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Abstract
In the manufacturing industry, the smart factory is considered the final stage of the Fourth Industrial Revolution. Manufac-
turing companies are pursuing breakthroughs by introducing various advanced technologies to ensure their competitive-
ness. However, it is difficult for small and medium-sized enterprises (SMEs) to adopt smart-factory technologies, owing 
to financial and technical burdens. This paper proposes a smart factory that can be applied technically and strategically to 
the introduction of a smart factory for SMEs. The concept of an ‘appropriate smart factory’ involves applying appropriate 
measures in terms of cost and scale with consideration of the situations faced by SMEs. The goal is to build a smart factory 
that has necessary functions (Essential) but can be easily operated (Simple) at a low cost (Affordable) and has compatibil-
ity (Interoperable). This paper presents technical application measures such as appropriate smart sensors, appropriate IoT 
(Internet of Things), and small data processing, along with the definition of an appropriate smart factory. In addition, a case 
study was examined where the quality inspection equipment for garment manufacturing SMEs was developed by applying 
the appropriate smart factory concept.

Keywords  Appropriate smart factory · Small and medium-sized enterprises · Interoperable · Sensor · Edge computing · 
Artificial intelligence · Internet of Things

1  Introduction

In the era of the Fourth Industrial Revolution, global man-
ufacturers are striving to gain competitive advantages by 
applying cutting-edge technologies such as the Internet 
of Things (IoT), robotics, artificial intelligence (AI), Big 
Data, and cyber-physical systems [1, 2]. In particular, 

large enterprises implement autonomous, networked smart 
factories aimed at improving productivity and quality for 
maintaining their dominance in the global market [3]. In 
an advanced smart factory, all manufacturing resources are 
monitored in real time over the Internet, and production 
activities can be controlled autonomously [4]. A smart fac-
tory is developed to remotely diagnose the conditions of 
production sites and predict future conditions, as well as to 
engage in the entire plant operation process—from product 
design and production to logistics and disposal [5, 6].

Meanwhile, trends such as energy reduction and eco-
friendly processing, which have recently emerged as global 
issues, are also becoming important smart-factory topics. 
Along with research on the energy efficiency in the manu-
facturing process [7–10], various studies on eco-friendly fac-
tors of manufacturing and products and sensor development 
for environmental evaluation have been conducted [11–14]. 
However, most of the research on energy and the environ-
ment is concerned with measuring the efficiency of energy 
consumption or environmental pollution.
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Small and medium-sized enterprises (SMEs) face many 
difficulties in realising such smart factories. For the case 
of manufacturing enterprises in Korea, SMEs are defined 
as companies with total assets of < 440 million USD, 
and 97.9% of the manufacturers in Korea are SMEs [15]. 
Although some SMEs have strong global competitiveness 
based on advanced technology, most of SMEs have weaker 
business-oriented financial structures and technical capa-
bilities than large companies. Such financial and technical 
constraints hinder the adoption of smart factories by the 
SMEs. Figure 1 shows the survey results for the difficul-
ties of smart-factory promotion among Korean companies 
[16]. While SMEs have cited financial burdens and lack of 
technology as the most significant obstacles for adopting 
smart factories, large enterprises are more concerned with 
the lack of Big Data. Additionally, SMEs require an adoption 
strategy that is consistent with their circumstances and the 
purpose of introducing smart factories [17].

This paper proposes the concept of an ‘appropriate 
smart factory,’ which can be applied with small financial 
and technical burdens for SMEs to promote smart factories. 
We establish the concept of an appropriate smart factory by 
considering the key issues of SMEs and present measures 
that can be implemented in various technologies, such as 
sensors, IoT, process, data-processing system, and robot-
ics. In the application of smart factories, attempts to reflect 
the needs of SMEs have been continuously made [18]. This 
paper provides useful guidance to many SMEs by present-
ing concepts and methods for appropriate smart factories 
that can be practically referenced by SMEs for the adoption 
of smart-factory technologies. For most SMEs, except for 
some that have strong competitiveness based on advanced 
technology, the issues covered in this paper can be useful 
references.

The remainder of this paper is organized as follows; 
Sect. 2 presents the latest research trends linked to the pro-
motion of smart factories for SMEs, and Sect. 3 presents 
the concept of appropriate smart factories and technical 
implementation plans. Section 4 presents examples of the 

development of vision-based quality inspection equipment 
based on the requirements of small and medium-sized cloth-
ing manufacturing companies as case studies of implement-
ing the appropriate smart factory concept. Section 5 dis-
cusses additional matters regarding the implementation of an 
appropriate smart factory, and Sect. 6 concludes the paper.

2 � Literature Review

In 2010, Zuehlk introduced the SmartFactoryKL Initiative 
as a proposal for new solutions for future factory technolo-
gies with their demonstration and research testbeds [19]. 
Since then, various efforts have been made to realise the 
future of manufacturing plants with advanced technologies 
under the theme of smart factories or smart manufacturing 
[20–23]. Kim et al. organised and presented the development 
direction of smart manufacturing trends involving machine 
learning for various types of manufacturing equipment [24], 
and Shin et al. proposed a diagnostic and soundness manage-
ment framework applicable for smart factories [25]. Kim 
et al. proposed a real-time monitoring and diagnosis system 
based on AI and data that is applicable to manufacturing 
equipment [26]. Pham and Ahn investigated high-precision 
industrial robot parts applicable to smart factories [27]. 
However, the application of Fourth Industrial Revolution 
technology is still being pursued in a way that is suitable for 
large enterprises rather than SMEs [28] and still has many 
barriers to be applied to SMEs [29].

Recently, concerns have been raised over how to apply 
smart factories with consideration of the structures and 
resources of SMEs [30]. Mittal et al. presented the char-
acteristics of SMEs and the research gaps that must be 
addressed to successfully support SMEs, e.g. roadmaps, 
maturity models, frameworks, and readiness assessments 
[31]. Issa et al. proposed technology matching among col-
laborative enterprises, financial and technical government 
support, project management system, etc. [32]. Chonsawat 
et al. presented manufacturing and operation strategies, 

Fig. 1   Obstacles to promoting 
smart factory [16]
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manpower capabilities, technology-driven processes, busi-
ness and organisational strategies, etc. for promoting smart 
factories among SMEs [33].

