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Abstract
Recently developed anisotropic yield functions can capture the material anisotropic behaviors through parameter optimiza-
tion. However, sometimes the parameter optimization is not easy and does not always have a unique solution. This paper 
introduces an anisotropic yield function that does not require the parameter calibration process. This model simplifies the 
coupled quadratic and non-quadratic yield function in order to directly use the measured on-set of yielding stress and r-value 
data without the calibration process. The presented model is validated with five different materials for the prediction of stress 
and strain anisotropies. In addition, a cup drawing simulation is also presented to validate the simplified model in a practical 
metal forming simulation with the User-defined subroutine of ABAQUS. The results of this paper show that the simplified 
model can be effectively employed for the simulation of sheet metal forming processes.

Keywords  Anisotropy · Non-associated flow rule · Yield function · Cup drawing · Finite element method

1  Introduction

Yield function plays an important role to predict the yielding 
condition of materials and the anisotropic properties. The 
first anisotropic yield function was introduced by Hill [1], in 
1948, with a quadratic form using 6 anisotropic parameters 
to predict the anisotropic mechanical properties. However, 
the Hill1948 model can have only one curvature of the yield 
surface and thus not consider the crystalline structure of 
materials. Independently, Hosford [2], in 1972, developed 
an isotropic non-quadratic yield function that can control 
the curvature of the yield surface. Later, Hill generalized 
the anisotropic yield function based on the Hill1948 model 
to consider the crystalline structures in 1972 and 1990 [3, 
4]. Hosford also came up with an extended model to con-
sider the anisotropic properties by introducing anisotropic 
parameters [5, 6]. These models have been the basis of the 
study of anisotropic yield functions. However, they cannot 
satisfy both stress and strain (r-value) anisotropic properties 

at the same time due to insufficient numbers of the material 
coefficients in the models. Since then, many researchers have 
been trying to include more material constants to describe 
stress and strain anisotropies [7–12]. One of the most widely 
used models is the Yld2000-2d model, introduced by Barlat 
et al. [13], which can describe stress and r-value anisotropies 
by optimizing 8 parameters for the measured yield stresses 
and r-values at 0°, 45°, and 90° to the rolling direction (RD) 
and the equal biaxial (EB) condition, respectively. In par-
allel, Banabic et al., [14] proposed the BBC2003 model, 
which consider the shear effect based on Barlat and Lian 
1989 model [7]. Later Banabic et al., [15] presented an 
improved version, the BBC2005, by rearranging the aniso-
tropic coefficients. Cazacu et al., [16] also proposed a yield 
function to capture the strength-differential effect (SDE). 
The aforementioned models are based on the associated flow 
rule (AFR), which uses a yield function as a plastic potential 
to obtain the direction of plastic strain rate. The AFR has 
provided good numerical solutions for sheet metal forming 
processes. In parallel with the AFR, some researchers have 
studied a non-associated flow rule (non-AFR) by employing 
an additional function as a plastic potential which defines 
the direction of plastic strain rate [17]. One of the widely 
used methods is to employ two separated quadratic functions 
[18–23], and this method is also very effective at capturing 
both stress and r-value anisotropies. However, one limitation 
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is that this method cannot control the curvature of the yield 
function. A recently introduced model by coupling of quad-
ratic and non-quadratic (CQN) functions [24] can control 
the curvature of the yield surface and also capture the ani-
sotropic behavior under the non-AFR, so that it has shown 
good agreements with experimental data [25–27]. However, 
the CQN model requires multiple data sets for the evolving 
history of the yield surface according to plastic hardening, 
and it also requires parameter calibration for different stress 
states. Even though the CQN model provides good numeri-
cal solutions, in many cases, especially in the industry use, 
it is not easy to prepare all data required to perform calibra-
tion for different stress states. The other models mentioned 
above also require the optimization of the model parameters. 
However, sometimes parameter optimization is not easy and 
does not always have a unique solution. For convenience of 
use and accessibility of data, it will be useful to employ an 
anisotropic yield function that does not require the parameter 
optimization with less data.

