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Abstract
Machining robots are expected to significantly change existing production systems in the near future. The quality of the 
machining process with robots is mainly governed by the accuracy and stiffness of the robots. Therefore, a precision reducer 
for the robot joint is an important component that governs the accuracy of machining robots. This paper presents a review of 
rigid precision reducers for machining robots. Initially, an overview of the machining robots and their features is introduced. 
The importance of a precision reducer as a component of a robot for machining is explored. A cycloid reducer is the best 
candidate among precision reducers, considering both the structural compliance and kinematic accuracy of the machining 
robots. This is followed by reviews of various cycloid reducers and their operating principles. The design issues of the cycloid 
reducer for performance improvement are then presented. Additionally, the methodology and analysis to assess the perfor-
mance of the cycloid reducers are discussed. The machining and fault detection of a cycloid reducer are briefly addressed. 
Finally, other applications of cycloid reducers are introduced.

Keywords Rigid precision reducer · Cycloid reducer · High stiffness reducer · Machining robot · Industrial robot

1  Introductions

Smart manufacturing is a strong industrial driver for reshap-
ing the current competitive landscape and establishing new 
market leaders. Manufacturing has evolved to become more 
automated, computerized, and complex. Smart manufactur-
ing can be defined as a set of technologies that employ a 
computer-integrated process, high levels of adaptability, 
rapid design changes, digital information technology, and 
more flexible technical workforce training [1]. Smart manu-
facturing allows building of new value-added processes and 
networks to improve and optimize the flexibility, adaptabil-
ity, and efficiency of business processes.

Cyber-physical systems (CPS)—a new trend in smart 
manufacturing-related research—integrates the cyber world 
and the dynamic physical world by combining computing, 
communication, and control [2]. The main feature is the 
integration of cyber-physical systems to enable intersystem 
communication and self-controlled system operation [3]. 
Moreover, smart factories integrated with CPS can be eas-
ily applied to a big data analytics platform to collect data on 
industrial processes [4, 5]. This would enable physical enti-
ties in smart manufacturing to be controlled and supervised 
in a safe, efficient, and reliable manner [6].

Additive manufacturing (AM) or three-dimensional (3D) 
printing is considered as a CPS owing to the interlacing of 
virtual production with physical production [7]. AM has 
introduced new production methods to design, manufacture, 
and distribute to end users. Moreover, AM plays an impor-
tant role in smart manufacturing owing to its various benefits 
such as time and material savings, rapid prototyping, high 
efficiency, and decentralized production [8, 9].

Although AM technologies have experienced substantial 
growth in recent decades, machining manufacturing (MM) 
has played a dominant role in manufacturing. AM is highly 
suitable for green manufacturing owing to its advantages 
such as material saving and waste minimization [9]. How-
ever, it is not relevant to the manufacturing of large-scale 
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products with metals and high-standard surface finishing 
[10]. In addition, AM has limitations in terms of material 
use, whereas MM is easy to apply because of the variety of 
materials available on the market. Finally, metal parts manu-
factured by AM require additional trimming with computer 
numerical control (CNC) machines in the case of a high 
precision finish [11].

Even though manufacturing automation has become 
extremely popular in the past 30 years, advances in AI and 
robots will ensure significant development in this field [12, 
13]. AI is comparable to the brain in the automation process, 
with industrial machining robots being the body cells. In 
future factory automation, robots will play an important role 
in customizing the production process, including picking and 
placing, welding, painting, packaging and labeling, palletiz-
ing, and product inspection.

Machining robots are expected to significantly change 
existing production systems for a variety of reasons [14]. 
Many industrial robots are being utilized in the machining 
process to increase productivity and reduce labor costs. In 
general, a typical machining robot system includes a serial 
robotic arm with a machining tool attached to the end-
effector of the robot [15]. Compared to traditional machin-
ing systems, these machining robots can easily expand the 
workspace having additional mobile platforms attached [16]. 
The rise of machining robots in modern factories is undeni-
able. In particular, 78% of industrial robot productivity in 
the market is used in welding and handling operations, of 
which more than 40% is used in the automotive and metal 
processing industries [17]. However, these machining robots 
have diverse applications because the tools mounted on the 
end-effector easily can be changed for different tasks, such 
as grinding and welding [18].

