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Abstract
With the exacerbation of global environmental concerns, manufacturing industries need to consider the impact of carbon 
emissions from manufacturing processes. The selection of the parameters in the machining process greatly influences on 
carbon emissions and machining efficiency. Hence dynamically optimizing the machining process parameters is a significant 
means to reduce carbon emissions according to the real-time perception of the machining conditions. In the paper, a method 
of cutting parameter optimization is presented on basis of the construction the digital twin of a CNC machine tool. In this 
method, an ontology on CNC machining process is established to be used as a communication bridge for understanding 
the semantic of the real-time interaction between the physical machine and the virtual twin. And a dynamic optimization 
method on cutting parameters is presented according to the simulation and optimization of the virtual twin with the dynamic 
perception of the machining conditions of the physical machine. At last, a case study is presented to validate this method for 
effectively optimizing the cutting parameters and decreasing carbon emissions.

Keywords Digital twin · Cutting parameter optimization · Virtual-physical interaction · Carbon emissions · Machining 
efficiency

1 Introduction

Nowadays, as global climate warming is becoming remark-
ably serious, there has been an increasing interest in carbon 
emissions reduction and energy saving problems [1, 2]. To a 
large extent, manufacturing activities have aggravated global 
warming according to the report of the Intergovernmental 
Panel on Climate Change (IPCC) [3]. It is estimated that 
industrial energy consumption is expected to account for 
nearly 50% of global energy consumption by 2040 [4]. The 
government has adopted various policies on carbon emis-
sions, for example carbon tax, to deal with environmental 
problems [5]. Forced by the increasing competition in the 
market and strict regulations on environment protection, 
manufacturing industries should pay more attention to 
environment-related indicators such as carbon emissions 

and carbon effect, besides traditional issues such as product 
quality, production efficiency and cost [6].

The CNC machine tool is a significant equipment in 
manufacturing industry, and its rated power is usually sev-
eral kilowatts or dozens of kilowatts. Therefore, the CNC 
machining is an energy-intensive production process. In 
manufacturing industry, the CNC machining energy con-
sumption accounts for a large proportion of carbon emis-
sions in the environment [7]. Hence, it is extremely essential 
to reduce carbon emissions during the CNC machining. Car-
bon emission from the CNC machining is closely related to 
cutting parameters (such as spindle speed, feedrate and cut-
ting depth) [8]. The related research shows that the carbon 
emission may be reduced by 6–40% by optimizing cutting 
parameters in the manufacturing process [9]. Consequently, 
how to select optimal cutting parameters becomes a crucial 
problem in the process of machining.

Traditional optimization methods of cutting parameters 
for CNC machine tool are usually based on mathematical 
models or mechanical manuals in the conditions of static 
constraint. These methods are very difficult to obtain the 
optimal results in the dynamic machining conditions, 
because of ignoring the influence of changes in machining 
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conditions. Recently, digital twin, as an innovative enabling 
technology for smart manufacturing, provides a new meth-
odology [10]. Digital twin is an effective way to achieve 
dynamical optimization of physical objects by real-time 
interaction between physical objects and their high-fidelity 
twin models, and supports the continuous evolution to adapt 
to the change from the physical machining [11]. Therefore, a 
digital twin-driven cutting parameter optimization method is 
proposed in this paper, which aims at dynamically optimiz-
ing cutting parameters based on actual machining conditions 
for improving machining efficiency and reducing carbon 
emissions.

The rest of the paper is organized as follows. The related 
works to cutting parameter optimization and digital twin 
technology is expounded in Sect. 2. In Sect. 3, an architec-
ture of cutting parameter optimization with digital twin is 
presented. Section 4 studies the related enabling technolo-
gies of proposed method, mainly including ontology seman-
tic modeling of machining process and dynamic optimiza-
tion for improving cutting parameters. In Sect. 5, the case 
study is presented to verify the proposed method. Finally, the 
conclusions and future work are made in Sect. 6.

2  Literature Review

2.1  Cutting Parameter Optimization Method

Recently, researches on the optimization of cutting param-
eters for reducing carbon emissions and conserving energy 
have been taken widespread attention by academia and 
industry because of global warming issues and vigorous 
market competitions [12]. Some researchers have estab-
lished a new production indicator, i.e. carbon emissions, for 
assessing the machining process. Yi et al. [13] presented 
the carbon emissions boundary model, including the carbon 
emissions caused by the cutting process, the production of 
raw materials and auxiliary equipment. Based on different 
forms of energy consumption, Jiang et al. [14] developed 
a novel model composed of consumable and transferable 
carbon emissions, where the source of consumable car-
bon emissions is electricity, and the source of transferable 
carbon emissions is raw materials, cutting fluids, etc. For 
a given machining process, different cutting parameters 
have almost no effect on the consumption of raw materials. 
Liu et al. [15] established a carbon emission model for cut-
ting parameter optimization, which took into account the 
carbon emission from electricity, cutting fluid and cutting 
tools, but not raw materials. Other researchers focus on the 
optimization methods for low carbon and other traditional 
goals such as working efficiency, quality, etc. Zhang et al. 
[16] adopted NSGA-II algorithm to obtain the optimal cut-
ting parameters. They conducted tests on a CNC lathe to 

