181.0077, 36.6077, − 4.3682)
Normal vector (− 0.5550, − 0.5651, − 0.6104) − 0.5588, − 0.5607, − 0.6110)
Pitch mean spiral angle (°) 43.723408 43.849999
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thickness is from 0.047143 to 0.050981; and for the redesign 
by the new method, the range is from 0.047149 to 0.049451. 
The ratios of the wheel chordal space width to the wheel 
cone distance are plotted in Fig. 7b. For the duplex taper 
modified by ISO standard, the range of the ratios of the 
wheel chordal space width is from 0.106546 to 0.110378; 
and for the redesign by the new method, the range is from 
0.108073 to 0.110373. The range of the ratios of the wheel 
chordal thickness to the wheel cone distance is reduced 
40.02% after redesign by the new method, and it means that 
the ratios of the wheel chordal thickness to the wheel cone 
distance are more stable after redesign. Likewise, the range 
of the ratios of the wheel chordal space width to the wheel 
cone distance is reduced 39.98% after redesign by the new 
method, and it means that the ratios of wheel chordal space 
width to the wheel cone distance are more stable after rede-
sign, too.

The ratios of the pinion chordal thickness to the pinion 
cone distance at a series of sections along the pinion pitch 
cone are plotted in Fig. 8a. For the duplex taper modified 
by ISO standard, the range of the ratio of the pinion chordal 
thickness is from 0.129003 to 0.132872; and for the redesign 
by the new method, the range is from 0.130454 to 0.132581. 
The ratios of the pinion chordal space width to the pinion 
cone distance are plotted in Fig. 8b. For the duplex taper 
modified by ISO standard, the range of the ratio of the pinion 
chordal space width is from 0.04951 to 0.053559; and for 
the redesign by the new method, the range is from 0.049816 
to 0.052042. The range of the ratios of the pinion chordal 
thickness to the pinion cone distance is reduced 45.02% after 
redesign by the new method, and it means that the ratios of 
the pinion chordal thickness to the pinion cone distance are 
more stable after redesign. Likewise, the range of the ratios 
of the pinion chordal space width to the pinion cone distance 

Table 6  Comparison of 
parameters of gear pair

Parameter Wheel Pinion

Modified by 
ISO standard

Redesigned by 
new method

Modified by 
ISO standard

Redesigned by 
new method

Root angle (°) 74.647 75.3628 11.448 10.9948
Dedendum angle (°) 3.350 2.6342 0.441 0.8942
Outer dedendum (mm) 15.565 15.1823 3.561 3.8163
Inner dedendum (mm) 11.994 12.3758 3.063 2.8067
Root apex beyond crossing point (mm) − 0.949 − 3.3578 − 15.643 − 8.6108
Face angle (°) 78.442 79.0052 15.210 14.6372
Addendum angle (°) 0.445 1.0082 3.321 2.7482
Outer addendum (mm) 1.840 2.1398 13.947 13.6226
Inner addendum (mm) 1.366 1.0664 3.561 10.5175
Face apex beyond crossing point (mm) 2.151 0.2795 0.509 7.8617
Outer diameter (mm) 425.865 425.9900 114.357 113.7221
Crown to crossing point (mm) 41.395 41.1025 209.784 209.8509
Front crown to crossing point (mm) 29.173 29.4668 147.258 147.1912

Table 7  Comparison of wheel 
chordal thickness and chordal 
space width along pitch cone

Section Wheel cone 
distance (mm)

Wheel chordal thickness (mm) Wheel chordal space width (mm)

Modified by ISO 
standard

Redesigned by 
new method

Modified by ISO 
standard

Redesigned by 
new method

0 156.301 7.926982 7.36942 16.69452 17.25139
1 162.401 8.270612 7.79873 17.31183 17.78315
2 168.501 8.590324 8.20081 17.95304 18.34209
3 174.601 8.885875 8.57511 18.61839 18.92878
4 180.701 9.156964 8.920962 19.30816 19.54388
5 186.801 9.403221 9.237552 20.02274 20.18821
6 192.901 9.624209 9.523915 20.76256 20.86273
7 199.001 9.819423 9.778896 21.52812 21.56859
8 205.101 9.988286 10.00113 22.31999 22.30717
9 211.201 10.130155 10.18897 23.13882 23.08008
10 217.301 10.244324 10.3405 23.98531 23.88926
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Table 8  Comparison of pinion 
chordal thickness and chordal 
space width along pitch cone

Section Pinion cone 
distance (mm)

Pinion chordal thickness (mm) Pinion chordal space width (mm)

Modified by ISO 
standard

Redesigned by 
new method

Modified by ISO 
standard

Redesigned by 
new method

0 146.61 18.91307 19.16842 7.852272 7.585412
1 153.0787 19.90849 20.11614 8.030604 7.813369
2 159.5474 20.88921 21.04792 8.224117 8.057948
3 166.0161 21.85355 21.9618 8.434661 8.321243
4 172.4848 22.79939 22.85539 8.664486 8.605787
5 178.9535 23.72416 23.72576 8.916345 8.914665
6 185.4222 24.62466 24.56931 9.193629 9.251671
7 191.8909 25.49688 25.38151 9.500565 9.621517
8 198.3596 26.33574 26.1567 9.842485 10.03014
9 204.8283 27.13471 26.88756 10.22622 10.48512
10 211.297 27.88526 27.56457 10.66068 10.99635
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is reduced 45.02% after redesign by the new method, and it 
means that the ratios of the pinion chordal space width to 
the pinon cone distance are more stable after redesign, too.

The gear pair in this paper is with offset, this method also 
applies to face-milled spiral bevel gear pair without offset.

6  Conclusion

This paper proposes an novel calculation method of taper 
design based on machining theory aiming at spiral bevel 
and hypoid gears by the completing process method. With 
which, for both the wheel and the pinion, the redesigned 
concave and convex mean spiral angle can be both equal to 
its respective original designed mean spiral angle. Thus, the 
ratios of the wheel tooth thickness and tooth space width to 
the wheel cone distance are more stable, and the ratios of the 
pinion tooth thickness and tooth space width to the pinion 
cone distance are more stable, too. Finally, this method is 
applied to a spiral hypoid gear pair, and it can be drawn that 
for the wheel, the ranges of the ratios of the chordal thick-
ness and the chordal space width to the cone distance are 
reduced more than 39% compared with those modified by 
ISO standard; for the pinion, the ranges of the ratios of the 
chordal thickness and the chordal space width to the cone 
distance are reduced more than 45% compared with those 
modified by ISO standard.
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