The quality of the machining process with robots is 
mainly governed by the accuracy and stiffness of the robots 
[19]. There are three types of errors affecting the accuracy 
of a robot: errors due to the working environment, machin-
ing process errors, and robot self-dependent errors [20]. The 
errors in a robot due to structural deformations of load-trans-
mitting components, links, energy-transforming devices, or 
wear and nonlinear effects are hardly controllable [13, 20]. 
However, some of the self-dependent errors in a robot can 
be compensated for by suitable control or dedicated calibra-
tion [21].

The precision reducer is an important component gov-
erning the accuracy of the machining robot. High-quality 
mechanical and electrical parts can be used to improve the 
accuracy of the robot to obtain the best precision. Among 
these, precision reducers used in joint actuators contribute 
significantly to the kinematic and nongeometrical position 
errors of robots [22].

This paper presents a review of rigid precision reduc-
ers of industrial robots for machining. Initially, an overview 

of the machining robots and their features are introduced. 
The importance of a precision reducer as a key component 
of a robot for machining is explored. A cycloid reducer is 
the best candidate among precision reducers, considering 
both the structural compliance and kinematic accuracy of 
the machining robots. Various cycloid reducers and their 
operating principles are reviewed. The design issues of the 
cycloid reducer for performance improvement are presented. 
Additionally, the methodology and analysis for assessing the 
performance of the cycloid reducers are discussed. After-
ward, the machining and fault detection of a cycloid reducer 
are briefly presented. Finally, other applications of cycloid 
reducers are introduced.

2  Machining Robot and its Characteristics

Prototypical machining robots—6-or 7-degree-of-freedom 
(DOF) structures of industrial robotic arms—have been used 
for various tasks such as milling, grilling, polishing, and 
cutting. An example of a 6-DOF robotic arm for the milling 
process is shown in Fig. 1 [23]. In this task, a machining tool 
is attached to the end-effector of an industrial robot. The tool 
can be conveniently changed on the spindle attached to the 
end-effector of the robot to execute other machining tasks 
[16]. Various studies on machining robots are presented in 
Table 1 [24].

The machining robot system offers many advantages over 
conventional CNC machines, as shown in Table 2 [25, 26]. 
Primarily, the workspace of the machining robot is very 
large and can be shared owing to the high flexibility of their 
arms [27]. As a result, complex bulky 3D shapes, such as an 
aircraft, can be machined directly with the robot. Moreover, 
a tool path for its smoothness can be further optimized using 

Fig. 1  KUKA milling robot [23] (open accessed)
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redundant joint actuators, although trajectory planning is 
significantly complex compared to conventional CNC. Time 
and substantial effort are required to train operators who 
have little or no software knowledge can be saved by using 
the robot system.

Operational accuracy and structural stiffness are cru-
cial in machining robots. During processes with negligible 
machining forces, such as welding or routing, only kinematic 
position errors need to be considered [28]. Compliance is 
very important in resisting the structural deformation caused 
by machining forces during the cutting or milling process 
[29]. Some methods have been proposed to improve the 

operational accuracy and structural stiffness of machining 
robots [21, 29]. The spindle of the robot is directly attached 
to its fifth joint to reduce the effect of the machining forces, 
which limits the flexibility and workspace of the robot [16]. 
Compliance compensation also helps to improve the per-
formance of a machining robot with kinematic position and 
nongeometrical errors. Nevertheless, the control system of 
machining robots is extremely expensive and complicated 
because several high-resolution sensors and tracker-checking 
systems are required [30].

Choice of proper components in the machining robot 
is crucial for reducing compliance issues. The ability and 

Table 1  Applications of machining robot in different manufacturing fields [24]

Fields Process Product

Foundries Deburring, milling, routing, drilling, finishing Mold and dies, casting
Automotive Milling, de-flashing, drilling, grinding, cutting Engines, vehicle frame, body panels, bumpers, door-

knobs, stamping dies, sand cores
Aerospace Grinding, drilling polishing, cutting Turbine blades, wing segments, bulkheads, insulation
Medical equipment Grinding, polishing Prosthesis

Table 2  Comparison between machining robots and CNC machines

Properties Machining robots CNC machines

Overall
Kinematic architecture Serial Cartesian
Number of axes 6+ 3 or 5
Kinematic redundancy At least 1-DOF None
Dynamic properties Heterogeneous within the workspace Homogeneous within the workspace
Control algorithm Point-to-point control

