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Abstract
In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical 
process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object posi-
tion is estimated from the current signal of the electromagnet. Self-sensing techniques developed so far are the model-driven 
soft sensors. This paper presents a data-driven self-sensing technique to compensate for the nonlinear characteristic of the 
electromagnet. First, model-driven self-sensing techniques and their problems are reviewed. Then, data-driven self-sensing 
technique using recurrent neural network (RNN) is proposed to compensate for the nonlinear characteristics. Both the posi-
tion control and self-sensing with the RNN are implemented in a single digital signal processor. The effectiveness of the 
proposed method is experimentally verified by comparison with the current slope method. Both estimation errors during 
initial levitation and jitter after levitation are reduced by 90% and 36%, respectively. Estimation error with 2 Hz sine wave 
is improved by 65.9%, while jitter during self-sensing levitation is cut down to 26.8%.

Keywords Data-driven sensor · Self-sensing · Active magnetic bearing · RNN

List of symbols
Ag  Cross-section area of E core
a  Area ratio of E core
b  RNN bias
hi  RNN ith hidden layer value
H  Unit step function
I  Current
L  Coil inductance
Nc  Number of PWM period
R  Coil resistance
TS  PWM switching period
u  PWM voltage to drive the coil
U  RNN input weight

Vdc  DC link voltage
W  RNN layer weight
x  Air gap
x0  Nominal air gap
xn  Discretized air gap
x̂n  Estimated air gap
Xi  RNN ith input value
β  Voltage coefficient
γ  PWM duty cycle
μ0  Magnetic permeability of air
τ  Time constant of coil

1 Introduction

In the last two decades, soft sensors proved themselves as 
a valuable alternative to the physical sensor for gathering 
critical process information. Predictive or virtual models are 
built based on the large amounts of data being measured and 
stored in the process industry, which are called soft sensors. 
This is a combination of the words “software” to compose of 
computer programs, and “sensors” to deliver similar infor-
mation with hardware sensors [1–3].

Soft sensors are classified into two categories: model 
and data-driven soft sensors [4]. Model-driven soft sen-
sors is commonly based on the first principle under ideal 
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conditions. On the other hand, data-driven models apply sta-
tistical techniques to predict the value of interest. Besides, 
the data-driven soft sensor describes the true process condi-
tion better than the model-driven soft sensor since all data 
are measured within the real process.

The self-sensing technique for the magnetic bearing is 
considered a soft sensor since the object position is estimated 
from the current signal of the electromagnet [5]. Although 
a gap sensor is an essential element to firmly support an 
object, the position sensor increases the cost and size as well 
as causes difficult engineering or non-collocation problem. 
Different self-sensing approaches for magnetic bearing have 
been studied to replace the physical position sensor with a 
virtual software sensor or self-sensing technique.

Self-sensing techniques developed so far are the model-
driven soft sensors [6–16]. Self-sensing techniques rely on 
the circuit equation of the electromagnet derived under the 
ideal condition and the nonlinear characteristic of the elec-
tromagnet is one of the most challenging problems for self-
sensing technique [9].

This paper presents a data-driven self-sensing technique 
to compensate for the nonlinear characteristic of the elec-
tromagnet. First, model-driven self-sensing techniques and 
their problems are reviewed briefly. Then, data-driven self-
sensing technique using RNN is proposed to compensate 
for the nonlinear characteristics. The effectiveness of the 
proposed method is experimentally verified by comparison 
with the current slope method.

2  Self‑sensing for AMB (Active Magnetic 
Bearing)

AMB is to support the object without any contact using elec-
tromagnetic actuators and the feature of non-contact allows 
lubrication-free, high-speed operation, and easy mainte-
nance. Therefore, AMBs have been applied to vacuum tech-
niques, turbomachinery, electric drives, space and physics 
fields [17–19].

AMB consists of an electromagnet, an object to be sus-
pended, a sensor, and a controller, as shown in Fig. 1. The 
position or gap sensor is an essential element for stably con-
trolling the position of objects. However, the position sensor 
not only increases the hardware cost and size but also causes 
non-collocation problems, which indicates that the sensor 
and the actuator are not located at the same placement.