This paper presents an anisotropic yield function that 
does not require parameter optimization. This model sim-
plifies the anisotropic parameters of the CQN yield model 
to avoid the calibration process and then, by substituting 
the measured on-set of yield stress values and r-values into 
the function, the model represents the stress and strain ani-
sotropies. The simplified yield model (hereinafter called 
as the new model) is implemented into the User-defined 
MATerial (UMAT) subroutine of the ABAQUS program 
and validated with AA6022-T43, AA5182-O, AA6181-T4, 
MP980, and 718AT metal sheets to predict stress and strain 
anisotropies. In addition, a cup drawing simulation is con-
ducted to test the new model in a practical metal forming 
condition. The results of this paper show that the new model 
can be effectively used for simulation of sheet metal forming 
processes without model calibration process. The outline of 
this paper is following. The formulation of the new model 
is introduced in Sect. 2, and Sect. 3 represents the ability of 
the new model. Section 4 shows the cup drawing simulation 
and the conclusion is in Sect. 5.

2 � Modeling

2.1 � Brief Description of Material Dissipation

Section 2.1 briefly introduces the basic equations for mate-
rial dissipation to formulate the yield function. The inequal-
ity of material dissipation rate under small deformation con-
dition is given by [28]

(1)𝜉 = 𝜎 ∶ 𝜀̇ −
⋅

𝜓(𝜌,𝜓) ≥ 0

where � is the Cauchy stress and 𝜀̇ is the strain rate. 𝜓̇  
denotes the rate of free energy change, affected by the mate-
rial density ( � ) and the Helmholtz free energy density ( �) . 
In the isothermal condition, the free energy of a linear elastic 
material can be given by

where � is total strain, �e denotes elastic strain, and �p means 
plastic strain. C is the linear elastic stiffness tensor. Since the 
Cauchy stress and rate of free energy change are given by

Based on Eq. (3), the material dissipation rate of Eq. (1) 
should satisfy

2.2 � Plastic Flow

From Eq. (4), the plastic flow rule defines the rate of plastic 
strain [17]

where �p is a plastic potential and 𝜀̇
p
 is the rate of effec-

tive plastic strain. If �p is a convex function of stress, the 
inequality condition of the material dissipation rate in (4) is 
satisfied. In determining the form of �p , there are generally 
two choices either AFR or non-AFR. This paper uses the 
non-AFR. Next, in order to consider the anisotropy of plastic 
strain, the material orthotropic axes �i are defined

�i(0) is the initial material axes and � is a proper orthogonal 
tensor to describe the rotation of the material axes. For the 
evolution of the rotation tensor � , this work uses the mini-
mum plastic work theory with the decomposed rotational 
tensor from the deformation gradient [29, 30]. The compo-
nents of the Cauchy stress ( �ij ) and strain ( �ij ) can be defined 
on the orthotropic material axes, and the tensors are given by

In this paper, the Hill1948 model is used as the plastic 
potential,�p , under the plane stress assumption. because this 
model can effectively describe the strain anisotropy. Under 
the plane stress condition considering sheet metal forming, 
the plastic potential function is given as below [17]:

(2)� =
1

2
�
e∶C∶�e where �

e = � − �
p

(3)� =
𝜕𝜓

𝜕𝜀e
and

⋅

𝜓 =
𝜕𝜓

𝜕𝜀e
:𝜀̇e

(4)𝜉 = �∶�̇p ≥ 0

(5)
.

ε p =
��p(�)

��

.

ε p

(6)�
i
= ��

i
(0), det (�) = 1, ��

T
= I, �

T
= −�, (for i = 1, 2, 3)

(7)� = 𝜎ij𝜇i ⊗ 𝜇j and � = 𝜀ij𝜇i ⊗ 𝜇j
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where �11 and �22 are normal stress components and �12 is 
shear stress component in the plane stress condition. Here, 
the three strain anisotropic parameters can be defined as 
below:

r0 , r45 , and r90 are the measured r-values in three directions 
(0°, 45°, and 90°) based on the RD.