Continues path control
Continues path control

Error compensation Mechanical: gravity compensators
Control algorithms: Off-line and/or on-line

Not required

Actuator feedback Single or double encoder Single encoder
Advantage Disadvantage

Workspace Large Limited
Extendable capacity Possible with extra actuators or mobile platform Impossible
Flexibility High Low
Working objects Highly flexible (easily machining oversize elements) Limited (just for the limited size of elements)
Complexity of trajectory Any complex trajectory Just suitable for 3/5 axes machining
Machine operator workload Any type of operation

Several parts at one
Single or several similar operations
One part at the time

Maintenance Simple Complex
User-friendly Without programming knowledge Need programming knowledge
Price Competitive for 6-DOF robot Competitive for 3-axes machine

Expensive for a 5-axes machine
Accuracy  ± 0.1 to ± 1 mm  ± 0.005 mm
Repeatability  ± 0.03 to ± 0.3 mm  ± 0.002 mm
Mechanical compliance Relatively low Relatively high
The relation between actuated and 

operation space
Non-linear Linear
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performance of robots are influenced by the working envi-
ronment, accuracy of the robot control system, and robot 
dependent errors (both kinetics and dynamics) [20]. While 
factors such as the working environment and control system 
accuracy can be adjusted during robot operation [21, 22, 
28], the robot-dependence errors need to be considered in 
the robot manufacturing process. Robot-dependence errors 
include geometrical and nongeometrical errors [20]. Most 
of the geometrical errors result from the quality of actuators 
located in the joints of the robot, which is a combination of 
motors and high-precision reducers [31, 32]. Furthermore, 
nongeometrical errors are caused by stick–slip motion, 
hysteresis, and nonlinear deformation due to impact and 
cutting forces during robot operations [20, 33]. The robot 
joints need to be integrated with a reducer with a high tor-
sional stiffness and the ability for long-term operation in 
environments requiring high-speed performance [34, 35] to 
minimize nongeometrical impacts. Therefore, it is extremely 
important to choose a reducer with good structure, high tor-
sional rigidity, high-speed operatability with a large pay-
load ratio, and antivibration ability during machining [14]. 
Examples of reducers in the machining robot are compared 
in Table 3 [34, 35].

3  Overview of Rigid Precision Reducers 
Used in the Actuator of the Machining 
Robot

Although several types of precision reducers are used in 
industrial robots [36], reducers with cycloidal disk and 
eccentric shaft are ideal for machining robots. Compared 
with a planetary reducer [37], the cycloid reducer can eas-
ily achieve a high reduction ratio without occupying a large 
working space. Owing to its circular tooth profile and mul-
tiple contact points, the cycloid reducer can work more effi-
ciently and accurately than the planetary reducer. As shown 
in Table 3, the cycloid reducer has a much higher torque-to-
weight ratio than the planetary reducer in a similar reduction 
ratio range, while still working with maximum efficiency 
under high-speed conditions. There is the other possible 
option for a joint reducer with a harmonic drive [35]. How-
ever, the harmonic drive has a continuously deformed and 
moving thin-wall structure causing it to have low torsional 
rigidity. This makes it suitable for applications with low 
load capacity and narrow space. [38]. The cycloid reducer 
is desirable for the machining robot under conditions requir-
ing high accuracy and payload capacity, such as machining. 
Furthermore, the cycloid reducer is also known to exhibit 
high robustness and torsional stiffness with low required 
maintenance [34].

Table 3  Effects of the reducer on the performance of the machining robot [34, 35]

Effects on perfor-
mance of machin-
ing robot

Performance index Cycloid reducer Harmonic drive Planetary reducer

Nabtesco RV-25N Spinea-Twinspin 
TS110

Sumitomo
Fine Cyclo F2C-
T155

CSG-25-160-2UJ-
LW

Wittenstein-Alpha 
 SP+075MF (2 stage)

Payload capacity, 
speed

Transmission ratio 1:108 1:119 1:118 1:100 1:100
Acceleraton/nomi-

nal torques
612/245 Nm 244/122 Nm 417/167 Nm 204/87 Nm 105/84 Nm

Torque-to-weight 
ratios

161/64 Nm/kg 64/32 Nm/kg 87/29 Nm/kg 208/79 Nm/kg 35/28 Nm/kg

Efficiency and 
subjective 
dependency on 
operatiing condi-
tions

87%, high (speed 
and torque)