verify the method, and the results showed that the method 
can achieve a trade-off between low energy, low cost and 
noise reduction. Zhou et al. [17] developed NG-NSGA-II 
algorithm to balance three objectives of carbon footprint, 
time and cost in the machining, and proved that NG-NSGA-
II has better search performance than NSGA-II. Li et al. [18] 
proposed a multi-objective simulated annealing algorithm 
to solve the integrated model of process optimization and 
cutting parameter optimization. The results showed that the 
algorithm can achieve the dual goals of energy saving and 
workloads balance. In practice, the machining raw mate-
rials often cannot be completely removed in a single pass 
machining, so it is necessary to use multi-pass machining. 
In view of the problem of multi-pass machining, Li et al. 
[19] investigated an adaptive multi-objective particle swarm 
algorithm to optimize the total number of passes and the 
cutting parameters of every pass, and to realize a balance 
between energy consumption and cost. As the above stud-
ies show, many models and algorithms have been proposed 
to solve the problem of cutting parameter optimization for 
low carbon. However, most of the methods search for the 
optimal solution based on the certain machining conditions 
and machine performance, which can be considered as a 
static optimization method. In fact, the actual machining 
states generally change dynamically because of the dynamic 
disturbances (such as tool wear and cutting force fluctua-
tion) from machining conditions, that is, the optimal cutting 
parameters under the certain machining conditions are not 
always optimal for the current machining process. Hence 
these static optimization methods are not enough to obtain 
the best cutting parameters in practice.

Some studies have focused more on feedrate optimization, 
which can improve the production efficiency and enhance 
stabilization of cutting force [20]. Based on mechanism 
model of cutting force, Park et al. [21] developed an auton-
omous machining system driven by intelligent algorithm 
to enhance the quality of products and working efficiency. 
Ridwan et al. [22] investigated a machine condition monitor-
ing system. It can provide online process optimization with 
real-time machining knowledge to reduce machining time 
and improve product quality. Considering the constraints 
associated with the feed drive system and machining pro-
cess, Erkorkmaz et al. [23] presented a feedrate optimiza-
tion strategy for the shortest cycle time tool trajectories and 
proved the feasibility of the method through the engraving 
surface machining experiment. Xu et al. [24] adopted hybrid 
forward-reverse mappings of artificial neural networks to 
optimize feedrate for five-axis milling. This method can 
improve the solution accuracy and reduce the calculation 
time compared with other intelligent algorithms. The meth-
ods mentioned above have made some contributions to the 
dynamic optimization of cutting parameters. However, most 
of the methods lack the mechanism of real-time interaction 
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and symbiotic evolution with physical machining conditions. 
These methods still have differences between the optimiza-
tion results and the actual machining, and they have low 
solution accuracy. Consequently, the existing methods are 
inadequate to deal with problems of dynamic cutting param-
eter optimization during CNC machining.

2.2  Digital Twin Technology

With the progress of Industry 4.0, Industrial Internet of 
Things [25, 26], artificial intelligence [27], etc., a new 
methodology, named digital twin is presented [28–31]. 
Digital twin is a complex system integrating multi-physical 
field, multi-dimension and multi-probability simulation of 
physical objects. It realizes interaction and fusion between 
physical objects and their high-fidelity virtual twin mod-
els by making full use of sensing data and historical data 
[32]. Currently, digital twin has been applied to different 
stages of the product life cycle in manufacturing field, such 
as design, manufacturing, predictive maintenance, etc. Luo 
et al. [33] studied the multi-domain modeling method for 
CNC machine tool and this method can effectively improve 
machines stability and reduce machining faults. Liu et al. 
[34] proposed a digital twin-driven personalized design 
method for smart workshop, which is an effectual digital 
design method for physical production system. Considering 
the complexity of machining conditions, Liu et al. [35] built 
a process evaluation framework based on digital twin and 
illustrated validity of the framework with key components 
of diesel engines. To ensure the safety and availability of 
machining equipment, Qiao et al. [36] proposed a machine 
fault prediction method considering work conditions by 
using digital twin and deep learning technologies. Cheng 
et al. [37] proposed a digital twin-driven quality prediction 
method based on physical-virtual data interaction technol-
ogy. The method improves the predictability and manage-
ment of the quality control for marine diesel engines. Wang 
et  al. [38] presented a multi-life-cycle remanufacturing 
method driven by digital twin, which has the advantages 
of real-time perception control and optimization analysis.