Smart-factory technology has been applied to SMEs in 
various ways. Ghobakhlu et al. developed a model for SME 
adoption of smart factories through the integration of smart 
manufacturing information and digital technologies such as 
AI and Big Data with their business operations [34]. Jun 
et al. proposed a platform to support smart manufacturing 
through cloud applications [35]. Menez et al. developed a 
real-time manufacturing system through improvements to 
SMEs’ Manufacturing Execution System for smart-factory 
application [36]. Kolla et al. presented a junction with the 
lean technique, a traditional manufacturing efficiency model, 
for SME smart-factory application [37].

Recent literature indicates that SMEs’ efforts to introduce 
smart factories are mostly high-level frameworks or have 
considerable administrative access to internal and external 
elements. SMEs, whose structural and financial bases are 
more core business-oriented than those of large enterprises, 
must begin the adoption of a smart factory with the introduc-
tion of acceptable technologies that can be applied directly 
at their manufacturing sites.

3 � Concept of Appropriate Smart Factory 
for SMEs

The concept of the appropriate smart factory involves apply-
ing a method suitable in terms of cost and scale to the smart 
factory to suit the situation in which the technology is used. 
It aims to build a smart factory that has essential functions 
but is easy to operate and low-cost. The appropriate smart 
factory elements can be defined as ‘Essential, Affordable, 
Simple, and Interoperable’ (EASI).

‘Essential’ refers to the composition of the technology to 
the level of essential functions of the equipment or processes 
that small and medium enterprises intend to adopt. Higher-
than-necessary specifications can lead to heavy systems with 
high costs. For example, a high performance computer is not 
appropriate if factory operational information is generated in 
the form of simple numerical data. It is often possible to pro-
cess data adequately using small computers (microcontroller 
units), e.g. Arduino or Raspberry Pi. Thus, it is desirable to 
adopt a tool with appropriate specifications depending on 
the circumstances.

‘Affordable’ implies that the introduction of a smart 
factory requires consideration of whether the company can 
accept the financial burden and whether the cost-effec-
tiveness is appropriate. As mentioned previously, SMEs 
recognise that the financial sector is the largest burden. 
This is related to sustainability, which can face significant 

challenges if the introduction of technologies creates a 
lower return on investment (ROI).

‘Simple’ implies that the smart-factory technology or 
facilities should be easy to install, operate, and maintain. 
If excessive additional infrastructure must be added to the 
installation or if additional experts are needed owing to 
difficulties in operation and repair, a burden is placed on 
the SME. Thus, by introducing smart-factory technology 
with a simple system configuration, operation method, and 
repair method, the technology can be operated efficiently 
without additional personnel and job training.

Finally, ‘Interoperability’ refers to the utilization of 
facilities independent of their hardware, operation system, 
sensor type, data structure, and communication standard. 
The introduction of new facilities or technologies often 
necessitates separate facilities for integrated operations, 
unless compatibility with existing ones is considered. This 
can increase the production costs.

Table 1 presents the aforementioned appropriate smart 
factory elements and considerations. If these considera-
tions are carefully reviewed and reflected in the introduc-
tion of smart-factory technology, SMEs can implement 
smart-factory solutions with a minimal burden.

Figure 2 shows the scope of the appropriate smart fac-
tory elements in the concept of a general smart factory. 
The smart factory collects data from all the facilities and 
environments of the factory through sensors and processes 
them at the site level or generates Big Data using IoT and 
sends the data to the cloud. Stored data analyses the phe-
nomena of factories and makes decisions using AI. Subse-
quently, the physical world site is controlled autonomously 
in the factory. Appropriate smart factory elements can be 
applied to all parts of a smart factory, including the equip-
ment and processes, sensors, IoT, and data processing. The 
sections below describe the application of the appropriate 
smart factory elements in further detail.

Table 1   Appropriate smart factory factors and considerations

Factors Key considerations

Essential Composed only of necessary technologies
Without over-specs compared with the product 

produced
Affordable Adoptable given the company’s finances

Adequateness of the cost-effectiveness of the systems
Simple Easy to install and maintain

Easily operated by the operator
Interoperable Data interchangeable between systems in the factory

Parts or components interchangeable in the factory
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3.1 � Appropriate Smart Sensor

The sensor that collects the production and status data of 
manufacturing facilities is the starting point of the smart fac-
tory and connects the factory to the data. Owing to the cost 
of installing and operating sensors and the additional equip-
ment required, SMEs have concerns regarding the use of 
sensors to collect manufacturing data [38]. Sensors that are 
affordable and appropriate for collecting data are the most 
important requirements for SMEs to adopt smart factories.

The use of highly specified ultraprecision vibration sen-
sors for measuring machine-tool vibrations allows precise 
sensitivity measurements, but such sensors are expensive. 
If the reason for measuring the vibration is not to ensure 
the high quality of the workpiece but to identify trends in 
the process and only an intermediate sensitivity level is 
needed to prevent the generation of defective products, it 
is not mandatory to purchase and install highly-specified 
vibration sensors. There are two options for resolving this 
issue: (a) control data and (b) a cheap sensor. For controlled 
systems such as an industrial robot, control data can be an 
option for an appropriate smart factory but exhibit low sen-
sitivity. Another option is an appropriate smart sensor. Fig-
ure 3 presents an example of an appropriate smart sensor 

manufactured by printing nanoparticles directly into the 
parent metal. The multifunction sensor can simultaneously 
measure trends in both low and high levels of strain and 
vibration [39, 40]. It can be produced at a cost of several 
dollars (in contrast to high-end vibration sensors, which have 
a production cost of thousands of dollars), and its sensitivity 
is sufficient for a simple analysis of the process quality. The 
development and dissemination of appropriate smart sensors 
can facilitate the adoption of smart factories by SMEs.

3.2 � Appropriate IoT

IoT devices are cloud-connected sensors and physical objects 
that collect data from manufacturing facilities and transmit 
the data to servers or processing them directly through edge 
computing. In some cases, IoT devices are configured with 
sensors directly included in existing facilities, and in oth-
ers, they receive data from separate sensors and process or 
transmit the data. Commercial IoT equipment is expensive 
for SMEs to adopt, as it has various functions. The avail-
ability of various functions can be over-specified, adding to 
the weight of the system.