2.3 � An Simplified CQN Yield Function

Next the yield condition is generally defined as below:

If F
(

𝜎, 𝜀
P
)

< 0 , the material is within elastic range, 

but the elastic–plastic condition makes that F
(

� , �
P
)

= 0 . 
f (�) represents the yield surface and �(�p) is the hardening 
curve at a reference direction, which is set to the rolling 
direction (RD) in this paper. f (�) is specified by

The form of Eq.  (11) is  the coupling of quadratic 
and non-quadratic functions [24]. The non-quadratic 
par t  [  1

2

(

|

|

σ1
|

|

n
+ |

|

σ2
|

|

n
+ |

|

σ1 − σ2
|

|

n) ]  can change the 
curvature of the yield surface to consider the crys-
talline structure, while the role of quadratic part 
[  (�11 − �1�22)(�11 − �22) + �2(�11�22 − �12�12) + 4�3�

2
12

 ] 
is to capture the anisotropy of yield stresses by the aniso-
tropic parameters (α1, α2, and α3); the anisotropic parame-
ters are defined in Eq. (12). n is the exponent to control the 
curvature of the yield surface, which is depending on the 
crystallographic structure as shown in Fig. 1. The role of 
the exponent n is the same to that of other models [13–24]. 
The combination of two parts can take advantage of each 
part by capturing both anisotropy and curvature change of 
yield surface affected by the crystalline structure. In the 
quadratic part, the anisotropic parameters ( �1,�2 , and�3 ) 
should be specified to account for the stress anisotropy of 
materials. To use this model without the parameter calibra-
tion process, the anisotropic parameters are simply defined 

(8)�p =

√

�2
11
+ �p�

2
22
− 2�p�11�22 + 2�p�12�12

(9)

�p =
r0(r90 + 1)

r90(r0 + 1)
, �p =

r0

r0 + 1
, �p =

(1 + 2r45)(r0 + r90)

2r90(r0 + 1)

(10)F(�, �
p
) = f (�) − �(�

p
)

(11)f (�) =

⎧

⎪

⎨

⎪

⎩

�
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⎫

⎪

⎬
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n+2

as the ratio of initial stresses with respect to the loading 
direction at the on-set of the yielding condition,

 

σ0 , σ45 , σ90 , and σEB are the measured on-set of yield 
stresses for three directions (0°, 45°, and 90°) and EB con-
dition, respectively. �1 , �2 , and �3 reflect the ratio of σ90 , 
σ45 , and σEB to σ0 in the yield surface to describe the ani-
sotropic shape of the yield surface. Unlike other models, 
optimization of the anisotropy parameters is not required. 
This model directly uses the measured r-values and yield 
stresses in Eqs. (8) and (12), respectively, without the cali-
bration process. Figure 1 shows the effect of the exponent 
n of the curvature of the yield surface. Note that the data 
of AA6022-T43 (in Table 2) are used for this example of 
Fig. 1. In this work, the n value for three aluminum materi-
als (AA6022-T43, AA5082-O, and AA6181-T4) is 10, and 
the others (MP980 and 718AT) have 6 for the n value. In 
order to obtain the rate of effective plastic strain, 𝜀̇

p
 , the 

yield consistency (13a), stress rate (13b), and hardening slop 
(13c) relations are used with Eqs. (2) and (5), respectively,

(12)

�1 =

(

�0

�90

)
n+2

, �2 =

(

�0

�EB

)
n+2

, and �3 =

(

�0

�45

)
n+2

(13a)Ḟ =
𝜕f

𝜕𝜎ij
𝜎̇ij −H

.

�
p = 0

Fig. 1   An example of effect of exponent value on the yield surface
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Finally, the rate of the effective plastic strain is obtained 
by

 � is a switch parameter having either 1 or 0. � = 1 when 
F(�, �

p
) = 0 and 𝜕f

𝜕𝜎ij
Cijkl𝜀̇kl > 0 . Otherwise� = 0.