The related studies show that digital twin is an effective 
method for intelligently predicting and guiding the opera-
tions of physical objects with virtual-physical interaction 
and symbiotic evolution. On the one hand, digital twin fuses 
real data and simulation data to provide the complete data 
source for the behavior analysis and prediction of physical 
objects. On the other hand, it can continuously analyze the 
operating state of physical objects and their twin models to 
find differences, and then adopt strategies for dynamic opti-
mization and adjustment to guide physical objects to work 
better. And digital twin has a great potential to dynamically 
optimize the machining process through real-time sensing 
the machining conditions. However, few researches focus on 

applying digital twin technology to the optimization of the 
CNC machining process. Hence digital twin is introduced to 
realize the optimization of cutting parameters in this paper.

3  The Architecture of Cutting Parameter 
Optimization with Digital Twin

In the CNC machining process, digital twin will continu-
ously simulate the machining behaviors and optimize the 
cutting parameters based on the real-time sensing data from 
the physical machining conditions. The optimization result 
will be fed back to the physical machine tool to guide the 
actual production process. Here, an architecture of digital 
twin of a CNC machine tool for cutting parameter optimi-
zation is proposed (see Fig. 1). There are two parts in this 
architecture, namely the physical space and the virtual space.

3.1  The Physical Space

In the physical space, it is mainly composed of the physical 
device layer (CNC machine tool), the perception layer, and 
the communication network layer. In the process of machin-
ing, the working state of the CNC machine tool is sensed and 
collected through various sensors in the perception layer. 
All the collected data, namely sensing data, are transmitted 
to the virtual space through communication network layer 
(Ethernet, WiFi, ZigBee, etc.), and are used to drive the twin 
model for simulation and optimization.

3.2  The Virtual Space

In the virtual space, it can be divided as two main models, 
i.e. the ontology model and the twin model.

(1) The ontology model
  It is a communication bridge for understanding the 

semantic of the real-time interaction between the physi-
cal space and the virtual space. The real-time data of 
the physical space can be semantically parsed by the 
ontology and transmitted to the twin model. Mean-
while, the ontology can parse simulation data of the 
twin model into the machining instruction for guiding 
the physical machine tool.

(2) The twin model
  It consists of the simulation model and optimiza-

tion model. The simulation model, i.e. virtual machine 
tool, synchronously simulates the machining behaviors 
of the physical machine tool, such as the cutting tools 
movement and the process of removing material. In the 
optimization model, all kinds of mathematical models 
and intelligent algorithms driven by sensing data are 
adopted to dynamically optimize cutting parameters.
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4  The Semantic Modeling and Dynamical 
Optimization

4.1  Ontology‑Based Modeling for Virtual‑Physical 
Interaction

During the optimization process of cutting parameters, 
the information in the virtual and physical space needs 
to realize real-time interaction and fusion. That’s to 
say, the machining data of the physical space, including 

cutting parameters and state information of all machining 
resources, should be transmitted to the virtual space for 
driving the twin model to simulate and optimize. Mean-
while, the optimization results need to be transmitted 
back to the physical space to guide the actual machining. 
However, the related process information is characterized 
by complexity and variability for the practical machining. 
Therefore, it is necessary to establish the CNC machining 
process knowledge ontology.

Fig. 1  The architecture of a digital twin of CNC machine tool for cutting parameter optimization
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4.1.1  The Modeling of CNC Machining Process Knowledge 
Ontology

Considering the actual requirements of cutting param-
eter optimization, i.e. processing time and carbon emis-
sions, many domain terms are summarized and analyzed. 
CNC_Machining_Onto log y , an ontology on CNC machin-
ing process knowledge, is obtained, which mainly includes 
basic attribute information Basic_Attr_info , dynamic pro-
cessing information Dynamic_Mfg_Info and simulation 
information SL_Info . Its formal description is as follows.

(1) Basic attribute information Basic_Attr_Info
  It refers to the information that is almost unchanged 

in the machining process, such as ID, material and 
dimensions of machining equipment and workpieces. 
This kind of information is mainly used to describe the 
basic parameters and processing performance of manu-
facturing resources. Its formal description is as follows.

(2) Dynamic processing information Dynamic_Mfg_Info

  It refers to information that changes dynamically 
with the machining process such as cutting parameters, 
spindle power and axis positions. It directly reflects 
the real-time state of machining resources. Its formal 
description is as follows.

CNC_Machining_Onto log y = (Basic_Attr_Info, Dynamic_Mfg_Info, SL_Info)

Basic_Attr_Info = (MT_Basic_Info, WP_Basic_Info, Tool_Basic_Info,Aux_Eqp_Info)

Dynamic_Mfg_Info = (MT_Dyna_Info, WP_Dyna_Info, Tool_Dyna_Info)

(3) Simulation information SL_Info
  It is obtained by simulating and analyzing the relevant 

data within Basic_Attr_Info and Dynamic_Mfg_Info 
in the virtual space. It mainly refers to the optimized 
machining process, carbon emissions and time informa-
tion in the whole machining. Its formal description is 
as follows.