Low-cost computing devices, e.g. Arduino, with wire-
less communication modules are combined to produce 

Fig. 2   Concept and characteris-
tics of appropriate smart factory
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appropriate IoT devices. Figure 4 shows examples of meas-
uring the consumed power of the equipment, e.g. machine 
tools, three-dimensional printers, sewing machines, and 
laser processing equipment. Using low-cost small comput-
ers, IoT devices can be manufactured with sufficient data 
collection and communication characteristics compared with 
expensive equipment at low cost. Additionally, the power-
consumption measurement results can be used to monitor 
the status of the connected equipment and check the output 
in real time [29].

3.3 � Small Data Processing

In the smart-factory system, manufacturing data collected by 
sensors are stored in the cloud or local (on-premise) server. 
Data may not have a meaning until information is extracted 
through visualisation, data processing, or aggregation of 
multiple sources. Big Data and AI technologies are used 

for processing these data. However, the cost of developing 
Big Data and AI technologies and the need for professional 
labour are significant obstacles for SMEs. The appropriate 
smart factory approach involves reducing costs by trans-
posing data before the collection of Big Data. It is recom-
mended to extract characteristic key values from the data 
via statistical techniques or physical-quantity calculations. 
These approaches often provide valuable insights, and tool-
ing, interpretation, and implementation are often easier to 
realise than full AI models.

Figure 5 shows how garment manufacturers’ sewing 
worksites can use statistical techniques to approximate 
power data profiles to pattern their work characteristics 
continuously according to time-series data [41]. Using this 
method, it was possible to analyse the amount and time of 
work per hour for the sewing worker. Table 2 compares 
the results of two AI techniques—the convolutional neural 
network (CNN) and small data processing—for the same 

Fig. 3   Direct-printed smart 
sensor: low-cost and multifunc-
tional

Fig. 4   Appropriate IoT device 
for power consumption moni-
toring
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power-consumption data for the sewing line. When data for 
one production line in which > 50 workers worked simulta-
neously were analysed, CNN spent nearly 9 days, whereas 
the small data processing required approximately 1 h. Addi-
tionally, the pattern-recognition accuracy was higher in the 
small data processing. AI techniques are known to exhibit 
higher accuracy as the amount of data increases. Depend-
ing on the characteristics of the data and the purpose of the 
analysis, small data processing may provide the required 
data analysis results.

3.4 � Hybrid Manufacturing Process

For SMEs with limited-cost production facilities, it is nec-
essary to introduce a process that can efficiently produce 
high-quality products with an appropriate cost expendi-
ture. The hybrid process, which combines various produc-
tion processes, is one of the most efficient ways to improve 
the performance and cost-effectiveness of the production 
process [42]. The potential benefits of the hybrid process 

are a reduced energy consumption, increased machining 
performance, and an increased machining accuracy [43]. 
To exploit these advantages, various hybrid processes have 
been developed and applied in the field [44, 45].

One of the most traditional methods for polishing mate-
rials is rubbing them with abrasive particles and polishing 
pads [46]. Because of the nature of polishing processing 
with a very low material removal rate (MRR), the process-
ing time is inevitably long; thus, if the productivity and 
efficiency of the manufacturing process can be improved, 
the cost can be reduced.

Figure 6 compares the per-part manufacturing costs 
(electric power usage) and MRRs of various hybrid polish-
ing processes using laser and ultrasonic vibration. Accord-
ingly, the productivity and efficiency of the hybrid pro-
cesses were compared. As shown, hybrid processes have 
higher productivity (MRR) and lower production costs 
than traditional processes, allowing more products to be 
produced simultaneously at lower costs through process 
hybridisation.

Fig. 5   Power consumption 
data analysis using small data 
processing

Table 2   Comparison between 
the AI-based method and small 
data processing

Category AI (CNN) Small data process-
ing (approximation 
method)

Data extraction/train (1 worker) ~ 90 min ~ 1 min
Calculation time (1 day of work for 1 worker) < 20 s < 3 s
Line level analysis time (1 production line) ~ 9 days ~ 1 h
Pattern-recognition accuracy ~ 88% ~ 92%



207International Journal of Precision Engineering and Manufacturing (2021) 22:201–215	

1 3

3.5 � Appropriate Vision‑Based Monitoring

The range of applications of computer-vision technology 
has expanded rapidly as the resolution and frame rate of 

camera technology have increased. Additionally, image 
data processing technology utilising AI has been developed. 
However, the high cost of high-performance cameras and 
data-processing algorithms is a significant limiting factor for 
SMEs. In contrast, equipment that is > 20 years old, which 
is employed by most SMEs, is often equipped with a built-
in sensor that measures manufacturing data but often does 
not have a communication function that transmits the data 
to external databases. In such cases, manufacturing data are 
collected by installing incidentally middleware module-type 
data communication devices, which not only require equip-
ment modification but also incur costs.

Figure 7 shows an example of the application of a low-
cost webcam and open source-based image-processing tech-
nology with consideration of the situations faced by SMEs. 
The proper vision monitoring system was developed to 
digitise manufacturing data displayed on monitors of older 
machine tools and transmit them to the database. Thus, the 
equipment status can be monitored through vision technol-
ogy without installing separate communication modules 
[47]. To ensure that the SMEs can accept the technology 
without a significant financial burden, low-cost webcams 
and small computers are used to monitor the status of older 
machine tools from mobile devices such as smartphones and 
tablets.

Fig. 6   Costs and MRRs for different polishing processes

Fig. 7   Appropriate vision moni-
toring system for old machine 
tools
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4 � Application of Appropriate Smart Factory 
Technologies

Section 3 reviews the technical implementation methods 
for appropriate smart factories. Appropriate smart factory 
technologies that reflect EASI elements can be applied inde-
pendently as a single technology but they can be more useful 
when applied in combination with their technical charac-
teristics. This section presents a case study where a system 
is developed with consideration of the situations of SMEs 
by applying several appropriate smart factory technologies.

If a sewing-machine defect occurs in the middle of a 
garment sewing process, the defect remains until the final 
inspection stage. Defective products identified in quality 
inspection are sent back to the process after disassembly, 
incurring costs and resulting in time and manpower losses. 
A small and medium-sized sewing company attempted to 
analyse images of the sewing machine using AI to solve this 
problem and concluded that one expensive computer with 
a graphics processing unit (GPU) was needed for every five 
sewing machines. The analysis results for the SME require-
ments are presented in Table 3. In this section, the aforemen-
tioned problem is solved by combining IoT and computer 
vision, as well as small-volume data processing with the 
appropriate smart factory concept.