74%, high (speed 
and torque)

87%, high (speed 
and torque)

84%, high (speed 
and torque)

94%, low (speed and 
torque)

Accuracy; repeat-
ability; fast 
accelaracy; 
smooth trajectory

Backlash  < 1 Arcmin  < 1 Arcmin  < 0.75 Arcmin 0 4–6 Arcmin
Lost motion  < 1 Arcmin  < 1 Arcmin  < 0.75 Arcmin  < 1 Arcmin 4–6 Arcmin
Maximum input 

speed
– 4500 rpm 8500 rpm 7500 rpm 8500 rpm

Torsional rigidity 61 Nm/Arcmin  > 22 Nm/Arcmin 25–41 Nm/Arc-
min

11–16 Nm/Arc-
min

10 Nm/Arcm
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3.1  Operating Principle

Depending on the specific requirements of the applica-
tions, the cycloid reducer may have various structures, as 
shown in Fig. 2. The kinematic diagram of the cycloid 
reducer can be divided into five types: 2K-H, K-H-V, rotate 
vector (RV), China Bearing Reducer (CBR), and output-
pin-wheel. The 2K-H type cycloid reducer consists of a 
planet carrier (H) and two central gears (K), as illustrated 
in Fig. 2a [39]. However, the 2K-H type cycloid reducer 
may have a high reduction ratio but low efficiency because 
it always need at least two gear pairs to transfer move-
ment between input and output [40]. Thus, the K-H-V type 
cycloid reducer was invented to overcome the drawback of 
the 2K-H type by introducing an equal angular mechanism 
(V). The K-H-V type cycloid reducer is compact, light-
weight, and highly efficient (Fig. 2b) [41]. The RV-type 
cycloid reducer using a combination of K-H and K-H-V 
cycloid reducers is proposed, as shown in Fig. 2c, to fur-
ther increase the reduction ratio and enhance the flexibility 

of the output input [36]. Recently, a CBR-type cycloid 
reducer (Fig. 2d) was suggested for minimizing the vol-
ume; the outer diameter of the cycloid reducer would be 
similar in size to the harmonic drive [42]. The CBR-type 
cycloid reducer has disc connectors instead of the pin 
roller in the K-H-V-type cycloid reducer. Furthermore, 
an output-pin-wheel mechanism that works by switch-
ing functions between the output and housing using four 
cycloid disks, as shown in Fig. 2e, is proposed [43]. The 
kinematic diagram of the output-pin-wheel reducer is 
similar to that of the K-H type. Furthermore, the installed 
size can be increased. In general, the RV type cycloid 
reducer is the most widely used option in industrial robots 
nowadays.

3.2  Design Optimizations of the Cycloid Reducer

Design optimization is key to improving the performance 
of cycloid reducers. The performance of the cycloid 
reducer can be improved by using materials, lubrication 

Fig. 2  Operating principle of various cycloid reducers
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methods, and design optimization. Various materials, from 
low-carbon steels to high-quality alloy steel, are used for 
cycloid reducers [44]. Alloy steels with Mn and Cr are 
widely used because of their hardenability, high bending 
strength, and fatigue strength [45]. Although Al is used 
in some parts of the harmonic drive owing to its light-
weight, material choices for the cycloid reducer are limited 
because they have to guarantee structural stiffness of the 
reducer. Oil, grease, and mixed lubrication methods for 
cycloid reducers have advanced over the years [46, 47]. 
However, research related to the optimization of cycloid 
designs, since the first appearance of the cycloid reducer 
(over 60 years ago) (structure, tooth profile, etc.), is still 
ongoing from [48].

Design optimizations for cycloid reducers can be classi-
fied into three main groups: generating method of tooth pro-
file, modification or correlation of the profile, and structural 

design. Several methods have been proposed to generate a 
cycloid profile for manufacturability. Tooth profile modi-
fications or corrections are proposed to minimize the gaps 
between engaging elements. In particular, minimizing the 
initial gap (ideally 0) between engaged teeth pairs can sig-
nificantly decrease transmission errors between output and 
input, which increases the accuracy of reducer. Lastly, most 
research related to reducer designs concentrates on the struc-
tural optimization of the cycloid reducer.