 In addition, the subclasses and properties information 
of each class are shown in Tables 1, 2, 3. And the CNC 

machining process knowledge ontology is modeled 
using the ontology editor Protégé, as shown in Fig. 2.

4.1.2  The Construction and Parsing Process 
for the Ontology

In the physical space, the ontology construction and pars-
ing process based on sensing data is as follows.

Step 1: The machining data collected by all kinds of 
sensors and other information of machining resources is 
described in the form of XML.

SL_Info = (Optimized_ Pr ocess,Mfg_Time, CE_Info,Aux_Info)

Table 1  Basic attribute information class

Classes Description Subclasses and properties

MT_Basic_Info Basic information of machines ID, name, type, table dimensions, the ranges of 
cutting parameters

WP_Basic_Info Basic information of workpieces ID, type, material, dimensions, process and craft
Tool_Basic_Info Basic information of cutting tools ID, type, material, dimensions,

lifetime
Aux_Eqp_Info Basic information of auxiliary equipment Cooling fluid, cutting fluid, fixture, measuring tools

Table 2  Dynamic machining information class

Classes Description Subclasses and properties

WP_Dyna_Info Dynamic information of workpieces Dimensions, process, start and end time
MT_Dyna_Info Dynamic information of machines Power, current and voltage of servo motor, cutting force, 

cutting parameters, vibration information, axis posi-
tions

Tool_Dyna_Info Dynamic information of cutting tools Tool state, tool positions
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Step 2: The XML file is mapped to OWL file based on 
mapping rules [39], and the sub-ontology for the physical 
space is obtained.

Step 3: The ontology parser Jena is used to parse the 
ontology file, and the data parsed will be uploaded to the 
twin model.

Similarly, the simulation data from the virtual space is 
also mapped to the ontology, and the sub-ontology for the 
virtual space is obtained. Thus, sensing data of the physical 
space and simulation data of the virtual space constantly 
update the ontology, and build a complete process knowl-
edge ontology.

4.2  Dynamic Optimization of Cutting Parameters 
with Digital Twin

4.2.1  Initial Optimization for Minimizing Carbon Emissions 
and Processing Time

To find initial optimal cutting parameters, we suppose that 
machine conditions are determined during the process of 
machining. A multi-objective optimization model is estab-
lished for minimizing carbon emissions and processing time, 
and the model is solved by NSGA-II algorithm.

Table 3  Simulation information class

Classes Description Subclasses and properties

Optimized_Process Optimized machining instruction Cutting parameters
CE_Info Carbon emissions information Electricity energy, coolant loss, material consumption, cutting tool wear
Mfg_Time Machining time information Starting time, standby time, idle time, cutting time, auxiliary time
Aux_Info Other simulation information Processing quality, surface roughness, tool life prediction, predictive failure

Fig. 2  The CNC machining process knowledge ontology
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• Decision variables
 Spindle speed, feedrate, cutting depth and width are 

significant cutting parameters for CNC machining. Cut-
ting depth and width are depended on machining allow-
ance and accuracy, and they have little or no influence 
on carbon emissions. Therefore, the decision variables 
are set as spindle speed n (r/min) and feedrate Vf (mm/
min).

• Optimization objectives
 Carbon emissions are important in numerous process 

planning objectives, but from the perspective of economic 
benefits, processing time is also indispensable. As a result, 
two objectives are considered, i.e. carbon emissions CEP

(kgCO2)and processing time PTP(s), as shown in Eq. (1).

(1) Processing time modeling
 PTP refers to the total time from stable operation of 

each subsystem of the machine tool, such as spindle 
system and feed system, to the finish of the machining 
task. It is mainly composed of three parts, i.e. material 
removal time PTC(s), tool replacing time PTCT(s) and 
auxiliary time PTA(s), as shown in Eq. (2).

PTC can be obtained as shown in Eq. (3), where L(mm) 
denotes the milling length,ap(mm) denotes the cutting 
depth,Δ(mm) denotes the thickness of the material to be 
removed, namely the machining allowance.

In the machining process, the cutting tools usually 
become not sharp enough and must be replaced. According 
to Taylor’s extended equation, the tool life Ttool(min) can be 
calculated by Eq. (4) [13].

where C,bt,et,�t,rt,nt and q are tool life coefficients,D(mm) 
denotes the tool diameter,VC(m/min) denotes the tool cutting 
speed,af (mm/z) denotes the feedrate per tooth,ae(mm) is the 
milling width and z is number of tool teeth.VC and af  can be 
expressed as shown in Eqs. (5)-(6).