4.1 � Hardware Configuration

Regarding the requirements in Table 3, the composition of 
the hardware requires appropriate vision monitoring with 
low-cost small cameras and small computers to handle the 
appropriate IoT and the small amount of data. Among the 
various commercially available models, the Raspberry Pi 
was selected as the small computer because it is relatively 
inexpensive and can satisfy the requirements.

Figure 8 shows a schematic of the hardware system con-
figuration and the inspection device to be developed accord-
ingly. The work conducted on the sewing machine was 
filmed using a small camera. Then, after image processing 

and fault detection on a small computer, an alarm was 
sounded by the appropriate IoT in the case of a defect, and 
the same operation was repeated if normal (Fig. 8a). Fig-
ure 8b shows the result of configuring the system using the 
Raspberry Pi and Pi camera.

4.2 � Software Configuration

The sewing inspection algorithm was designed to be run at 
a small-data level using a small computer. Algorithms were 
established for processing and judging image data collected 
from the hardware using OpenCV and Python, which are 
open-source solutions for image processing.

Figure 9 presents a flowchart of the data-processing algo-
rithm. Captured images were treated with the canny edge 
detection method to extract the stitching characteristics and 
compare them with the characteristics of normal operations 
for detecting differences. If the stitching characteristics are 
deemed normal, the process continues until the sewing oper-
ation is complete, and if a fault occurs beyond the threshold, 
the system sends a ‘stop’ signal. Canny edge detection is 
a typical solution provided with the OpenCV application 
programming interface.

4.3 � Results

The developed system was used to perform canny edge pro-
cessing by taking four pictures per second according to the 
speed of the sewing machine, and the results are shown in 
Fig. 10. Noise from pictures captured by the hardware was 
eliminated first (Fig. 10a). Then, a simplified contour image 
was obtained through the processing of small amounts of 
data (Fig. 10b).

Figure 11 shows the result of the shape similarity evalua-
tion of the processed image. The parameter study indicated 
that a shape distance of ≥ 2 corresponded to a defect, and 2 
of the total 20 images were found to have a shape distance 
of ≥ 2. Both images were poor with regard to the image-pro-
cessing results, but in one of them, the stitching was blurred 
owing to the rapid operation of the sewing machine. In our 
dataset, there was a case where an edge was not produced 
owing to an image shooting problem, which was not detected 
as a defect. Overall, two hardware problems and one soft-
ware problem were identified for the 20 images, correspond-
ing to 90% hardware reliability and 95% software reliability.

Table 4 compares the time spent for the small data pro-
cessing methods used in this study for holistically nested 
edge detection (HED), which is an AI-based image-pro-
cessing technique. The small data processing took a total of 
1.23 s from image acquisition to similarity measurement and 
was adequate for determining the fault within 3 s. However, 
in the case of HED, it took a total of 3.16 s, slightly exceed-
ing the limit.

Table 3   SME’s requirements for the sewing quality inspection system

Category Requirements

Hardware Price of < 300 USD
Easy to use and not 

affected by the machine 
model

Software Configurable computing 
source within the price 
range

Accuracy of ≥ 90%
Defect judgment within 3 s



209International Journal of Precision Engineering and Manufacturing (2021) 22:201–215	

1 3

4.4 � Requirements Satisfaction Assessment

The requirements for the developed suture inspection device 
were evaluated using the proposed EASI approach. For the 

hardware, an affordable, essential, and simple solution was 
required. The complete system, including a computing unit 
and cameras, can be configured for ≤ 170 USD. Various sew-
ing tasks were performed using the developed system, and 
the system was operated easily without interruption.

For the smart data evaluation, a recognition rate of > 90% 
and a maximum response delay of 3 s until a fault determina-
tion was published were required. These requirements were 
satisfied, with an average recognition rate of 92.5% (recog-
nition rate of hardware: 90%; recognition rate of software: 
95%). The requirement for fault determination within 3 s was 
satisfied by the small data processing method (1.23 s) (Sim-
ple), as previously mentioned, but the AI-based algorithms 
could not satisfy the requirements in our case study, given 
the tooling and development time provided. While AI-based 
methods may be more suitable for the analysis of complex 
shapes, small data processing methods based on numerical 
computing can be more useful for simple image analysis 
using low-cost consumer-based computing units.

The sewing quality inspection system developed in this 
study aims to increase productivity while improving the 

Fig. 8   Vision-based sewing 
quality inspection device. a 
Schematic of the hardware 
configuration, b configured 
sewing quality inspection device 
hardware

Fig. 9   Sewing quality inspection algorithm flow chart
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Fig. 10   Sewing image acquisi-
tion and processing results. a 
Photographs captured at the 
sewing-machine speed (after 
noise removal), b photographs 
after the basic image processing

Fig. 11   Similarity distance 
measurement results
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sewing quality of garment. The garment production system 
consists of production lines in a pipeline structure. Figure 12 
shows an example of a typical garment production line. If a 
sewing defect occurs in the middle of such production line, 
it is confirmed in the final inspection and a lot of time and 
effort is wasted in the process of moving back to the original 
process and correcting it. Assuming that the example line is 
a line that produces about 250 hooded jackets per day, when 
the time information of the sewing line is considered [48], 
sewing defects cause an average production time delay of 
30.75 min per product. Applying 5%, which is the incidence 
of sewing defects in a typical garment production line, the 
example line can save an average of 384 min per day of 
the total available time. In addition to the time savings, of 
course, the level of sewing quality will be also improved by 
the monitoring.

In summary, we examined a case study for the develop-
ment of a sewing product inspection device that combines 
IoT, vision, and data processing on low-cost consumer 
hardware. While further studies on the sewing environment 
should be performed to improve the system, the results indi-
cated that systems that conform to the appropriate smart 
factory concept can satisfy the requirements of SMEs.

5 � Discussion: Perspective of Appropriate 
Smart Factory

Thus far, we have considered the concept of appropriate 
smart factories and examples of technology implemen-
tation that allow SMEs to introduce smart factories for 
avoiding financial and technical obstacles. However, smart 

factories cannot be introduced to SMEs simply by intro-
ducing new technologies. Few SMEs have the ability to 
ignore the current system and introduce new systems.

Table 5 presents four important factors in evaluating 
smart-factory elements suitable for investments in equip-
ment that is currently used by SMEs. With the introduction 
of suitable retrofit solutions, companies should be able to 
leverage the benefits of smart factories more efficiently 
without excessive financial investment.

