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Abstract
Currently, carbon fiber-reinforced plastic (CFRP) is a material with potential uses for various industries due to its excellent 
properties. However, the severe tool wear in its machining is an evitable problem because it deteriorates product quality and 
productivity at the same time. Timely replacement of the tool should be taken in advance to reduce the influences of this 
drawback. In sum, the accurate estimation of the tool wear plays a crucial role in CFRP machining. Therefore, in this study, 
a tool wear estimation in CFRP drilling is presented. The method used is based on discrete wavelet transformation (DWT) of 
the thrust force signal and an artificial neural network (ANN). Two valuable features related to tool wear are identified and 
then extracted using DWT. The tool wear is estimated by using an ANN with two features adapted from DWT. Consequently, 
the tool wear, especially flank wear, in CFRP drilling can be accurately estimated using the proposed method.

Keywords  Carbon fiber-reinforced plastic (CFRP) · Drilling · Tool wear · Thrust force · Discrete wavelet transformation 
(DWT) · Artificial neural network (ANN)

1  Introduction

The need for lightweight materials is drastically increasing, 
given the current industry trend for higher fuel efficiency and 

environment protection. In particular, lightweight materials 
with higher toughness and strength can play more crucial 
roles in transportation system industries. Carbon fiber-
reinforced plastic (CFRP) is a polymer-matrix composite 
(PMM), which is composed of a thermoset polymer matrix 
and carbon fiber reinforcement. CFRP has great potential 
for fair price and exhibits excellent properties such as high 
modulus, high strength, low density, and good resistance to 
corrosion [1–3]. Thus, CFRP is a promising material used in 
innovating transportation systems, especially with automo-
bile [2, 4] and aerospace applications [1–3, 5–7].

In spite of the large demand for CFRP, several issues 
remain concerning its recycling properties [8], price [9], and 
machining [2]. CFRP machining is difficult to solve. Thus, 
proper selection of the cutting tool is important and the opti-
mal cutting condition should always be considered when 
machining CFRP, given its material discontinuity, inhomo-
geneity, and anisotropic nature [2, 10, 11]. Moreover, unlike 
conventional metals, machining CFRP is accompanied with 
excessive tool wear, which is based on the abrasive nature of 
the wear [11, 12]. This tool wear can also result in several 
types of damages on CFRP [12–16], including fiber pull-out, 
matrix cracking, thermal damage, and delamination [14, 17, 
18]. Particularly, delamination is the one of the most severe 
and frequent failures in CFRP drilling. Lin et al. investigated 
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the nature of delamination in CFRP and concluded that the 
tool wear is a major factor that increases the occurrence of 
delamination [19]. However, Hou et al. presented that intro-
duction of external cooling lubricant to CFRP drilling process 
could reduce the tool wear and improve the machined surface 
quality [20]. Mura and Dini proposed that the pre-cooling 
treatment by cryogenic fluid could reduce the delamination of 
CFRP and improve the machined surface quality even though 
the tool wear was accelerated [21].

Tool condition monitoring (TCM) [22] is one of the most 
important technologies for autonomous and unmanned manu-
facturing systems. TCM can alleviate the problems induced 
by tool wear in CFRP drilling. Although studies on tool wear 
monitoring in metal drilling are frequent [22–24], investigations 
on tool wear monitoring in CFRP (or even GFRP) drilling are 
not yet popular. In particular, only a few have been reported. 
Caggiano and Nele have proposed a tool wear estimation based 
on an artificial neural network (ANN) with sensor fusion in 
drilling CFRP [25]. Al-Sulaiman et al. examined the relation-
ship between electrical power and tool wear in CFRP drilling 
for TCM [26]. Studies on the influence of tool wear on thrust 
force was also conducted [12, 13, 27, 28] because thrust force 
is one of the most sensitive signals to tool wear. Acoustic emis-
sion has been frequently considered a practical and potential 
signal to indicate tool wear in drilling fiber-reinforced com-
posites [29]. Zhu et al. presented that ANN based on thrust 
force and acceleration signals could successfully identify the 
tool state [30]. Although strong correlation exists between tool 
wear and sensor signals, most of the signals cannot effectively 
indicate the wear directly due to the noise or interference from 
the machining process and environment. Therefore, various sig-
nal processing methods, which extract meaningful information 
from the raw signal, have been applied to tool wear monitoring, 
including the following exemplary methods: statistical param-
eters, auto regressive moving average, fast Fourier transforma-
tion (FFT), and wavelet transformation [23].