(1)F(n,Vf ) =
(
minCEP, minPTP

)

(2)PTP = PTC + PTCT + PTA

(3)PTC =
60 × L × Δ

Vf × ap

(4)Ttool =

[
C × Dbt

VC × a
et
p × a

�t

f
× a

rt
e × znt

] 1

q

(5)VC =
� × D × n

1000

PTCT can be calculated from Eq. (7), where Ttc(min) is the 
time for tool replacing once.

PTA refers to the time used by various auxiliary opera-
tions in machining, which mainly includes the tool retracting 
time in this study, as shown in Eq. (8), where Tae(min) is the 
time for retracting once.

(2) Carbon emissions modeling
 Carbon emissions for the CNC machining are associ-

ated to many factors, such as the electricity consump-
tion CEE(kgCO2), raw materials consumption CEM

(kgCO2), cutting tools CET(kgCO2)and cutting fluid 
CEF(kgCO2), as show in Fig. 3.

 In the machining process for a part, the removal amount 
of material CEM is almost the same for different cutting 
parameters, so total carbon emissions CEP(kgCO2)can 
be represented by Eq. (9).

Following Eq. (9), the calculations of CET,CEF and CEE 
can be described as shown in Eqs. (10)-(12).

in which CEFtool(kgCO2/kg),CEFfluid(kgCO2/m3) and CEFelec

(kgCO2/J) are emission factors of cutting tool, cutting fluid 
and electricity, respectively.Wtool(kg) denotes the tool 
weight,Tfluid(s) denotes the cutting fluid change period,Vfluid

(m3) denotes the coolant volume for milling, and EP(J) 
denotes the electricity energy for the whole process.

In this study, the electricity energy is mainly consumed 
for tool replacing ECT(J), materials removing EC(J) and tool 
retracting EA(J). Therefore, the total electricity energy EP(J) 
can be defined as Eq. (13).

(6)af =
Vf

n × z

(7)PTCT = Ttc ×
PTC

Ttool

(8)PTA =
60 × Tae × Δ

ap

(9)CEP = CEE + CET + CEF

(10)CET =
PTC ×Wtool × CEFtool

60 × Ttool

(11)CEF =
PTP

Tfluid
× Vfluid × CEFfluid

(12)CEE = EP × CEFelec

(13)EP = ECT + EA + EC = Pbasic × PTCT + Pidle × PTA + (PC + Pidle + Pa) × PTC
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in which Pidle(W) is the idle power,Pbasic(W) is the basic 
power,PC(W) is the cutting power and Pa(W) is the addi-
tional power.

Pidle is composed of the basic power Pbasic(W) and the 
unload power Punload(W), as shown in Eq. (14).

Pbasic is to assure the normal working of the machin-
ing system, such as the cooling system and hydraulic 
system.Punload refers to the power consumed when the 
machine tool is only idling without cutting behaviors, 
which is closely related to the spindle speed, where Pmin 0

(W) denotes the minimum unload power of a machine tool, 
and C1,C2 are rotation coefficients.

PC is mainly decided by cutting speed VC and cutting 
force FC(N), as shown in Eq. (15), in which FC can be 
expressed in Eq. (16).

where CF is cutting force coefficients, which is determined 
according to the cutting tools and workpiece materials. xF
,yF,zF,�F,qF,wF are the influence indexes of cutting depth, 
feedrate, number of tool teeth, cutting width, cutting tool 
diameter and spindle speed on cutting force.KF is modifica-
tion coefficient of the workpiece material.

In addition, Pa(W) refers to some extra power, e.g. 
the power generated by mechanical friction, which is 
challenging to establish an accurate mathematic model. 
Alternatively, we can use an approximate linear formula 

(14)
Pidle = Pbasic + Punload = Pbasic + Pmin 0 + C1 × n + C2 × n2

(15)PC =
FC × VC

60

(16)FC = CF × axF
p
× a

yF
f
× zzF × a�F

e
× D−qF × n−wF × KF

to represent, as shown in Eq. (17), where bm denotes the 
power coefficient [13].

• Constraints
 For milling, there are a substantial amount of constraints 

need to be satisfied, as shown below.

Constraints (18)–(19) control the spindle speed and 
feedrate to be within acceptable ranges, where nMin and 
nMax represent the upper and lower bounds of the spindle 
speed,VfMin and VfMax represent the upper and lower bounds 
of feedrate. As described in Constraint (20), the cutting 
force needs to be limit within maximum cutting force FMax 
for good product quality and machine life. Similarly, the 
actual machining power should be less than maximum 
output power of the machine tool, as shown in Constraint 
(21), where PMax denotes the maximum spindle power and 

(17)Pa = bm × PC

(18)nMin ≤ n ≤ nMax

(19)VfMin ≤ Vf ≤ VfMax

(20)FC ≤ FMax

(21)PC ≤ � × PMax

(22)Ttool ≥ TMin
tool

(23)Ra =
a2
f

8 × rg
≤ RMax

Fig. 3  Carbon emissions 
boundary of a CNC machining 
process
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� denotes the power effective coefficient. The tool life needs 
to be greater than minimum tool life TMin

tool
 , as shown in Con-

straint (22). To ensure the product quality, surface rough-
ness Ra should be less than the maximum surface roughness 
RMax , as shown in Constraint (23), where rg denotes the nose 
radius.