Methods for generating the cycloid tooth profile are 
divided into three main categories: circle enveloping [41, 
49], transmitted coordinate systems [50–52], and instant-
velocity center method [53, 54], as shown in Fig. 3. The 
circle-enveloping method generates a trace of a point of a 
circle rolling on the other fixed circle, which is called an 
epitrochoid curve, in coordinate system Fx (Ox, X, Y) [41]. 
The transmitted coordinate system method generates the 

Fig. 3  Generating methods of cycloid tooth profile
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epitrochoid curve by transforming points in the coordinate 
system with different frames of reference. This method nor-
mally uses three frames of reference Fg (Og, Xg, Yg), Fp (Op, 
Xp, Yp), Ff (Of, Xf, Yf) that are attached to the cycloid disk, 
cycloid pin (or cycloid wheel), and fixed-frame or housing 
[55–57]. The Fp of a cycloid pin coincides with Ff,, whereas 
Fp revolves around the origin of Ff, as illustrated in Fig. 3b. 
The instant-velocity center method utilizes three frames 

of reference similar to the transmitted coordinate system 
method and one more frame for the pitch point of the cycloid 
reducer (instant-velocity center). Thus, the generated epicy-
cloid curve is determined according to the positions of the 
pitch point and contact point of the conjugating surfaces 
between the cycloid reducer and cycloid pins [53]. A com-
parison among the generating equations used in the three 
methods is presented in Table 4. The shape of the designed 

Table 4  Equations for cycloid tooth profile with different methods

Circle-enveloping method [41] Transmitted coordinate system method [56] Instant velocity center method [53]

Point on epicycloid curve:

Curvature radius of epicycloid curve:

�c =
R∕K(1+K2−2K cos �b)

2∕3

(1+Zp)cos�b−(1+ZpK
2)

(K = Rb/R)
with:
R: Radius of the pin-roller distributed 
circle
Rb: Pitch radius of the pin-roller distrib-
uted circle
Zp: Number of pin-roller of the cycloid 
reducer
θ: Rotation angle of pin-roller around 
center Og
θb: Rotation angle of pin-roller around 
center Ox
Rp: radius of the pin-roller

Point on epicycloid curve:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xc(�i,�p) = R sin(�i − �p + �g)

+Rp sin(�i + �p − �g − �i)

−e sin�g

yc(�i,�p) = Rcos(�i − �p + �g)

−Rpcos(�i + �p − �g − �i)

−ecos�g

Curvature radius of epicycloid curve:

�c(�i,�p) =

⎡⎢⎢⎢⎣

xc(�i,�p)

yc(�i,�p)

1

⎤⎥⎥⎥⎦
with:
ϕp, ϕg: angular movement of coordinate systems 

Fp and Fg in comparison with Fx
αi: the angle between the vertical axis of Fp and 

horizontal axis of Fx
θi: the position of ith pin-roller in coordinate 

system Fx
R: Radius of the pin-roller distributed circle
Rp: radius of the pin-roller
e: eccentricity

Point on epicycloid curve:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xc = Rcos(�g − �p)

−Rpcos(�g − �p − �i)

−e cos�g

yc = −Rsin(�g − �p)

+Rpsin(�g − �p − �i)

+e sin�g

Curvature radius of epicycloid curve:

�c =

⎡⎢⎢⎢⎣

xc

yc

1

⎤⎥⎥⎥⎦
with:
ϕp, ϕg: angular movement of coordinate systems 

Fp and Fg in comparison with Fx
ψi: Pressure angle between ith pin-roller and the 

cycloid gear
R: Radius of the pin-roller distributed circle
Rp: radius of the pin-roller
e: eccentricity

Fig. 4  Cases of profile modifications of the cycloid reducer [64] 
(open accessed). a 3D shape of the cycloid tooth profile, b Four mod-
ified cases of a cycloid tooth profile. *PM: positive roller radius mod-

ification; NM: negative roller position modification. NNM: negative 
roller position and negative roller radius modification. PPM: positive 
roller position and positive roller radius modification

⎧⎪⎪⎨⎪⎪⎩

xc = R

�
sin � −

Rb

RZp
sinZp�

�

yc = R

�
cos� −

Rb

RZp
cosZp�

�
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cycloid disk or the epicycloid curve depends on the radius 
of the pin roller, radius of the circle passing through the 
centers of the pin-rollers, eccentricity, number of pin-rollers, 
and number of teeth (or lobes of the profile) of the cycloid 
reducer.