In this study, we present a tool wear estimation in CFRP 
drilling using only thrust force signal, which possesses lots of 
valuable information related to the quality of drilling process 
such as tool condition and delamination [14, 27, 28]. Specifi-
cally, the quasi-static (low frequency) and dynamic (2nd har-
monic of runout frequency) components of the thrust force sig-
nal are extracted using discrete wavelet transformation (DWT) 
for a fast and efficient process. Then, these two features are 
independently provided to decision making based on an ANN 
to accurately estimate the tool wear. Consequently, the tool 
wear in CFRP drilling could be successfully estimated with 
the help of the independent consideration of the two given fre-
quency components of thrust force signal in DWT and ANN. 
Furthermore, the independent consideration of the two given 
frequency components could improve the estimation accuracy 
and reliability from the typical way according to the considera-
tion of the quasi-static component.

2 � Methods of Flank Wear Estimation

2.1 � Concept of Tool Wear Estimation

Figure 1 shows the proposed procedure of tool wear estima-
tion for CFRP drilling. Estimation of tool wear in this study 
consists of three steps, namely, signal measurement, signal 
processing, and estimation. In this study, the thrust force is 
regarded as the physical signal that estimates the tool wear. 
This physical signal can be measured using a tool dynamom-
eter through analog-to-digital conversion (ADC). Since the 
tool wear affects the average level and fluctuation behavior 
of the cutting forces [31, 32], the quasi-static and dynamic 
components are extracted from the signal in this study. The 
quasi-static component can cover the cutting force increase 
induced by the tool wear, whereas the dynamic component 
corresponds to the vibration rise caused by the tool wear. 
These components can be obtained using various methods 
such as FFT, time series analysis, statistics, and wavelet 
transformation [23]. In this study, DWT is employed because 
it has useful properties for tool condition monitoring [33, 
34]. With the help of DWT, signal decomposition to the 
quasi-static and dynamic components can be achieved along 
with denoising effect, which removes the meaningless parts 
and extracts more meaningful ones. The extracted two com-
ponents are considered the independent features in tool wear 
estimation in the proposed method. ANN is used to estimate 
tool wear in CFRP drilling from the extracted two features 
(i.e., components) with higher accuracy.

2.2 � DWT

Wavelet transformation is a method used to decompose a 
signal into components with different resolution levels [35]. 

Fig. 1   Schematics of tool wear estimation for CFRP drilling
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This method’s capability of correlating the signal with a 
family of waveforms concentrated in time and in frequency 
is considered as its advantage [34]. In particular, DWT is 
based on the discrete signal, and thus it is appropriate to 
the signal uniformly sampled at an interval. In this study, 
Daubechies (Daub4) wavelet transformation is used [35]. It 
has four scaling numbers and four wavelet numbers. Daub4 
is capable of decomposing the original signal into trend 
and fluctuation subsignals and introducing wrap-around 
effect [35]. In general, the trend subsignal represents the 
localized lower frequency component of the original signal, 
whereas the fluctuation subsignal corresponds to the higher 
frequency component. In practice, Daub4 is capable to be 
deemed as high- and low-pass filters with a cut-off frequency 
of ωs/2 K+1 Hz, where ωs and K are the sampling frequency 
of signal measurement and level number of DWT, respec-
tively [35]. When a measured thrust force signal f with N 
samples is given to K-level Daub4, the K-level trend subsig-
nal (aK) and K-level fluctuation subsignal (dK) can be defined 
as shown in (1) and (3) [35].

where aK_l and VK_l are the lth scaling coefficients and the 
lth K-level scaling signals [35] (also called scaling functions 
[36]) of Daub4, respectively. The scaling function VK_l is 
composed of zeros and four scaling numbers. Similarly, dK_l 
and WK_l are the lth wavelet coefficients and the lth K-level 
wavelet signals of Daub4, respectively. The wavelet function 
WK_l is composed of zeros and four wavelet numbers.