• NSGA-II algorithm for multi-objective optimization

There are many algorithms for solving complex multi-
objective optimization problems, e.g. genetic algorithm 
(GA) [40], harmony search algorithm (HS) [41] and particle 
swarm algorithm [42]. In this section, NSGA-II is adopted 
to solve the proposed problem, which is an multi-objective 
evolutionary algorithm (MOEA). It is characterized by the 
followings: the fast non-dominated sorting operator greatly 
decreases the computation complexity; the crowding dis-
tance mechanism maintains the population diversity; and the 
elitism selection strategy can make the superior individuals 
not be discarded during evolution, and improve robustness 
of the algorithm. The procedure of NSGA-II is executed 
according to Fig. 4 as follows.

Step 1: The population of size N is randomly initialized.

Step 2: The first-generation population can be generated 
by performing the fast non-dominated sorting and three 

genetic operators, namely selection, crossover and muta-
tion.

Step 3: Combining offspring populations with parent pop-
ulations, then performing the fast non-dominated sorting 
and calculating the crowding distance.

Step 4: Optimal individuals can be found by using elitism 
selection strategy.

Step 5: When the size of new parent population reaches 
N , the iteration will be stopped, and a new child popula-
tion can be obtained.

4.2.2  Dynamic Re‑optimization Based on Virtual‑Physical 
Interaction

Although NSGA-II effectively optimizes the cutting param-
eters, the process of optimization is carried out based on 
certain machining conditions. In fact, the actual machining 
conditions are dynamically changing, which will lead to the 
deviation between the actual and expected machining state, 
such as poor machining quality and tool vibration. Hence 
the initial cutting parameters may not be applicable or opti-
mal for the current machining. It is essential to re-optimize 
cutting parameters according to the actual machining data. 
In view of the above problems, dynamic cutting parameter 

Fig. 4  The procedure of NSGA-
II
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optimization method based on virtual-physical interaction is 
proposed, as shown in Fig. 5.

During the machining, the simulation model of the vir-
tual space synchronously simulates the machining behav-
iors of the CNC machine tool driven by the sensing data 
from the physical space. At the same time, the simulation 
model analyzes whether the simulation results are consist-
ent with the desired. If the current machining state does not 
meet the expectation, for example, cutting force fluctuation, 
optimization model should be adjusted according to sens-
ing data, and the intelligent algorithms such as NSGA-II or 
others can be used to re-optimize cutting parameters. Then 
the optimization results will be verified in the simulation 
model to confirm whether the actual machining require-
ments are met. Hereafter the updated machining plan, i.e. 
NC program, will be transferred to the physical machine to 
guide the remaining production. During the machining, the 
simulation and optimization process will be continuously 
performed through virtual-physical closed loop until the 
whole machining task is completed.

In the rough milling, the cutting force usually fluctuates 
with the change of the difference of cutting depths and mate-
rials, which may cause machine tool chatter and cutting tool 
breakage. It is an effective and efficient method for the issues 

with the dynamically optimized cutting parameters in light of 
different cutting conditions. In the rough milling, the feedrate 
has a greater influence on the cutting force than the spindle 
speed [21]. In addition, among the main cutting parameter 
variables, feedrate is the easiest to manage and control, so it is 
usually selected as the variable to adjust the cutting force [43]. 
Therefore, an example of re-optimizing the feedrate with the 
real-time sensing data (spindle power, spindle speed, feedrate, 
axis positions, etc.) to further illustrate the implementation 
process of this method. The optimization method is as follows.

(1) The cutting force model

Many experiments and empirical models show that cutting 
force FC(N) can be modeled using spindle power, as shown in 
Eqs. (24)-(27) [21].

(24)Ts =
60000Pm

2�n

(25)Ft =
2Ts

D

Fig. 5  The flow chart of 
dynamic cutting parameter 
optimization based on virtual-
physical interaction
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where Ts (N ⋅ m) is the cutting torque,Pm(W) denotes the 
spindle power,n(r/min) denotes the spindle speed,Ft(N) 
denotes the tangential cutting force,D(mm) denotes the 
diameter of cutting tool and Fth(N) denotes the thrust cut-
ting force.

(2) The feedrate optimization model

According to Eq. (16), for a specific machining operation, the 
relationship between cutting force and feedrate is approxi-
mately proportional under given other parameters, 
i.e.FC = K × V

yF
f

 , where K is proportionality coefficient. 
Hence the optimized feedrate can be determined by Eq. (28).

where Vf (mm/min)and V ′

f
(mm/min)respectively denote fee-

drates before and after optimization.FC(N) and Fe
C

(N) 
respectively denote the original cutting force and the 
expected cutting force after optimization.yF is the cutting 
force coefficient.l ∈[0.5, 1.5] is the optimization capability 
factor generated randomly with iteration number k,S repre-
sents the feasible region satisfied to Constraints (18)–(23).