Safety is also an important issue for smart factories. 
Many industrial accidents occur at manufacturing sites 
when the safety locks of equipment are manipulated to 
improve productivity or achieve work convenience, as well 
as when safety instructions are ignored completely. Appro-
priate smart solutions can be used to enhance the safety 
of these factories. Appropriate vision monitoring and 
computing modules can be used to detect hazardous situ-
ations and provide warnings, as well as monitor and high-
light older equipment in cases where safety locks may be 
manipulated. When appropriate smart factory technology 
developers and field managers develop ideas tailored to 
the situations and facilities at the site, a safer environment 
can be realised. However, as learning-enabled components 
are introduced to manufacturing processes, it is challeng-
ing to ensure absolute safety in decision-making for smart 
factory operation. This issue is becoming more important 
when fully automating factories. Modern decision-making 
technologies can contribute to resolving safety issues in 
automated manufacturing processes. These include tools 
for safety specification [49, 50], risk-aware optimization 
[51, 52], and safe learning [53]. In particular, a recent dis-
tributionally robust optimization technology may enhance 

Table 4   Comparison of sewing 
image processing time

Process Small data processing (OpenCV 
canny edge)

AI-based processing 
(holistically nested edge 
detection)

Image gathering 1000 ms
Image processing Avg. 130 ms Avg. 2060 ms
Similarity measurement Avg. 100 ms
Total 1230 ms 3160 ms

Fig. 12   Example of the flow of 
sewing defects in the garment 
production line
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safety in operation of autonomous systems when using 
inaccurate learning results [54].

Another issue concerns smart-factory technology devel-
opment and supply companies. If supply companies develop 
smart-factory technology in the conceptual design phase, 
taking into account the financial, technical, and field condi-
tions of SMEs at the appropriate smart factory level, the 
companies that purchase and use this technology will be 
greatly satisfied, resulting in a mutual benefit in the manu-
facturing ecosystem.

6 � Conclusions

Case studies involving technology applications were exam-
ined in conjunction with our ‘appropriate smart factory’ 
concept, which includes essential functions but is an eco-
nomically acceptable, easy to use, and compatible method of 
implementing smart factories for SMEs. Appropriate smart 
factories should apply the ‘EASI’ method to minimise finan-
cial and technical burdens that SMEs face in adopting smart 
factories. The proposed method is also useful for implement-
ing customised technology on manufacturing sites by com-
bining sensors, IoT, process mixing, and data processing.

In the manufacturing industry, smart factories embody the 
final stage of the Fourth Industrial Revolution. In the rapidly 
changing global environment, small and medium-sized man-
ufacturing companies cannot secure global competitiveness 
with the same strategies as large enterprises. Under these 
circumstances, the appropriate smart factory concept can be 
used by SMEs to remain competitive. Applied research at 
local universities and fruitful international cooperation with 
leading institutes can reduce development costs, showcase 
industrial solutions for orientation and adoption, and fos-
ter global and open standards for improved compatibility, 

which would significantly benefit SMEs. We hope that the 
introduction of appropriate smart factories will allow SMEs 
to overcome the technical and financial obstacles that they 
currently face.

Acknowledgements  This work was supported by the Basic 
Research Lab Program through the National Research Foundation 
of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) 
(2018R1A4A1059976); Korea Basic Science Institute (KBSI) Crea-
tive Convergence Research Project (CAP15-01-KBSI) funded by the 
National Research Council of Science and Technology (NST); and the 
Safe Smart Factory Demonstration Program funded by Gyeonggi Prov-
ince (AICT-2020-0057); and the SNU-Hojeon Garment Smart Factory 
Research Center funded by the Hojeon Ltd. (SNU-0423-20190068); 
and the Basic Science Research Program through the National Research 
Foundation of Korea (NRF) funded by the Ministry of Education 
(2020R1A6A3A01099046).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Wittenberg, C. (2016). Human–CPS interaction-requirements and 
human–machine interaction methods for the Industry 4.0. IFAC-
PapersOnLine, 49(19), 420–425.

	 2.	 Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, 
S., Reinhart, G., et al. (2016). Cyber-physical systems in manu-
facturing. CIRP Annals, 65(2), 621–641.

Table 5   Appropriate smart factory guidelines as important considerations for SMEs

Factors Problems and alternatives

Essential Unused functions: minimise maintenance by removing or simplifying unused functions
Transient specification facilities: adopt essential functional specifications when replacing or introducing new facilities

Affordable Poor cost-effectiveness: integrate review with equipment compatibility items to determine whether it can be used together in other 
production lines

Limited current financial acceptance of facility replacement and new adoption: review mid- to long-term expected operational 
maintenance costs and expected profits, and determination of reduced operation of facilities and systems

Simple Restrictions on maintenance and difficulties in operation: intensive training on essential functions and checks for operators and 
maintenance engineers

Excess installation of incidental facilities/systems: consideration of ease of installation, maintenance, and operation in designing 
and adopting facilities/systems

Interoperable Facility/system and communication module interoperability restrictions: development/application of standardised compatibility 
modules with minimum-cost incidental devices

Part/configuration module interoperability limits: consideration of standardisation in designing/upgrading lines
System-to-system compatibility restrictions due to disparate data types: defining and utilising standard forms for all the opera-

tional data of the factory

http://creativecommons.org/licenses/by/4.0/


213International Journal of Precision Engineering and Manufacturing (2021) 22:201–215	

1 3

	 3.	 Büttner, K.-H., & Brück, U. (2017). Use Case Industrie 4.0-Fer-
tigung im Siemens Elektronikwerk Amberg, Handbuch Industrie 
4.0 Bd.4, pp. 45–70. https​://doi.org/10.1007/978-3-662-53254​
-6_3.

	 4.	 Lu, Y., & Xu, X. (2018). Resource virtualization: A core technol-
ogy for developing cyber-physical production systems. Journal of 
Manufacturing Systems, 47, 128–140.

	 5.	 Francalanza, E., Borg, J., & Constantinescu, C. (2017). A knowl-
edge-based tool for designing cyber physical production systems. 
Computers in Industry, 84, 39–58.

	 6.	 Lee, J., Jin, C., & Bagheri, B. (2017). Cyber physical systems for 
predictive production systems. Production Engineering, 11(2), 
155–165.