3 � Model Validation

3.1 � Material Properties

The presented model is verified for the five material data 
sets (AA6022-T43 [21], AA5182-O [21], AA6181-T4 [14], 

(13b)𝜎̇ij = Cijkl𝜀̇kl − Cijkl

𝜕𝜙p

𝜕𝜎kl

.

𝜀 p

(13c)H =
d�0

d�
p

(14)
.

𝜀 p = 𝜒

𝜕f

𝜕𝜎ij
Cijkl 𝜀̇kl

𝜕f

𝜕𝜎ij
Cijkl

𝜕𝜙p

𝜕𝜎kl

MP980 [24], and 718AT [21] sheet metals). In order to con-
duct metal forming simulation, the hardening curve, �

(

�
p) , 

in Eq. (10) should also be specified. A modified Hockett-
Sherby model is used in this work.

The hardening constants (A, B, C, b, and D) are deter-
mined based on the RD hardening. The parameters of the 
modified Hockett-Sherby model are listed in Table 1, and 
the initial yield stress for all materials are listed in Table 2. 
Note that AA6181-T4 data are excluded in Table 1 because 
it does not have the hardening data but the on-set of yield 
stress in Table 2. The r-values are shown in Table 3. The 
data for directions of 15°, 30°, 60°, and 75° are not neces-
sary to determine the shape of the yield surface, but used 
in the validation of the new model in Sect. 3.2. Figure 2 
presents the yield and plastic potential surfaces of the new 
model in the plane stress space for the five materials. The 
red and blue surfaces are for the yield function f and plastic 
potential function �p , respectively, in each figure. In each 
3D yield surface, the red line denotes the uniaxial stress 
state, and the blue line presents the yield surface on the 
normal plane consisting of the RD and the transverse direc-
tion (TD). As shown in Fig. 2, the surfaces are convex to 
satisfy the inequality condition of the material dissipation 
in Eq. (4).   

3.2 � Anisotropy in Strain and Stress

To verify the new model for stress and strain anisotropies, 
normalized stress ratio and r-value were analyzed. The nor-
malized stress ratio is the yield stress that changes along 

(15)�
(

�
p)

= A − B exp
(

−C
(

�
p)b

)

+ D�
p

Table 1   Hardening parameters from the RD for the four materials

Materials Hardening parameters

A [MPa] B [MPa] C [−] b [−] D [MPa]

AA6022-T43 338.86 202.29 10.38 1.00 0.42
AA5182-O 366.75 250.97 11.18 1.00 0.23
MP980 1011.98 371.15 52.99 0.79 1114.29
718AT 529.54 318.34 9.79 1.00 6.17

Table 2   Initial yield stress at 
intervals of 15 degrees for the 
five materials

Materials Initial yield stress

�
0

�
15

�
30

�
45

�
60

�
75

�
90

�
EB

AA6022-T43 136.57 137.31 137.72 136.12 133.87 130.88 128.49 128.85
AA5182-O 115.78 114.11 112.89 111.65 110.83 112.16 114.28 125.22
AA6181-T4 142 – – 138 – – 137 134
MP980 640.83 653.56 631.25 598.82 579.91 577.72 617.32 582.97
718AT 211.2 212.99 213.21 219.42 224.74 222.13 216.51 237.88

Table 3   r-values at intervals of 
15 degrees for the five materials

Materials r-values

r
0

r
15

r
30

r
45

r
60

r
75

r
90

r
EB

AA6022-T43 1.029 1.010 0.703 0.532 0.553 0.689 0.728 1.149
AA5182-O 0.957 0.903 0.916 0.934 0.947 0.981 1.058 0.948
AA6181-T4 0.672 – – 0.606 – – 0.821 0.820
MP980 0.810 0.845 0.925 0.995 1.015 1.035 1.058 0.977
718AT 1.830 1.763 1.834 2.294 2.708 2.562 2.517 0.803
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the load direction, and it is normalized by the yield stress 
of the reference direction ( σ0 ). The r-value is a standard 
measurement to evaluate the strain anisotropy in the metal 
sheet ([15, 17], and [27]). It is defined as the ratio of width 
strain to thickness strain,