Modifications or corrections of the tooth profile should 
be performed to tolerate errors during both assembly and 
manufacturing processes [58, 59]. A small change in the 
theoretical tooth profile is made at the conjugated section of 
the tooth contact. Modifications or corrections of the tooth 
profile guarantee smooth engagement, increase the contact 
number, and provide good lubrication conditions [60, 61]. 
There are two types of tooth modification methods: single 
modified parameter and multi-modified parameter methods. 
The isometric, offset, and angular rotation modifications cor-
respond to the single modified parameter method [54, 62]. 
Isometric and offset modifications are used to adjust the 
radius of the pin roller and the radius of the circle passing 
through the center of the pin rollers, respectively [62–64]. In 
contrast, the angular rotation modification changes the center 
position of the pin rollers along the circumferential direction 
[54, 62]. Isometric and offset modifications can be applied 
independently [63] or together [58], whereas the angular 
rotation modification can only be applied along with other 
methods [54]. Examples of single modified parameter and 
multimodified parameter methods are shown in Fig. 4 [64]. 
A comparison between various cases of a modified cycloid 
tooth profile with a theoretical profile is introduced by sole 
isometric modification (both positive and negative), and a 
combination of isometric and offset modifications. Further-
more, the multimodified parameter method of changing the 
tooth shape considering the pressure angle [59], increasing 
contact points [55], or under-cutting phenomenon [57] are 
presented. Finally, a tooth modification method is studied as 
a unified process of combining parameters such as machin-
ing tolerances and axial play in bearings [65].

Various design problems of the cycloid reducer have 
been studied because the structure of a cycloid reducer has 
a significant effect on its performance [39, 52, 59]. As men-
tioned in the previous section, five types of cycloid reduc-
ers are introduced to improve their performance, including 
size, payload, strength, and stiffness [52, 66]. Furthermore, 
the output mechanism of a cycloid reducer has a significant 
impact on the torsional stiffness and vibration [67–69]. A 
cycloid reducer structure without pin rollers was proposed to 
decrease the stress fluctuation associated with conventional 
designs [70]. This research also recognized that the presence 
of more than two tooth differences reduces stress fluctua-
tions and velocity ripple, in addition to improving the stress 
distributions of the cycloid reducer. In contrast, reducing 
the difference in tooth number between two pin-rollers of 
the 2K-H type cycloid reducer can improve the self-locking 

performance of the mechanism but degrade the backlash 
angle of the reducer [39].

All aspects of the tooth profile and the cycloid reducer 
designs are summarized in Fig. 5.

4  Performance Analysis of the Cycloid 
Reducer

Internal and external factors affecting the performance of 
the cycloid reducer, as shown in Fig. 6. The tooth geometry 
and bearing characteristics are the most significant internal 
factors affecting the load capacity, rigidity, bending stress, 
and torque ripple of the transmission device [71]. On the 
other hand, machining errors or tolerances of the compo-
nents of a cycloid reducer increase backlash, lost motion, 
and transmission errors, in addition to causing vibration and 
noise in the system [58, 72]. Nevertheless, both the payload 
and speed are external factors that significantly influence the 
efficiency of the reducer, whereas the assembling misalign-
ment between the reducer and input or output parts affect the 
vibration/noise and shock resistance of the system [73, 74].

A mathematical model of the contact point and force 
distribution of a cycloid reducer is required, consider-
ing that the contact force distribution is a fundamental in 
investigating tooth stress and dynamic transmission perfor-
mance analysis. Dynamic equations for the contact force 
distribution in the meshing area of a 2K-H cycloid reducer 
are derived in [39]. A detailed analysis of the dynamic 
model of the eccentric shaft bearing is performed to evalu-
ate the engagement of a cycloid reducer [75, 76]. Recently, 
stress analysis of a cycloid reducer was performed by com-
bining the kinematics and dynamics of rigid bodies and 
nonlinear stiffness based on contact dynamics [77].