Researchers have studied sensorless or self-sensing mag-
netic bearing by using an electromagnetic actuator as a sen-
sor. In detail, the target movement changes the inductance of 
the electromagnetic actuator and results in a variation of the 
current signal due to the driving voltage. The target position 
can be estimated by measuring the current signal accord-
ing to the driving voltage. Previous studies of self-sensing 

magnetic bearings are classified into three main methods. 
The first one is last method is more accurate and simpler 
than the other methods, it the state observer. In this method, 
the position is estimated with a state observer based on con-
trol theory [6–8, 20]. However, this method does not show 
either adequate accuracy or robustness even a little further 
from the operating point. The second one is the signal injec-
tion method. A high-frequency voltage signal is injected into 
the electromagnetic actuator and the current signal of the 
actuator is measured to estimate the target position through a 
demodulation circuit [9]. However, the desired performance 
can hardly be achieved due to the trade-off between the 
bandwidth and the accuracy of the position estimation. The 
final one is the parameter estimation method. The position is 
estimated from the current ripple or slope due to PWM volt-
age [10–13, 21]. The PWM voltage is very high frequency 
and has considerable amplitude to overcome the drawback 
of the high-frequency signal injection method. Although the 
still has estimation errors caused by non-linear properties 
and PWM duty cycle [15, 16].

3  Data‑Driven Self‑sensing

3.1  Model‑Based Self‑sensing Using Current Slope

If the coil of an electromagnet is driven by PWM voltage, 
the current ripple generated during switching is depend-
ent on the inductance of the coil. Since the coil inductance 
is inversely proportional to the air gap, the air gap of the 
electromagnet can be estimated using the magnitude of the 
current ripple of the PWM [9]. Since the amplitude of the 
current ripple also highly depends on the PWM duty cycle, 
we need to compensate the effect of PWM duty cycle for 
accurate estimation of the air gap.

The slope of the current ripple was also used to estimate 
the air gap instead of the magnitude to reduce the effect 
of the PWM duty cycle [16]. The current slope is usually 
measured several times with a separate embedded device 
such as FPGA and estimated with the least square method. 
The circuit equation for the current can be expressed with 

Fig. 1  Typical block diagram of active magnetic bearings
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Eq. (1). Here, x is air gap variation, x0 is a nominal air gap, 
u is PWM voltage to drive the coil, R is the resistance of the 
coil and I is coil current.

The approximate current profile due to bipolar PWM is 
shown in Fig. 2. Here, TS is the sampling time. Current at 
several points during a given cycle time is measured to cal-
culate the slope of the current ripple. Equation (1) can be 
discretized as Eq. (2) considering the forward difference of x 
and u = Vdc during the current measurement. Here, TS is the 
PWM switching period and Vdc is the voltage of the DC sup-
plier. The air gap can be estimated from the measured current 
slope as shown in Eq. (3). Here, (1 + xn∕x0)

2 ≈ (1 + 2xn∕x0) 
considering xn ≪ x

0
 . As shown in Eq. (3), the nominal gap, 

current, and current slope are the main variables. When the 
average current increases or the current slope decreases, the 
estimated gap increases.

The non-linear relationship between the PWM current 
slope and the PWM duty ratio under various air gaps is 
measured and shown in Fig. 3. The current slopes are meas-
ured as increasing PWM duty up to 5 A coil current with 
a constant air gap. Although the current slope theoretically 
does not depend on the PWM duty cycle [15], PWM duty 
cycle has a large effect on the current slope under the small 
air gap, which may cause considerable estimation error, 
especially during an initial levitation. The voltage can be 
expressed as Eq. (4) considering bipolar PWM and duty 
cycle γ.
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The current in one PWM cycle can be expressed with 
Eq. (5). Here, H(t) is the unit step function. Differentiat-
ing Eq. (5) and considering constant voltage ( Vdc ) during 
measuring the current, the current slope does not depend 
on the PWM duty cycle, as shown in Eq. (6). In the case of 
a 50% PWM duty cycle (zero voltage command), the cur-
rent slope is nearly proportional to the air gap, as shown 
in Fig. 3.