	 7.	 Elduque, A., Elduque, D., Clavería, I., & Javierre, C. (2018). Influ-
ence of Material and Injection Molding Machine’s selection on the 
electricity consumption and environmental impact of the injection 
molding process: An experimental approach. International Jour-
nal of Precision Engineering and Manufacturing-Green Technol-
ogy, 5(1), 13–28.

	 8.	 Nam, J., & Lee, S. W. (2018). Machinability of titanium alloy 
(Ti–6Al–4 V) in environmentally-friendly micro-drilling process 
with nanofluid minimum quantity lubrication using nanodiamond 
particles. International Journal of Precision Engineering and 
Manufacturing-Green Technology, 5(1), 29–35.

	 9.	 Peng, T., & Chen, C. (2018). Influence of energy density on 
energy demand and porosity of 316L stainless steel fabricated by 
selective laser melting. International Journal of Precision Engi-
neering and Manufacturing-Green Technology, 5(1), 55–62.

	10.	 Jackson, M. A., Van Asten, A., Morrow, J. D., Min, S., & Pfef-
ferkorn, F. E. (2018). Energy consumption model for additive-sub-
tractive manufacturing processes with case study. International 
Journal of Precision Engineering and Manufacturing-Green 
Technology, 5(4), 459–466.

	11.	 Wang, Q., Tang, D., Yin, L., Ullah, I., Tan, L., & Zhang, T. 
(2018). An optimization model for low carbon oriented modular 
product platform planning (MP 3). International Journal of Pre-
cision Engineering and Manufacturing-Green Technology, 5(1), 
121–132.

	12.	 Hong, M.-P., Kim, W.-S., Sung, J.-H., Kim, D.-H., Bae, K.-M., & 
Kim, Y.-S. (2018). High-performance eco-friendly trimming die 
manufacturing using heterogeneous material additive manufactur-
ing technologies. International Journal of Precision Engineering 
and Manufacturing-Green Technology, 5(1), 133–142.

	13.	 Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe 
vera fibers for PLA based green composites. International Journal 
of Precision Engineering and Manufacturing-Green Technology, 
5(1), 143–150.

	14.	 Joe, H.-E., Yun, H., Jo, S.-H., Jun, M. B., & Min, B.-K. (2018). 
A review on optical fiber sensors for environmental monitoring. 
International Journal of Precision Engineering and Manufactur-
ing-Green Technology, 5(1), 173–191.

	15.	 Ministry of SMEs and Startups. (2020). Korean SME statistics 
(2020). Retrieved October 21, 2020, from https​://www.mss.go.kr/
site/smba/foffi​ce/ex/statD​B/MainS​ubSta​t.do/.

	16.	 Jung, E. M. (2018). Influences and Major Tasks of the 4th Indus-
trial Revolution on Major Industries. Industrial Economics Analy-
sis, Korea Institute for Industrial Economics & Trade, 44–57.

	17.	 Ok, K. J. (2020). Interview with Vice President of Taelim Indus-
try. July 13, 2020.

	18.	 Mittal, S., Khan, M. A., Purohit, J. K., Menon, K., Romero, D., 
& Wuest, T. (2020). A smart manufacturing adoption framework 
for SMEs. International Journal of Production Research, 58(5), 
1555–1573.

	19.	 Zuehlke, D. (2010). SmartFactory—Towards a factory-of-things. 
Annual Reviews in Control, 34(1), 129–138.

	20.	 Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing 
smart factory of industrie 4.0: An outlook. International Journal 
of Distributed Sensor Networks, 12(1), 3159805.

	21.	 Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. 
(2017). Smart factory of industry 4.0: Key technologies, applica-
tion case, and challenges. IEEE Access, 6, 6505–6519.

	22.	 Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. 
Y., et al. (2016). Smart manufacturing: Past research, present 
findings, and future directions. International Journal of Preci-
sion Engineering and Manufacturing-Green Technology, 3(1), 
111–128.

	23.	 Sim, H. S. (2019). Big data analysis methodology for smart manu-
facturing systems. International Journal of Precision Engineering 
and Manufacturing, 20(6), 973–982.

	24.	 Kim, D.-H., Kim, T. J., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., 
et al. (2018). Smart machining process using machine learning: 
A review and perspective on machining industry. International 
Journal of Precision Engineering and Manufacturing-Green Tech-
nology, 5(4), 555–568.

	25.	 Shin, I., Lee, J., Lee, J. Y., Jung, K., Kwon, D., Youn, B. D., 
et al. (2018). A framework for prognostics and health management 
applications toward smart manufacturing systems. International 
Journal of Precision Engineering and Manufacturing-Green Tech-
nology, 5(4), 535–554.

	26.	 Kim, J. S., Lee, C. S., Kim, S.-M., & Lee, S. W. (2018). Develop-
ment of data-driven in situ monitoring and diagnosis system of 
fused deposition modeling (FDM) process based on support vec-
tor machine algorithm. International Journal of Precision Engi-
neering and Manufacturing-Green Technology, 5(4), 479–486.

	27.	 Pham, A.-D., & Ahn, H.-J. (2018). High precision reducers for 
industrial robots driving 4th industrial revolution: state of arts, 
analysis, design, performance evaluation and perspective. Inter-
national Journal of Precision Engineering and Manufacturing-
Green Technology, 5(4), 519–533.

	28.	 Grube, D., Malik, A. A., & Bilberg, A. (2017). Generic Chal-
lenges and Automation Solutions in Manufacturing SMEs. In B. 
Katalinic (Ed.), Proceedings of the 28th DAAAM International 
Symposium (pp. 1161–1169). Vienna, Austria: DAAAM Interna-
tional. ISBN 978-3-902734-11-2, ISSN 1726-9679. https​://doi.
org/10.2507/28th.daaam​.proce​eding​s.161.

	29.	 Rauch, E., Dallasega, P., & Unterhofer, M. (2019). Require-
ments and barriers for introducing smart manufacturing in small 
and medium-sized enterprises. IEEE Engineering Management 
Review, 47(3), 87–94.

	30.	 Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart 
manufacturing. Journal of Manufacturing Systems, 48, 157–169.

	31.	 Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A criti-
cal review of smart manufacturing & Industry 4.0 maturity mod-
els: Implications for small and medium-sized enterprises (SMEs). 
Journal of Manufacturing Systems, 49, 194–214.