2.3 � ANN

An ANN is constructed using back propagation algorithms 
to estimate flank wear in this study. As shown in Fig. 2, the 
ANN used in this study is composed of the three layers, 
namely, input, hidden, and output layers. Input and output 
layers may have multiple neurons. In this study, the number 
of input neurons was set two for two features corresponding 
to the quasi-static and dynamic components of the thrust 
force signal. The output layer has a single neuron corre-
sponding to flank wear. The data for the two inputs and an 
output are normalized before applying to the ANN training 
process. Normalization of each input feature in this study is 
made according to (5) [27]

(1)aK =
(

aK_1,… , aK_l,… , aK_NK

)

;NK = N∕2K

(2)aK_l = f ⋅ VK_l

(3)dK =
(

dK_1,… , dK_l,… , dK_NK

)

(4)dK_l = f ⋅WK_l

where x and X are the values of the normalized and original 
input features, respectively. The maximum and minimum 
values of all the original input features engaged in the train-
ing process are Xmin and Xmax, respectively. As a result, all 
the normalized values of the extracted features would be 
distributed between − 1 and 1. As shown in Fig. 2, the value 
at each neuron in the upper layer (for example, yq on the 
hidden layer) is defined as follows:

where wpq is the weight from neurons xp (lower layer neuron) 
to yq (upper layer neuron), which corresponds to the arrow 
shown in Fig. 2, whereas bq is the bias for neuron yq. G is the 
transfer function and the hyperbolic tangent sigmoid func-
tion [37] applied in this study. In addition, m and n are the 
numbers of neurons in the lower and upper layers, respec-
tively. The output value of the neuron z can be obtained 
from (6) in the same way. The estimated flank wear could 
be calculated by denormalization, which is the inverse func-
tion of (5).

In this study, we have chosen a 2 × 5 × 1 structure, which 
has two neurons in the input layer (m = 2) and five neurons in 
the hidden layer (n = 5). The initialized weight and bias are 
set as random numbers. Being trained by iterations, weights 
and biases would be increasingly suitable for estimation of 
flank wear. The training process was performed on MAT-
LAB with the training function based on Levenberg–Mar-
quardt algorithm.

(5)x = 2 ×
(

X − Xmin

)

∕
(

Xmax − Xmin

)

− 1

(6)

yq = G

((

m
∑

p=1

wpqxp

)

+ bq

)

, (1 ≤ p ≤ m, 1 ≤ q ≤ n)

Fig. 2   ANN structure applied in this study
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3 � Experiments

In this study, a computer numerical controlled (CNC) 
machining center (CSCAM, M643-T14-A3) was used in 
drilling CFRP samples. Thrust force signals were obtained 
from a 4-component tool dynamometer and its charge 
amplifier (Kistler, 9272 and 5070) with the help of an ADC 
(National Instruments, cDAQ-9174). The sampling fre-
quency in signal measurement was set as 1,000 Hz. All the 
signal processing steps, including DWT and ANN, were 
performed in LabVIEW environment. Figure 3 shows the 
schematic diagram of experimental setup.

Solid spiral drilling tools with the same point angle and 
material but with two different diameters, namely, 8 mm 
and 6 mm, were used in the drilling experiments. The point 
angle of the tools was 118°. The tools were made of tungsten 
carbide (WC) without any surface coating. Figure 4a shows 
a new tool with a diameter of 8 mm. The CFRP workpiece 
was a multidirectional (MD) stack laminate with thickness of 
5 mm, which was composed of epoxy resin and carbon fibers 
with a laying-up sequence of 0°/45°/90°/ − 45° orientation 

(i.e., quadraxial). Moreover, a woven carbon fiber sheet was 
laid on the top and bottom layers. The carbon fibers were 
T1000 class. The CFRP workpieces were provided by an 
airplane company (Korea Aerospace Industries Ltd.). Fig-
ure 4b shows a CFRP plate workpiece used in this study. The 
feedrate and spindle speed were 400 mm/min and 5000 rpm, 
as recommended by the tool maker.