Due to the zero dilatancy condition of plas-
tic deformation, the strain in the thickness direc-
tion can be given by �p

thickness
= �

p

33
= −

(

�
p

11
+ �

p

22

)

 , 
and the strain in the width direction can be defined 
�
p

width
= �

p

11
sin2(�) + �

p

22
cos2(�) − 2�

p

12
cos(�) sin(�) with 

considering strain transformation. θ denotes the load-
ing direction with respect to the reference direction. The 
verification results for strain and stress anisotropies are in 
Figs. 3 and 4, respectively, for the five materials (AA6022-
T43, AA5182-O, AA6181-T4, MP980, and 718AT). All 
the measured values (black square symbols) are at intervals 
of 15 degrees, and the new model (blue line) represents a 

(16)

r� =
�
p

width

�
p

thickness

= −
�
p

11
sin2(�) + �

p

22
cos2(�) − 2�

p

12
cos(�) sin(�)

�
p

11
+ �

p

22

continuous distribution; the new model is also compared 
to other models, the CQN2017 [24] (red dashed line) and 
the Yld2000-2d [13] (green dotted line). If the material is 
isotropic, r-value and normalized stress ratio had a constant 
value (black dashed line) in Figs. 3 and 4.

Figure 3a–e show the r-value distributions of the three 
models for the five materials. The aluminum materials are 
shown in Fig. 3a–c. AA6022-T43 has quite a large deviation 
from RD to TD, but the AA5182-O and AA6181-T4 show 
relatively smaller deviations. For the MP980 and 718AT 
materials shown in Fig. 3d–e, the new model shows a simi-
lar change in the r-value distribution. The new model cor-
rectly passes the measured r-values in the three major direc-
tions (0°, 45°, and 90°). Even though the other angles (15°, 
30°, 60°, and 75°) lead to some errors, the presented model 
can follow the tendency of the r-value change for all of 
the materials. Figure 4a–e represents the normalized stress 
ratio for the same materials and models. The magnitude of 
distribution of the stress anisotropy has a narrower range 
than that of the r-value. Similar to the strain anisotropy, the 
new model correctly passes the measured data in the three 

Fig. 2   Yield and plastic potential surfaces of the new model in the plane stress space for the five materials; a AA6022-T43; b AA5182-O; c 
AA6181-T4; d MP980; e 718AT
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Fig. 3   Prediction of the r-values of the three models for the five materials; a AA6022-T43; b AA5182-O; c AA6181-T4; d MP980; e 718AT
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Fig. 4   Prediction of the normalized stress ratio of the three models for the five materials; a AA6022-T43; b AA5182-O; c AA6181-T4; d MP980; e 718AT
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main directions (0°, 45°, and 90°), and follows the tendency 
of the anisotropy change well. As shown in Figs. 3 and 4, 
the new model can provide almost the same performance as 
the CQN2017 and Yld2000-2d models in prediction of the 
r-value and stress anisotropies. For a quantitative estima-
tion of the anisotropies in strain and stress, the root mean 
square (RMS) errors for the r-value and normalized stress 
ratio are shown in Fig. 5. Note that the AA6181-T4 data has 
no error in both anisotropy distributions because it has only 
data for the three main directions (0°, 45°, and 90°). The 
accuracy of the three models is very similar. The models 
show that errors of the r-value and normalized stress ratio 
of the five materials are less than 5% except for the r-value 
of the 718AT material. That’s because the measured r-value 
at 30° and 60° of the 718AT material make strong inflec-
tions. Based on the validation results, the presented model 
provides good agreements with the measured r-value and 
stress anisotropies.