As mentioned in the previous section, the structures 
of the reducer as well as the tooth profile and its modi-
fication strongly affect the force distribution, hysteresis 
curve, transmission errors, and efficiency [67]. The con-
tact number and force distribution of a cycloid reducer 
are numerically studied considering two tooth modifica-
tion methods, i.e., isometric and offset methods, and their 
effects on the torque performance of the cycloid reducer 
are analyzed [64]. Tooth profile modifications based on 
the contact angle (straight line, catenary, and cycloid func-
tions) reduce the backlash and lost motion of the cycloid 
reducer significantly compared to conventional tooth mod-
ifications, as shown in Fig. 7 [59]. In addition, high stress 
concentrated on the contact points of a cycloid reducer 
such as pin-rollers could be relieved by performing FE 
analysis and design modifications [78, 79]. Longitudinal 
tooth profile modifications are also effective in smoothing 
the contact distribution [64, 80] as well as performance— 
efficiency [66], transmission error [60, 76], and torsional 
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rigidity [81]. As an example, the transmission error of 
an RV-type reducer can be reduced by 24%, with proper 
tooth modification, as shown in Fig. 8 [52]. The nonpin 
A cycloid reducer without pinwheels [51] might exhibit 

higher efficiency under certain conditions than those with 
pinwheels [82].

Bearings used in a cycloid reducer significantly influence 
the performance of the cycloid reducer, which can be stud-
ied using numerical or FEM analysis [83]. In particular, the 

Performance 
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Applied material 
(high quality, good 

strength, heat-treatment 
methods)

Design optimization

Structural designsGenerating methods of 
tooth profile

Modifications of tooth 
profile

Lubrications
(Oil, grease, mixed 

lubrications…)

Circle enveloping

Transmitted coordinate 
systems

Instant velocity center
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Angle rotation 
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Input mechanism
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Disk structure
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Contact ratio
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Bending stress on tooth
Clearance between teeth pairs
Noise and vibration
Stress concentration

Fig. 5  Design optimizations of the cycloid reducer
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RV-type reducer has many bearings, making it suitable for 
investigating the effects of bearings on the dynamic perfor-
mance of reducer [76, 84, 85]. The stiffness and geometric 
deflects of bearings may affect the contact force distribution 
and finally lead to an improvement in the vibration sensitiv-
ity and reliability of the cycloid reducer [75, 85]. Moreover, 
the clearance of the support bearings might affect the trans-
mission errors of a cycloid reducer [84]. Lastly, a cycloid 
reducer with needle roller bearings has better efficiency than 
that with sleeve bearings [86].

The machining quality of the tooth profile is also a sig-
nificant contributor to the performance of cycloid reduc-
ers [87, 88]. Specifically, the torsional stiffness of a cycloid 
gear is strongly related to the roughness of the tooth surface 
[87]. In addition, the clearances of the cycloid reducer due to 
machining errors have an impact on the hysteresis curve of 
the reducer, such as backlash and lost motion [88]. Finally, 
the manufacturing tolerance of eccentricity might also affect 
the force distribution and power losses of a cycloid reducer 
[74].

The efficiency and life cycle of the cycloid reducer are 
governed by friction and lubricants. The friction forces of 
both sliding and rolling motions cause losses in the cycloid 
reducer [69]. Experiments were conducted to investigate 
the correlation between the friction/lubricant and power 
losses/efficiency of the cycloid reducer [86]. As the speed 
increases, the friction coefficient [89] and the contact ratio 
decrease [61]. The contact force distribution of a cycloid 
reducer also influences the average film thickness and effi-
ciency of the reducer [61]. Oil lubrication enables a large 
compound cycloid reducer to dissipate heat effectively 
from friction loss [90]. Furthermore, oil filling can be used 
in diagnosing a cycloid reducer, and abrasive friction par-
ticles should be carefully checked to extend the life cycle 
of the cycloid reducer [91].

The performances of the cycloid reducers are inves-
tigated experimentally, as shown in Figs. 9 and 10. The 
experimental setup is divided into four principal subsys-
tems: assembly, instrumentation, supervision, and inter-
face, as shown in Fig. 9. All components connected in the 
transmission system are denoted by "assembly.” “Instru-
mentation” includes high precision sensors, such as an 
angle encoder, torque meter, and speed meter. Usually, the 
control system drives the input angle of the motor through 
a motor driver and applies a torque load via a brake or ser-
vomotor. Finally, the "interface" helps to collect and show 
the data. All data from "instrumentation" are collected and 
displayed on a computer.