Each tool was used in drilling 500 holes (equivalent to 
2500 mm in drilling length) on CFRP. The tool wear and 
thrust force signal were investigated at every 100 holes 
from the 50th hole and at the first and last hole drilling. 
The number of repetitions for 8-mm and 6-mm tools was 5 
and 3, respectively. To measure the flank wear, a photo was 
taken for the flank face using a stereomicroscope (SMZ460, 
Nikon) with a charge coupled device (CCD) camera. The 
cutting edge of each tool was laid horizontally with the help 
of a tool holder designed with considering the point angle of 
the tools. The averaged flank wear (VB) was calculated with 
the help of ImageJ software (National Institutes of Health). 
Only the flank wear along the cutting edge (or lip) was con-
sidered in this study.

Fig. 3   Schematic diagram of 
experimental setup

Fig. 4   Drilling tool and CFRP 
workpiece used in this study: 
a new tool (with a diameter 
of 8 mm) and b new CFRP 
workpiece
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4 � Results and Discussions

Figures  5a–c show the flank faces of the 8-mm tools 
after drilling CFRP for different lengths of 0, 1250, and 
2500 mm. The edge of the flank face had changed evi-
dently as much as it engaged in drilling CFRP. Specifi-
cally, the edge had larger flank wear as it was closer to 
its side end. The tool with a diameter of 6 mm showed a 
similar trend but with a slightly smaller magnitude in flank 
wear growth. Moreover, the machined holes corresponding 
to the tool conditions shown in Fig. 5a–c are presented in 
Fig. 5d–f. The hole machined using a fresh tool does not 
have any failure. However, the holes for the worn tools 
had various failures such as uncut resin, fibers, spalling, 
and delamination as shown in the figures. As expected, the 
failure became more severe with increased drilling length 

(i.e., larger tool wear). The flank wear growth of the both 
tools with the diameters of 8 mm and 6 mm according 
to the drilling length is shown in Fig. 6. In particular, 

Fig. 5   Flank faces of tools with 
a diameter of 8 mm and top/
bottom surfaces of workpieces: 
a and d fresh tool; b and e worn 
tool after drilling 1250 mm 
of CFRP (equivalent to 250 
holes); and c and f worn tool 
after drilling 2500 mm of CFRP 
(equivalent to 500 holes). White 
arrows in (a–c) denote the flank 
wear on the flank face along the 
cutting edge

Fig. 6   Flank wear growth with respect to drilling length for 8-mm 
and 6-mm diameter tools

Fig. 7   FFT results of measured thrust force signals with respect to 
drilling length: a 8-mm tool and b 6-mm tool
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the flank wear in both tool conditions grew faster when 
the tool machined holes up to initial 250 mm (or slightly 
longer) drilling, and then it became slightly slower.

Figure 7 shows the amplitude spectrums obtained from 
FFT for the thrust force signals when drilling CFRP 1250 
mm using (a) 8-mm diameter and (b) 6-mm diameter tools. 
The frequency components lower than 10 Hz were cut out 
using high-pass filtering with a cut-off frequency of 10 Hz. 
However, the peak amplitude in the frequency range lower 
than 10 Hz was denoted as F0 Hz, given that the frequency 
corresponding to the peak amplitude was 0 Hz in all the 
experiments. It was also provided for each drilling length 
condition. As shown from the obtained values, the value of 
F0 Hz had a strong relation to the drilling length. Thus, the 
value increased as the drilling length increased. Over the 
frequency range higher than 10 Hz, the dominant vibra-
tion components at the frequency near 166 Hz and its har-
monics were observed. They were equivalent to a double 
spindle rotation frequency, that is the 2nd harmonic com-
ponent of runout frequency. In this study, the frequency 
was called cutting-edge passing frequency. Figure 7 shows 
that the cutting-edge passing frequency component looked 
sensitive to the drilling length, which corresponds to the 
tool wear as shown in Figure 6. The drilling tool with 
longer drilling length (equivalently, larger tool wear) had 
a larger thrust force amplitude at the cutting-edge passing 
frequency. The second and higher-order harmonic compo-
nents of the cutting-edge passing frequency were ignored 
due to their small amplitude. From these amplitude spec-
trum analyses, the typical quasi-static, which was F0 Hz, 
and the dynamic (at cutting-edge passing frequency) com-
ponents of the thrust force signal were selected to estimate 
the tool wear in this study.