	32.	 Issa, A., Lucke, D., & Bauernhansl, T. (2017). Mobilizing SMEs 
towards Industrie 4.0-enabled smart products. Procedia CIRP, 63, 
670–674.

	33.	 Chonsawat, N., & Sopadang, A. (2019). The development of the 
maturity model to evaluate the smart SMEs 4.0 readiness. In Pro-
ceedings of the international conference on industrial engineering 
and operations management (pp. 5–7). Bangkok, Thailand: JW 
Marriott Hotel Bangkok.

	34.	 Ghobakhloo, M., & Ching, N. T. (2019). Adoption of digital tech-
nologies of smart manufacturing in SMEs. Journal of Industrial 
Information Integration, 16, 100107.

	35.	 Jun, C., Lee, J. Y., Yoon, J.-S., & Kim, B. H. (2017). Applications’ 
integration and operation platform to support smart manufacturing 
by small and medium-sized enterprises. Procedia Manufacturing, 
11, 1950–1957.

https://doi.org/10.1007/978-3-662-53254-6_3
https://doi.org/10.1007/978-3-662-53254-6_3
https://www.mss.go.kr/site/smba/foffice/ex/statDB/MainSubStat.do/
https://www.mss.go.kr/site/smba/foffice/ex/statDB/MainSubStat.do/
https://doi.org/10.2507/28th.daaam.proceedings.161
https://doi.org/10.2507/28th.daaam.proceedings.161


214	 International Journal of Precision Engineering and Manufacturing (2021) 22:201–215

1 3

	36.	 Menezes, S., Creado, S., & Zhong, R. Y. (2018). Smart manufac-
turing execution systems for small and medium-sized enterprises. 
Procedia CIRP, 72, 1009–1014.

	37.	 Kolla, S., Minufekr, M., & Plapper, P. (2019). Deriving essential 
components of lean and industry 4.0 assessment model for manu-
facturing SMEs. Procedia CIRP, 81, 753–758.

	38.	 Ahn, S.-H. (2018). Retrieved October 21, 2020, from https​://www.
hanky​ung.com/opini​on/artic​le/20180​92111​451.

	39.	 Min, S.-H., Kim, H.-J., Quan, Y.-J., Kim, H.-S., Lyu, J.-H., Lee, 
G.-Y., et al. (2020). Stretchable chipless RFID multi-strain sensors 
using direct printing of aerosolised nanocomposite. Sensors and 
Actuators, A: Physical, 313, 112224.

	40.	 Min, S.-H., Lee, G.-Y., & Ahn, S.-H. (2019). Direct printing of 
highly sensitive, stretchable, and durable strain sensor based on 
silver nanoparticles/multi-walled carbon nanotubes composites. 
Composites Part B Engineering, 161, 395–401.

	41.	 Jung, W.-K., Kim, H. K., Park, Y.-C., Lee, J.-W. L., & Ahn, S.-H. 
(2019). Smart sewing work measurement system using IoT-based 
power monitoring device and approximation algorithm. Interna-
tional Journal of Production Research, 58, 15–44.

	42.	 Serrano, P. A. A., Kim, M., Kim, D.-R., Kim, D.-H., Kim, G.-H., 
& Ahn, S.-H. (2020). Spherical mirror and surface patterning on 
silicon carbide (SiC) by material removal rate enhancement using 
CO2 laser assisted polishing. International Journal of Precision 
Engineering and Manufacturing, 21, 775–785.

	43.	 Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., 
Chun, D.-M., et al. (2016). From design for manufacturing (DFM) 
to manufacturing for design (MFD) via hybrid manufacturing and 
smart factory: A review and perspective of paradigm shift. Inter-
national Journal of Precision Engineering and Manufacturing-
Green Technology, 3, 209–222.

	44.	 Yong-Hun, J., Ahn, D.-G., Kim, J. K., & Kim, W.-S. (2018). Re-
melting characteristics of a stellite21 deposited part by direct 
energy deposition process using a pulsed plasma electron beam 
with a large irradiation area. International Journal of Precision 
Engineering and Manufacturing-Green Technology, 5, 467–477.

	45.	 Oh, N.-S., Woo, W.-S., & Lee, C.-M. (2018). A study on the 
machining characteristics and energy efficiency of Ti–6Al–4 V 
in laser-assisted trochoidal milling. International Journal of Pre-
cision Engineering and Manufacturing-Green Technology, 5, 
37–45.

	46.	 Kim, M., Bang, S., Kim, D.-H., Lee, H.-T., Kim, G.-H., & Ahn, 
S.-H. (2020). Hybrid CO2 laser-polishing process for improving 
material removal of silicon carbide. The International Journal of 
Advanced Manufacturing Technology, 106, 3139–3151.

	47.	 Kim, H., Jung, W.-K., Choi, I.-G., & Ahn, S.-H. (2019). A low-
cost vision-based monitoring of computer numerical control 
(CNC) machine tools for small and medium-sized enterprises 
(SMEs). Sensors, 19, 1–18.

	48.	 Jung, W.-K., Kim, H., Park, Y.-C., Lee, J.-W., & Suh, E. S. (2020). 
Real-time data-driven discrete-event simulation for garment 
production lines. Production Planning & Control. https​://doi.
org/10.1080/09537​287.2020.18301​94.

	49.	 Lygeros, J., Tomlin, C., & Sastry, S. (1999). Controllers for 
reachability specifications for hybrid systems. Automatica, 35(3), 
349–370.

	50.	 Yang, I. (2018). A dynamic game approach to distributionally 
robust safety specifications for stochastic systems. Automatica, 
94, 94–101.

	51.	 Blackmore, L., Ono, M., & Williams, B. C. (2011). Chance-con-
strained optimal path planning with obstacles. IEEE Transactions 
on Robotics, 27(6), 1080–1094.

	52.	 Hakobyan, A., Kim, G. C., & Yang, I. (2019). Risk-aware motion 
planning and control using CVaR-constrained optimization. IEEE 
Robotics and Automation Letters, 4(4), 3924–3931.

	53.	 Hewing, L., Wabersich, K. P., Menner, M., & Zeilinger, M. N. 
(2020). Learning-based model predictive control: Toward safe 
learning in control. Annual Review of Control, Robotics, and 
Autonomous Systems, 3, 269–296.