Besides, real-time data is collected by sensors at a certain 
sampling frequency during the machining process, so dif-
ferent amounts of data can be collected for each row of NC 
program. We assume that there is a segment of NC program 
with N  rows. For the i-th row, the original feedrate Vf (i) 
and cutting force FC(i) can be calculated as shown in Eqs. 
(29)-(30).

where i ∈[1, N],Ni denotes the data collecting times for the 
i-th row,Vf (i, j) and FC(i, j) represent the j-th values of fee-
drate and cutting force in the i-th row, respectively.Fe

C
 can 

be represented by Eq. (31).

(26)Fth = 0.5 × Ft

(27)FC =

√
F2
t + F2

th

(28)

V
�

f
= max

{
V
|||||
v(k) = l(k) × Vf ×

(
Fe
C

FC

)−yF

∈ S, k = 1, 2, 3, 4, ...

}

(29)Vf (i) =
1

Ni

Ni∑
j=1

Vf (i, j)

(30)FC(i) =
1

Ni

Ni∑
j=1

FC(i, j)

5  Case Study

To validate this method, a milling process is tested on a 
CNC milling machine with cemented carbide cutting tool 
and S45C carbon steel workblank. The specifications of the 
machine tool are shown in Table 4. The workpiece consists 
of nine grooves with varying length and cutting depth, as 
shown in Table 5. More parameters for process optimiza-
tion, such as carbon emission factors, cutting force coeffi-
cients and tool life coefficients, can be obtained from process 
manuals and stored in the ontology model. Note that this 
experiment stipulates that the expected value of the variance 
of the cutting force data is less than 10^3.

The 3D simulation model in the virtual space is shown 
in Fig. 6. In this model, the optimization and simulation 
process of the CNC machining can be achieved.

5.1  Validation of Initial Optimization

Firstly, the problem is solved by using NSGA-II to obtain 
initial optimal solution of cutting parameters. The initial 
parameters of the algorithm are set as shown in Table 6. 
After optimization, the optimal cutting parameters ( n,Vf  ) are 
obtained, which are 919 r/min, 441 mm/min. And the objec-
tive values ( PTP,CEP ) are 95.235 s and 0.0671  kgCO2. The 
change processes of processing time and carbon emissions 
are shown in Fig. 7.

Then, the milling process is performed with the above 
process plan, i.e.n = 919 r/min,Vf  = 441 mm/min. During the 
machining process, real-time sensing data, mainly includ-
ing time, NC program row number, spindle power, spindle 
speed, feedrate, cutting depth and axis positions, is collected 
with a sampling period of 100 ms. The spindle power is 
collected by the power sensor, other data can be obtained 

(31)

Fe
C
=

N∑
i=1

Ni∑
j=1

f (i, j)

N∑
i=1

Ni∑
j=1

n(i, j)

where

f (i,j)=

⎧⎪⎨⎪⎩

FC(i, j), if FC(i, j)gt;FC(i)

0, if FC(ti, j) ≤ FC(i)

n(i,j) =

⎧⎪⎨⎪⎩

1, if FC(i, j)gt;FC(i)

0, if FC(i, j) ≤ FC(i)

Table 4  Specifications of the milling machine

Parameters Values

The maximum spindle power PMax(W) 31,000
The power efficiency � 0.8
The maximum cutting force FMax(N) 11,000
The range of spindle speed nMin ∼ nMax (r/min) 100–6000
The range of feedrate VfMin ∼ VfMax(mm/min) 1–5000
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from the CNC system. Then the sensing data is semanti-
cally parsed through the ontology model using Jena tools. 
The process of ontology parsing is shown in Fig. 8. The 
parsed data will be transmitted to the twin model. Next, the 
virtual machine tool will simulate the machining behaviors 
of the physical machine. The waveforms of cutting depth, 
the spindle power collected by sensor and the cutting force 
calculated by Eqs. (24)–(27) are shown in Fig. 9. It can be 

Table 5  Specifications of the 
workpiece

Grooves 1 2 3 4 5 6 7 8 9

Cutting depth(mm) 2.5 2.7 2.9 3.1 3.3 3.1 2.9 2.7 2.5
Length(mm) 100 50 100 50 100 100 50 100 50

Fig. 6  The 3D simulation model in the virtual space

Table 6  The initial parameters of NSGA-II

Parameters Values

The population size 100
The maximum generation number 100
The crossover probability 0.8
The mutation probability 0.2

(a) (b)

Fig. 7  The change processes of a processing time and b carbon emissions
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Fig. 8  The process of ontology parsing

(a)

(b) (c)

Fig.9  The waveforms of a cutting depth, b spindle power and c cutting force
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found that the spindle power and cutting force fluctuate sig-
nificantly during the milling, and their fluctuation is almost 
the same as the variation of cutting depth. And the variance 
of cutting force data is 7983.2, which is much larger than 
the expected value (< 10^3). Therefore, it is essential to re-
optimize the feedrate.