The static and dynamic components of the thrust force 
signal were obtained separately using DWT. In general, the 
frequency resolution and band size were determined using 
the level of DWT, which was strongly related to calculation 
load and the processing steps at the same time. Therefore, 
the level and subsignals of DWT suitable for the quasi-static 
and dynamic components of the thrust force were selected 
to minimize the calculation load and processing steps. The 
static component of thrust force could be represented as 
the frequency component within lower frequency. Thus, 
the level 5 scaling functions (a5) were chosen to cover the 
quasi-static component of the thrust force, given that it was 
the corresponding frequency band of 0 to 15.625 Hz. Moreo-
ver, the dynamic component of thrust force was extracted 
using the level 2 wavelet functions (d2) to indicate the vibra-
tory behavior of the thrust force signal around the cutting-
edge passing frequency as shown in Fig. 7. d2 covered the 
frequency band between 125 and 250 Hz. Figure 8a shows 
the thrust force signal obtained when drilling a CFRP using 
an 8-mm diameter tool with a drilling length of 1250 mm. 

Its quasi-static and dynamic components are also obtained 
using DWT. As shown in Fig. 8b, the comparison of the 
measured thrust force signal and its quasi-static and dynamic 
components from DWT when a 6-mm diameter tool with the 
same drilling length was used. Furthermore, the quasi-static 
component obtained using DWT can effectively describe the 
change in the level of the original signal. The dynamic com-
ponent also successfully represented the vibratory behavior 
of the original signal. The absolute value of level 2 wavelet 
functions (|d2|) was used as the dynamic component of the 
thrust force for the purpose of easy extraction of amplitude 
information of the vibratory behavior.

As shown in Fig. 8, the quasi-static and dynamic com-
ponents of thrust force went through significant changes 
in level during hole drilling. A measure (or representa-
tive value) for each component was useful in determin-
ing a relationship between the components and tool wear. 
In this study, the maximum values of quasi-static and 
dynamic components, namely, max(a5) and max(|d2|), 
were used as the measures. These values also played the 
role of the inputs to the ANN-based tool wear estima-
tor. The correlations between the tool wear and maximum 
values of the quasi-static and dynamic components of 
the thrust force were investigated as shown in Fig. 9a–c. 

Fig. 8   DWT results for thrust force signal obtained when drilling 
CFRPs with different diameter tools: a 8 mm and b 6 mm
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As shown in Figures 9a–b, the quasi-static and dynamic 
components were highly proportional to tool wear. How-
ever, the variation was larger as the tool wear increased. 
Moreover, the correlation between the maximum values 
of the quasi-static and dynamic components was inves-
tigated as shown in Fig. 9c. A strong dependency with 

each other was observed, where the Pearson correlation 
coefficient [38] was approximately 0.79. The correlation 
between the two values, max(a5) and max(|d2|), was rela-
tively higher when their values were smaller. However, the 
correlation had worsened as the values became continually 
larger. These correlative properties of the quasi-static and 

Fig. 9   Analysis results for correlation between a tool wear and maxi-
mum value of quasi-static component, b tool wear and maximum 
value of dynamic component, and c maximum values of quasi-static 
and dynamic components when drilling with 8-mm tools

Fig. 10   Analysis results for correlation between a tool wear and the 
maximum value of quasi-static component, b tool wear and the maxi-
mum value of dynamic component, c the maximum values of quasi-
static and dynamic components when drilling with 6-mm tools
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dynamic components of the thrust force were shown simi-
larly when drilling with 6-mm tools even though the cor-
relations were slightly higher (Figure 10). Therefore, these 
two features need to be considered separately to estimate 
the tool wear accurately under a larger tool wear condition. 
As a result, max(a5) and max(|d2|) were used as the inputs 
to ANN in this study.