3.3 � Yield Surface in the Normal Plane

In this section, the new model is verified for the yield sur-
face compared with the other yield functions. Figure 6a–e 
shows the four yield surfaces with measured data on the 
normal plane for the five materials, and they are repre-
sented with different colors or symbols, e.g. the isotropic 
model (black line), new model (blue line), CQN2017 (red 
dashed line), Yld2000-2d (greed dotted line), and experi-
ments for RD (purple square), TD (red square), and EB 
(green square), respectively. In the isotropic model, the 
measured yield stresses on TD and EB have some errors; 
the isotropic model is employed as a reference. However, 
the new model can capture the experimental data for the 
RD, TD, and EB condition, and has very similar contours 

to the Yld2000-2d and CQN2017 models for all materi-
als. In addition, the AA6181-T4 has extra biaxial tension 
data (black squares), and the models follow the additional 
data well. This performance of the model in capturing 
data is very acceptable compared to other reported models 
[13–15].

4 � Cup Drawing Simulation

The previous section showed the verification of the new 
model. This section represents a cup drawing simulation 
with the Yld2000-2d, CQN2017, and new models by 
using the finite element (FE) method. The used program is 
ABAQUS explicit solver with the Vectorized-User MATe-
rial (VUMAT) subroutine. In this study, the new model is 
compared to the CQN2017 and Yld2000-2d for AA6022-
T43 material; the Yld2000-2d model has provided very 
good anisotropic prediction in the same problem [31, 32]. 
For the simulation conditions, the total punch stroke is 
60 mm and the blank holding force (BHF) is set to 20kN. 
The quarter symmetric condition is applied to improve 
the efficiency of the finite element (FE) model, as shown 
in Fig. 7.

The effective stress results at 20 mm punch stroke are 
presented for three yield functions in Fig. 8. The results 
show that the new model can closely predict the effec-
tive stress contour compared to the Yld2000-2d and 
CQN2017 models. Figure 9 represents the cup height 
profiles of the three models at the end of stroke, and the 
models also provide very similar results. Consequently, 
the cup drawing analysis show that the new model can 
describe the effect of anisotropic behaviors in the metal 
forming simulation.

Fig. 5   RMS errors of the three models for the five materials; a r-value; b normalized stress ratio



75International Journal of Precision Engineering and Manufacturing (2022) 23:67–78	

1 3

Fig. 6   Normalized yield surfaces on the normal plane; a AA6022-T43; b AA5182-O; c AA6181-T4; d MP980; e 718AT
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5 � Conclusion

In this work, a yield function not requiring parameter 
optimization is introduced. This model simplifies the ani-
sotropic parameters of the CQN model in order to avoid 
parameter optimization. The new model was verified in 

previous sections from certain points of view, e.g. strain 
and stress anisotropy, the yield surface, and the cup draw-
ing simulation. Results show good agreements with exper-
iments. More details about the new model and specific 
results are below:

Fig. 7   FE model of a circular cup drawing; a 2D drawing; b FEM modeling

Fig. 8   Effective stress results at stroke 20 mm for the three yield functions; a CQN2017; b New model; c Yld2000-2d

Fig. 9   Results of cup height 
profiles at stroke 60 mm for the 
three yield models
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1.	 The new model is formulated under the Non-AFR, and 
simplifies the hardening history data of the CQN yield 
model. Since the new model directly uses the measured 
stresses and r-values for the anisotropic parameters, it 
does not require parameter optimization to determine 
the shape of yield surface.

2.	 The new model provides good predictions for stress 
and strain anisotropies. This model correctly passes the 
stress and r-value data at the three main directions (0°, 
45°, and 90°), and it can follow the experimental ten-
dency of the anisotropic change with respect to loading 
directions.

3.	 The new model can exactly capture the yield surface 
at the RD, TD, and EB condition by using the simpli-
fied anisotropic parameters ( �1 , �2 , and �3 ). Also, it can 
consider the different curvatures of the yield surface by 
controlling the exponent value.

4.	 The new model can provide almost the same perfor-
mance as the Yld2000-2d and CQN2017 models in pre-
diction of strain and stress anisotropies.

5.	 In the cup drawing simulation, the presented model 
describes very similar results for the stress contour and 
cup height profile compared to the Yld2000-2d and 
CQN2017 models.
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