5.2  Validation of Dynamic Re‑optimization

The method described in Sect. 4.2.2 is used to re-optimize 
the feedrate, and the spindle speed is fixed after the initial 
optimization of NSGA-II. The optimization results are veri-
fied in the virtual machine tool. The comparison of feedrate 
is shown in Fig. 10. It shows that the original feedrate is 
relatively stable. The optimized feedrate is no longer con-
stant. Instead, it varies with cutting depth to maintain a more 

constant cutting force. Most of the feedrate values are higher 
than the original values, which provides the potential of sav-
ing machining time. Then the ontology model parses the 
new process plan, which will be sent back to the physical 
machine to guide the next milling.

Next, the same milling process is performed using 
updated NC program, and real-time data such as spindle 
power is collected again in the new process. The compari-
son of before and after optimization for spindle power and 
cutting force are shown in Fig. 11. It shows that the spindle 
power is relatively stable, and the fluctuation of the cutting 
force decreases after optimization, which proves the feasibil-
ity of proposed method.

5.3  Results and Discussion

The statistical analysis was conducted on the data before and 
after optimization, as shown in Table 7, where the original 
data comes from the initial machining process, and the opti-
mized data can be obtained during the milling process using 
re-optimized cutting parameters.

Compared with original cutting forces, the ratio of maxi-
mum to minimum is smaller, the average is larger, and the 
variance is much smaller for cutting force after optimiza-
tion. The result indicates that the optimized cutting force is 
more smooth, which can avoid excessive deformation and 
unexpected vibration for machines, and the performances of 
machining equipment are protected.

In addition, for processing time PTP and carbon emissions 
CEP , the values of the optimized two objective functions are 

Fig. 10  The comparison of feedrate

(a) (b)

Fig. 11  The comparison of a spindle power, and b cutting force

Table 7  A comparison of 
statistical data

Cutting force PT
P
(s) CE

P
(kgCO2)

Max (N) Min (N) Max/Min Average (N) Variance

Original data 1201.1 899.5 1.3 1039.2 7983.2 95.235 0.0671
Optimized data 1130.9 1042.7 1.1 1087.3 570.6 89.677 0.0630
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reduced by 5.84% and 6.1% respectively, i.e. improving the 
machining efficiency and reducing carbon emissions, which 
further proves the feasibility of the method.

In short, the proposed method dynamically optimized 
the cutting federate according to the machining conditions. 
Hence the method can obtain more accurate and reasonable 
cutting parameters by continuous simulation and optimiza-
tion of the virtual twin driven by the real-time sensing data 
from physical machine tool.

6  Conclusions

Nowadays, low carbon manufacturing has become a trend 
in modern manufacturing. Cutting parameter optimization 
is one of effective ways to reduce carbon emissions for 
manufacturing industry. Digital twin brings about a novel 
methodology for dynamically optimizing the cutting param-
eters according to the real-time sensing data in the process 
of machining. A dynamic cutting parameter optimization 
method for low carbon and high efficiency based on digital 
twin is proposed. Compared with traditional static optimi-
zation methods, this method can dynamically find optimal 
cutting parameters in light of the real-time sensing data of 
the machining conditions. The case study shows that the 
method can reduce the processing time by 5.84% and carbon 
emissions by 6.1%. The main contributions of this work are 
as follows:

(1) The architecture of digital twin of a CNC machine 
tool for cutting parameter optimization is presented, 
which describes the operation process of the proposed 
method.

(2) The ontology on CNC machining process is established 
for realizing real-time semantic understanding between 
physical machine tool and virtual twin model.

(3) A dynamic optimization method of cutting parameters 
based on dynamic perception of physical machining 
conditions and synchronous simulation of virtual twin 
model is proposed.

This research has realized the application of digital twin 
to the problem of cutting parameter optimization. However, 
this study still has limitations, mainly including the smart 
perception of machining conditions and the continuous evo-
lution of optimization model driven by sensing data. In the 
case study, cutting parameters are dynamically optimized 
based on real-time sensing data for the smoothness of the 
cutting force, without considering other machining factors 
such as surface roughness, accuracy, tool life, etc. In the 
future, the real-time perception of the whole CNC machin-
ing conditions based on multi-sensor fusion technology will 

be further studied. And more research is needed for dynamic 
evolution of the twin model driven by data fusion and intelli-
gent algorithm to enhance the accuracy of cutting parameter 
optimization and to obtain better machining performance.
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