	54.	 Hakobyan, A., & Yang, I. (2020). Learning-based distributionally 
robust motion control with Gaussian processes. In Proceedings of 
the 2020 IEEE/RSJ international conference on intelligent robots 
and systems (IROS).

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Woo‑Kyun Jung  received a Ph.D. 
in Mechanical Engineering from 
the Seoul National University in 
2020. He was an army officer of 
R.O.K. from 1997 to 2017 and 
retired in 2017 as a lieutenant 
colonel. Prior to retirement to 
lieutenant colonel, he served as 
technical staff, military logistics 
school instructor, platoon leader, 
company commander, and bat-
talion commander. Jung’s 
research interests are in smart 
factory, soft robotics, smart/
composite materials, and appro-
priate technology. He published 

over 20 journal articles in these areas.

Dong‑Ryul Kim  Ph.D. candidate 
in the Department of Mechanical 
Engineering, Seoul National 
University. His main research 
interest is hybrid manufacturing 
process, such as Ultrasonic 
vibration assisted polishing and 
laser assisted polishing.

Hyunsu Lee  received his B.S. 
degree and M.S degree from the 
School of Electrical and Elec-
tronics Engineering, Chung-Ang 
University, Seoul, Korea, in 
2015 and 2018. He is currently 
Ph.D. candidate in the Depart-
ment of Mechanical Engineer-
ing, Seoul National University. 
His main research interest are 
artificial intelligence, intelligent 
control and machine vision for 
s m a r t  m a n u f a c t u r i n g 
technology.

https://www.hankyung.com/opinion/article/2018092111451
https://www.hankyung.com/opinion/article/2018092111451
https://doi.org/10.1080/09537287.2020.1830194
https://doi.org/10.1080/09537287.2020.1830194


215International Journal of Precision Engineering and Manufacturing (2021) 22:201–215	

1 3

Tae‑Hun Lee  has been an 
employee of the Fraunhofer 
Institute for Production Technol-
ogy IPT since 2015. He is 
responsible for “Machine charac-
terization” and “Calibration of 
the machine tools” at the Fraun-
hofer IPT. Since 2018, he took 
up the position as Manager of 
the Machine Development and 
Machine Networking Group.

Insoon Yang  is an Associate Pro-
fessor in the Department of Elec-
trical and Computer Engineering 
at Seoul National University 
(SNU). He received B.S. degrees 
in Mathematics and in Mechani-
cal Engineering (summa cum 
laude) from SNU in 2009; and an 
M.S. in EECS, an M.A. in Math-
ematics and a Ph.D. in EECS 
from UC Berkeley in 2012, 2013 
and 2015, respectively. He was 
an Assistant Professor in the 
ECE department at USC from 
2016 to 2018 and a Postdoctoral 
Associate with the Laboratory 

for Information and Decision Systems at MIT from 2015 to 2016. His 
research interests are in stochastic control and optimization, and rein-
forcement learning, with application to cyber-physical systems and safe 
autonomy. He is a recipient of the 2015 Eli Jury Award and a finalist 
for the Best Student Paper Award at the 55th IEEE Conference on 
Decision and Control 2016. He is an associate editor of the IEEE CSS 
Conference Editorial Board and a vice-chair of the IFAC Stochastic 
Systems Technical Committee.

Byeng D. Youn  received the Ph.D. 
degree from The University of 
Iowa in 2001. He is currently a 
full Professor in the department 
of mechanical engineering at 
Seoul National University (SNU) 
in South Korea and the CEO of 
OnePredict Inc. He is a technical 
advisory board member of many 
global manufacturers including 
LG Electronics,  Hyundai 
Motors, etc. He was affiliated 
with the University of Maryland, 
College Park, and the Michigan 
Technological University. His 
current research interests include 

prognostics and health management (PHM), reliability-based design, 
energy harvester design, and statistical model validation.

Daniel Zontar  has been an 
employee of the Fraunhofer Insti-
tute for Production Technology 
IPT since 2009. In the period 
from 2014 to 2017 he was 
responsible for “Active alignment 
for the assembly of optical sys-
tems” at the Fraunhofer IPT and 
took up the position as Manager 
of the Precision Engineering and 
Automation Department in 2018. 
In his capacity as the Coordinator 
of International Research and 
Industry Projects, he has devel-
oped a range of technologies 
used to control assembly cells as 

well as solutions for special-purpose and classical machine tools.

Dr. Matthias Brockmann  is man-
aging director of the Cluster of 
Excellence „Internet of Produc-
tion“ at RWTH Aachen Univer-
sity. Before this position, he was 
research group leader of “Prod-
uct and Process Monitoring” 
group and Chief Engineer at the 
Chair of Manufacturing Tech-
nologies led by Prof. Fritz 
Klocke.

Christian Brecher  On January, 
2018, Prof. Dr.-Ing. Christian 
Brecher, has been appointed the 
Executive Director of the Fraun-
hofer Institute for Production 
Technology IPT. Since January, 
2004, he has been the Ordinary 
Professor for Machine Tools at 
the Laboratory for Machine 
Tools and Production Engineer-
ing (WZL) of the RWTH Aachen 
as well as the Director of the 
Department for Production 
Machines at the Fraunhofer IPT.

Sung‑Hoon Ahn  received a Ph.D. 
degree from Stanford University 
in 1997. He has been affiliated 
with UC Berkeley, Gyeongsang 
National University, University of 
Washington, and Hyundai WIA 
Corp. He is currently a full pro-
fessor in the department of 
mechanical and aerospace engi-
neering at Seoul National Univer-
sity. His research interests include 
smart factory, green manufactur-
ing, soft robotics, 3D printing, 
composite materials, micro/nano 
fabrications, renewable energy, 
and appropriate technology.


	Appropriate Smart Factory for SMEs: Concept, Application and Perspective
	Abstract
	1 Introduction
	2 Literature Review
	3 Concept of Appropriate Smart Factory for SMEs
	3.1 Appropriate Smart Sensor
	3.2 Appropriate IoT
	3.3 Small Data Processing
	3.4 Hybrid Manufacturing Process
	3.5 Appropriate Vision-Based Monitoring

	4 Application of Appropriate Smart Factory Technologies
	4.1 Hardware Configuration
	4.2 Software Configuration
	4.3 Results
	4.4 Requirements Satisfaction Assessment

	5 Discussion: Perspective of Appropriate Smart Factory
	6 Conclusions
	Acknowledgements 
	References