The impacts of operating payload, speed, and misalign-
ment errors on the performance of the cycloid reducer can 
be experimentally studied. Integrated with internal effects, 
an experimental system with a precision reducer might 
operate with slightly lower performance, including having 
higher transmission error [71, 73], lower torsional stiffness 
[67, 92], and more vibrations [92, 93]. Even though the effi-
ciency could be improved under certain conditions, such as 
high input torque and low speed, many losses would still be 

Tooth geometry

Bearing

Machining 
errors

Payload

Speed

Assembling 
misalignment

Friction

Internal 
Factors

External 
Factors

Fig. 6  Factors affecting the performance of a cycloid reducer

Fig. 7  Influence of modified tooth profile methods on the backlash and lost motion of a cycloid reducer [59] (open access)
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present in the entire experimental system [86, 89]. Thus, 
vibration suppression and suitable lubrication approaches 
would have to be carefully considered to improve the experi-
mental conditions of the cycloid reducer [73, 91].

5  Machining Process and Fault Detections 
of the Cycloid Reducer

Grinding is the principal method for producing an accurate 
epicycloid profile of a cycloid reducer [94]. Generally, the 
milling process with a 5-axis CNC machine can create the 
tooth profile of a cycloid gear [95], but the grinding pro-
cess can provide better roughness for the tooth surface of a 

cycloid gear [87]. With the recent improvement in precision 
measurement technology and gear grinding devices [96], 
all technical aspects of forming a complex surface, such as 
an epicycloid, can be handled using the grinding process. 
A grinding system for cycloid gear quantitatively corrects 
the error of the tooth profile of a cycloid reducer, with an 
eccentric shaft and pin rollers. The only difference is that 
one of the pin rollers is replaced with the grinding wheel, as 
shown in Fig. 11 [94].

In addition, selective parts of cycloid reducers are assem-
bled using a genetic algorithm for better performance [97]. 
A fault detection method is applied to discard poor quality 
products of cycloid reducers [98], which are usually based 
on vibration signals [99] or acoustic emission [100, 101].

Fig. 8  Initial clearances, normal 
contact deformations, and trans-
mission errors of a proposed 
tooth profile [52] (open access)
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6  Other Applications of Rigid Precision 
Reducer

Owing to their high-performance characteristics such as 
accuracy, reliability, and rigidity, cycloid reducers are 
widely being used in various applications, as illustrated 
in Fig. 12. First, a cycloid reducer is designed with an 
extremely compact size and unified with a servomotor 

in a light-weight actuator, which is suitable for mobile 
robots [102–104]. Moreover, medical equipment and 
surgical robots use a cycloid reducer as a component in 
an automatic tool changer or actuator [105]. In the auto-
motive industry, a cycloid reducer is used in E-CVVT 
[106, 107] or the new upgraded system E-CVVD [108] 
as an actuator. In addition, a cycloid reducer is used as an 
actuator in vehilce radar systems [109].

Fig. 9  Principal subsystems of an experimental setup of a cycloid reducer
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Fig. 10  Schematic of an experi-
mental system of a cycloid 
reducer

Fig. 11  Grinding system and process for machining the cycloid gear [93]. (open access)
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7  Conclusion

Although smart manufacturing is a strong industrial driver 
for reshaping the current competitive landscape and estab-
lishing new market leaders, machining manufacturing 
plays an irreplaceable and dominant role in manufacturing. 
Machining robots are leading the change in the existing man-
ufacturing system, and the precision reducer is an important 
component governing the accuracy of the machining robot. 
The cycloid reducer is the best candidate among precision 
reducers when considering both the structural compliance 
and kinematic accuracy of the machining robots. Many types 
of cycloid reducers have been developed, and numerous 
design approaches to improve the performance of cycloid 
reducers have been proposed. Performance evaluations for 
the cycloid reducer are necessary for validating the proposed 
designs. In addition, fault detection and diagnosis issues are 
gaining interest from researchers. Currently, cycloid reduc-
ers are finding industrial applications such as in mobility, 
automotive, and precision industrial robots. Thus, the appli-
cation of cycloid reducers will continue to expand.
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