
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing (2021) 22:287–300 
https://doi.org/10.1007/s12541-020-00435-4

1 3

REGULAR PAPER

Structural Design and Optimization of the Crossbeam of a Computer 
Numerical Controlled Milling-Machine Tool Using Sensitivity Theory 
and NSGA-II Algorithm

Xueguang Li1 · Chongqing Li1 · Penghui Li1 · Huizhong Hu1 · Xiansheng Sui1

Received: 16 July 2020 / Revised: 9 October 2020 / Accepted: 26 October 2020 / Published online: 20 January 2021 
© Korean Society for Precision Engineering 2021

Abstract
The crossbeam plays a vital role in computer numerical controlled milling machines, especially in machines with a gantry 
structure, as it directly influences the machining precision. In this study, a machine tool crossbeam was designed, and the 
modal frequency of the crossbeam was analyzed using the finite element model (FEM) analysis. In the improved structure 
obtained through FEM analysis, the X-type structure of the internal unit of the crossbeam was replaced by an O-type struc-
ture. The specific structure dimensions were further optimized using a neural-network algorithm and a nondominated sorting 
genetic algorithm. Finally, we calculated the effect of each crossbeam dimension on the mass, deformation, and frequency 
in a sensitivity analysis. After optimizing the crossbeam dimensions with respect to deformation, modal frequency, and 
mass, the structural characteristics of the original and optimized crossbeams were compared. After optimization, the mass 
and deformation were reduced by 7.45% and 3.08%, respectively, and the modal frequency was increased by 0.42%. These 
results confirm that the optimization improved the performance of the crossbeam structure.

Keywords Finite element models · Sensitivity theory · Neural network · Structure optimization · NSGA-II algorithm

1 Introduction

Finite element modeling is a powerful and efficient method 
for analyzing part dynamics [1–3]. The continuous develop-
ment of technology and demand for lightweight design has 
elevated the role of multi-objective optimization methods 
[4–6] and modal analysis methods [7] in practical applica-
tions. Both types of methods can optimize the test process, 
reduce the processing time, and reduce the test costs [8–13]. 
Meanwhile, computer numerical controlled (CNC) machine 
tools are gaining prominence as they meet the production 
requirements of geometric accuracy and surface process-
ing quality of machine parts. The capability of a machine 
tool is assessed by its machining accuracy, and optimizing 
the structure and specific dimensions can enhance the basic 
performance of a machine tool.

Cheng et al. [14] proposed a sensitivity analysis for 
optimizing the basic parameters of machine tools and 
demonstrated it on a three-axis machine tool. Ghasemian 
et al. [15] designed the variables of an optimized organic 
Rankine cycle using a nondominated sorting genetic algo-
rithm (NSGA-II). Guo et al. [16] performed a sensitiv-
ity analysis of geometric errors on a five-axis machine 
tool and accuracy optimum values are obtained by multi-
objective optimization. Khodaygan [17] proposed a novel 
interactive framework for a computer-aided multi-objec-
tive optimization of tolerance design, which allocates the 
optimal process tolerances of components. This framework 
simultaneously optimizes the process capability function 
and overall manufacturing cost. Lin [18] also optimized 
the tolerance design using a multi-objective optimization 
method. A network combined with a genetic algorithm can 
simultaneously optimize the parameters of a high-speed 
machine tool, which can then be refined in a sensitivity 
analysis. High-precision machining can meet the tight 
tolerances imposed on complex mechanical parts. The 
machine tool is a complex system that must simultane-
ously move along three prismatic axes [19]. Therefore, its 
key parts must be properly designed and optimized. The 
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neural network model structure that best accelerates the 
design process and improves the optimization and ration-
ality of the design can be found by objective optimization 
methods such as structural and system optimization. In 
some grinding machines, the structure optimization must 
be supplemented via thermodynamic analysis to improve 
the thermal performance [20]. Tian et al. [21] proposed a 
multiobjective optimization of process parameters based 
on the NSGA-II algorithm. The multi-objective optimi-
zation of products is increasingly being emphasized for 
green manufacturing. Tarek et al. [22] proposed a gray 
rational analysis based on the Taguchi method, which finds 
the best neural-network model architecture for multiobjec-
tive optimization. Ma et al. [23] optimized the parameters 
of a high-speed spindle system using a genetic algorithm 
and particle swarm optimization. Xie et al. [24] obtained 
the Pareto frontier solutions by employing an improved 
NSGA-II algorithm. In a gray relational analysis, they 
also optimized the variable blank holder force loading 
trajectory.