Since the initial current or I(0) of Eq.  (5) within a 
given cycle time is closely related to the PWM duty cycle, 
the current slope must depend on the PWM duty cycle. 
Besides, non-linear characteristics such as eddy current, 
magnetic flux leakage, and saturation affect the estimation 
error of the air gap and result in degrading robustness of 
the position control. Furthermore, the initial current is no 
longer a constant value due to continuously varying PWM 
during the position control of AMB, and the nonlinear-
ity becomes stronger. The higher PWM duty cycle and 
smaller air gap result in a severe non-linear relationship 
between the current slope, PWM duty, and air gap, which 
usually happens during the initial levitation. The high flux 
density due to the large current and small air gap makes 
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Fig. 2  Bipolar PWM and current slope estimation
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Fig. 3  Non-linear relationship between PWM current slope and 
PWM duty under various air gaps
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the electromagnet operate in the nonlinear part of the BH 
curve.

3.2  Data‑Driven Approach for Self‑sensing

A schematic diagram of the data-driven approach for the 
self-sensing is shown in Fig. 4. There are two estimated air 
gaps: one is calculated using the model-based method (̂xS) , 
and the other is an output of the RNN model (̂xR) . Due to 
the physical limitation of digital signal processor (DSP), 
deep and complex neural network is not suitable for our 
application. Hence, we adopted a simple vanilla structure 
of RNN, consisting of one or two layers and three to seven 
sequential lengths and hidden dimensions. First, we estimate 
the air gap using the model-based method of Eq. (3). Then, 
RNN compensates for the nonlinearity of the estimated air 
gap. We used not only the estimated gap of the model-based 
method but also average current, PWM duty, and current 
slope (current change during one PWM cycle) as input for 
RNN. Besides, a fully-connected layer is used to integrate 
all features of the input for RNN.

After various activation functions are tested as shown in 
Table 1, the hyperbolic tangent function is finally employed 
as an activation function. Here, R2 is the training score and 
Q2 is the test score. The square sum of the estimation error 
of the air gap is used as the cost function. We employed the 
Adam optimization algorithm and set a 0.01 learning rate to 
update the weight. Besides, we used the dropout technique 
to avoid over-fitting.

Sine wave tracking experiment is used for training data of 
RNN, while the initial levitation experiment is used as test 

data. Training data is 0.2 Hz sine wave with an amplitude 
of 400 μm, which is slightly less than the nominal air gap. 
While learning the model, we use 6 sizes of batch train-
ing. Each batch consists of 4000 data of partial sine wave, 
as shown in Fig. 5. Test data is the initial levitation from 
− 500 to 0 μm or the balanced state, which is one of the most 
important behaviors of magnetic levitation systems. As the 
hyperparameters such as the number of hidden dimensions 
and sequential length are adjusted, training is performed 
10,000 times and the result is shown in Fig. 6. RNN with 
one layer, three hidden dimensions, and three sequential 
lengths show the best test score. Besides, the training result 

Fig. 4  Block diagram of the data-driven approach for self-sensing

Table 1  Training result for various activation functions

Activation function R2 Q2

Hyperbolic tangent 0.9914 0.9710
ReLU 0.9731 0.8590
Sigmoid 0.9826 0.9361 Fig. 5  Training data for one batch
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Fig. 6  Training result for each RNN model
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of LSTM (long short-term memory) is compared with that 
of RNN in Table 2. The RNN model reported a higher test 
score than any other LSTM model since the states of AMB 
changes rapidly during the initial levitation and the short-
term memory of the LSTM is no longer critical for the 
performance.

4  Experiment

4.1  Experimental Equipment

The experimental set-up of the SISO AMB system using 
self-sensing with RNN is shown in Fig. 7. One DOF SISO 
AMB system consists of a balanced beam supported with 
pivot bearing, an electromagnetic actuator on one side, and 
the weight on the other side. Parameters of the SISO AMB 
system are summarized in Table 3.