To justify the estimation of the tool wear using the selected 
two features, max(a5) and max(|d2|), we conducted three types 
of tool wear estimation. Specifically, the ANN-based tool wear 
estimation used each of the two features and both features as 
inputs. Figure 11 presents the comparison results of the root 
mean square errors (RMSE) in ANN training for the three 
types of tool wear estimation. As shown in Fig. 11, ANN with 
the two inputs had estimated flank wear more accurately than 
the other two methods based on single input in CFRP drilling 
with the 8-mm tools. The estimation error when using two 
inputs was less than 46% of that from quasi-static component 
only and approximately 57% of that in dynamic component-
based estimation. Similarly, the wear estimation quality for 6 
mm tool when both features were employed looked better than 
that of the other methods. In detail, the estimation error when 
using both features in the developed system was less than 34% 
of that from quasi-static component only and approximately 
52% of that in dynamic component-based estimation. Thus, 
the use of quasi-static and dynamic components as independent 
inputs could improve the accuracy of the estimation of the tool 
wear, which was supposed to be originated from the comple-
mentary effect of both components. By contrast, single com-
ponent input could additionally introduce erratic components 
caused by unexpected or undesired machining situations.

The developed tool wear estimation based on DWT and 
ANN with two thrust force component inputs was evaluated 
using the signals that were not engaged in ANN training. 
Figure 12a, b show the wear estimation results of the 8-mm 
and 6-mm diameter tools using the developed method, 
respectively. As shown in these figures, the tool wear of 
both tools was successfully estimated using the proposed 
method. The maximum estimation error for the 8-mm diam-
eter tool was approximately 22%. This value corresponded 
to an error of 28.7 μm for the actual tool wear of 128 μm, 
and the average error was approximately 7.8%. Moreover, 
the maximum and average errors for the 6-mm diameter tool 
were approximately 8.1% and 4.4%, respectively.

5 � Conclusions

In this study, a tool wear estimation based on DWT and 
ANN was successfully applied to CFRP drilling which has 
more significant tool wear but lower cutting loads. Drilling 

Fig. 11   Comparison of RMSE of DWT–ANN-based tool wear esti-
mation using three sets of features, namely, maximum value of quasi-
static component of thrust force only (single input), maximum value 
of dynamic component of thrust force only (single input), and both 
maximum values of quasi-static and dynamic components of thrust 
force separately (multiple inputs) when drilling using 8- and 6-mm 
diameter tools

Fig. 12   Estimation results of tool wear in CFRP drilling. a Justifi-
cation experiment 1 with an 8-mm diameter tool and b Justification 
experiment 2 with a 6-mm diameter tool
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tools with two different diameters and MD CFRP stack 
workpieces for a real aircraft were used in a series of experi-
ments. Each tool was engaged in drilling 500 holes. From 
the experiments, the flank wear and thrust force with respect 
to the drilling length were investigated. In particular, the 
quasi-static and dynamic components of thrust force were 
selected as feature signals contrary to existing studies which 
typically used only quasi-static component from the various 
ones of thrust force. The quasi-static component covers the 
cutting force increase induced by the tool wear, whereas the 
dynamic component corresponds to the vibration rise caused 
by the tool wear. These two features had a strong relationship 
not only with the tool wear but also with each other. How-
ever, the dependency between the two features weakened as 
the tool wear increased. As a result, the two features effec-
tively extracted using DWT were used as independent inputs 
to ANN. Consequently, our system based on DWT–ANN 
with two inputs could estimate more effectively with at least 
34% less error than that with single input. Moreover, the 
maximum estimation error was approximately 22% and the 
average error was less than 8%.
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