Electronics for self-sensing consists of a DSP (Launch-
pad-F28069M), 3 phase motor driver (BOOSTXL-
DRV8305EVM), In-house current sensor circuit, power 
supply (48 V), and PC. Online monitoring and gain tuning 
programs are built via UART. The average current is meas-
ured with a shunt resistor in the 3-phase motor driver while 
the current slope is calculated with a current sensor (LEM, 
LTS 15-NP). We use a 0.007 Ω resister with a differential 
connection in the power driver (DRV8305) to sense the aver-
age current. The current ripple is differentially amplified by 
40 V/A around 1.65 V and digitized with a built-in 12-bit 
ADC of DSP [22]. A reference gap sensor (AEC, PU-09) is 
used to evaluate the performance of the self-sensing with 
RNN.

4.2  Implementation of RNN with DSP

Self-sensing with RNN is implemented in CLA (control law 
accelerator) together with position and current control, as 

Table 2  Training results for various models and hyperparameters

Model RNN LSTM LSTM

Layer 1 1 2
Sequential length 3 5 7
Hidden dimension 3 5 5
R2 0.9914 0.9964 0.9895
Q2 0.9710 0.9186 0.8800

Fig. 7  Block diagram of experimental set-up and device. a Block dia-
gram, b experimental device

Table 3  Specifications for the AMB system

Parameter Value Parameter Value

Weight 1 kg Air gap − 0.5 to 0.5 mm
Weight location 144.5 mm Inertia 0.181 kgm2

Electromagnet location 156.6 mm Coil turns 118

Fig. 8  DSP structure for control and self-sensing
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shown in Fig. 8. Based on Eq. (3), the air gap is firstly esti-
mated using the current slope and the RNN compensates the 
nonlinearity of the estimated air gap. Then, PID position and 
PI current controls are used to levitate the balanced beam. 
Training and model parameters are determined off-line 
using python and TensorFlow. Then, weights for the neural 
network are extracted and the RNN model is implemented 
based on hard coding, as shown in Algorithm 1 below. Since 
the CLA provides efficient floating-point operation in hard-
ware, the RNN that has high computation cost is realized in 
CLA so that the control and self-sensing can be completed 
in a sample time.

4.3  Result

Comparison of self-sensing with current slope and RNN 
during initial levitation is shown in Fig. 9. At the very early 
stage of initial levitation, self-sensing with the current slope 
has a peak estimation error of 400 μm while that with RNN 
has just an estimation error of 40 μm (90% improvement). 
Besides, self-sensing with RNN has a jitter of 9 μm, which 
is a 36% improvement compared with 14 μm of the previous 
method using the current slope.

Sine wave tracking experiments with self-sensing 
using current slope and RNN are shown in Fig. 10 (2 Hz). 

Self-sensing with the current slope has a 51 μm peak track-
ing error and very large phase delay while that with RNN 
has 17.55 μm peak tracking error (65.9% improvement) and 
very small phase delay.

The balance beam is levitated with two self-sensing meth-
ods and their performances are compared in Fig. 11. Levi-
tation jitter with current slope is 265.3 μm while that with 
RNN is 194.3 μm (26.8% improvement).

5  Conclusions

This paper presents a data-driven self-sensing technique 
to compensate for the nonlinear characteristic of the elec-
tromagnet. First, model-driven self-sensing techniques and 
their problems are reviewed briefly. Then, data-driven self-
sensing technique using RNN (recurrent neural network) is 
proposed to compensate for the nonlinear characteristics. 
Both the position control and self-sensing with the RNN 
are implemented in a single digital signal processor (DSP). 
The effectiveness of the proposed method is experimentally 
verified by comparison with the current slope method. Both 
estimation errors during initial levitation and jitter after levi-
tation are reduced by 90% and 36%, respectively. Estimation 
error with 2 Hz sine wave is improved by 65.9% while jitter 
during self-sensing levitation is cut down to 26.8%.
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