Wang et al. [25] proposed a novel integrated framework 
for the design and optimization of a machine tool structure. 
By combining knowledge-based design and multi-stage 
optimization with integrated computer-aided design and 
computer-aided engineering, their framework significantly 
improves the quality and efficiency of the machine-tool 
design. Xu and Cao [26] proposed an approach to improve 
the energy efficiency of the production process through 
scheduling the maintenance actions of the machine tool, tak-
ing into account productivity, product quality, and energy 
consumption.

Shen et al. [27] proposed a new structural dynamic design 
optimization method for the holistic machine tool. The inner 
stiffener layout of the machine structure was designed using 
the Adaptive Growth Method, and the optimization of the 
machine tool using dynamic sensitivity analysis was studied. 
Liu et al. [28] studied the lightweight design of the gan-
try machine tool using twice optimization design method, 
which integrates zero-order optimization, parameter round-
ing, and structural re-optimization. The experiments showed 
that the mass of the whole gantry frame was reduced by 
9.24% before and after the optimization. Feng et al. [29] 
introduced the sustainability performance of machine tools 
and design optimization of components such as lightweight 
using topology and bionic methods, structure design with 
modular design. Baptista et al. [30] presented a new Lean 
Design-for-X (LDfX) approach embracing the principles of 
Lean Product Development and Modular Design, for sys-
tematic applicability by design engineers and applied it in 
a real design study of a machine tool. Yuksel et al. [31] 
demonstrated a hybrid approach that combines the compu-
tational contact problem framework and an obtained stable 
contact stiffness function. In this research, the existing and 

the proposed methods for contact are investigated utiliz-
ing the solid isotropic material with a penalization model 
(SIMP) algorithm for topology optimization.

The present paper optimizes the structure design of the 
crossbeam in a CNC milling-machine tool. The framework 
combines finite element analysis with multi-objective opti-
mization and optimizes the structure and dimensions of the 
crossbeam using sensitivity theory and a neural-network 
algorithm.

In this paper, the optimization of the crossbeam in two 
periods was accomplished. The first time about optimization 
aims to change the internal structure from X-type to O-type. 
The consistency of deformation is dependent on the regular 
shape of the rib. The second time about optimization aims to 
optimize the dimensions of the crucial ribs using sensitivity 
theory, adaptive response surface methodology, the BP neu-
ral network, and NSGA-II algorithm. After the optimization 
in two times, the crossbeam is improved from the internal 
structure to crucial dimensions.

2  Structure Design and Improvement 
of the Machine Crossbeam

The designed machine is a small CNC milling-machine 
tool with dimensions of 550 mm × 520 mm × 520 mm. The 
maximum spindle speed is 24,000 rpm, and the effective 
machining distances in the [length], [breadth] and [height] 
directions are 200, 160, and 100 mm, respectively.

The material is needed to be set before making a FEM 
analysis. Table 1 indicates the material parameters for the 
machine. The crossbeam and column are fabricated from 
gray cast iron (HT250) with a density of 7340 kg/m3, a 
Young’s modulus of 1.3 × 1011 Pa, a Poisson ratio of 0.25, 
the slide guide is fabricated from GCr15, the base of the 
machine is marble, and other parts used S45C.

While analyzing the whole machine or part using FEM, 
the characteristic details have not profound influence on the 
analysis results but increase the analyzing difficulty and 
solution time. However, it tends to make the finite element 
mesh more dense and extend the analyzing time, even it 
tends to cause errors. Hence, for some tiny or unimportant 
characteristics which have less influence on part analysis, 
the simplified model is necessary. For the machine with a 

Table 1  Material set for FEM

Materials Density (kg/m3) Young’s modulus (Pa) Poisson’s ratio

HT250 7340 1.3 × 1011 0.25
GCr15 7830 2.19 × 1011 0.3
S45C 7800 2.1 × 1011 0.3
Marble 2600 5.5 × 1010 0.3
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gantry structure, the force applied on the cross-beam not 
only includes cutting force come from the cutting tool, but 
also includes the weight of the X-axis and Z axis feed system 
and spindle. The cross beam plays a vital role in machin-
ing precision. In this investigation, the machine and parts 
were modeled and simplified first. Then we set the material 
parameters and properties. The elements were meshed fur-
ther. The finite element grid of the beam is quadrilateral, and 
the number of cells is 147,230. The constraints was applied 
on the two ends of the cross-beam, with the resultant force of 
cutting force, weight of X, Z axis applied on the crossbeam. 
The statics and modal analysis were accomplished. Figure 1 
shows the procedure of finite element analysis.

An X-type structure of its internal elements. The machine 
and its crossbeam structure are displayed in Fig. 2.

Figure 3 indicates that the biggest deformation occurred 
in the middle point of the crossbeam, with the value 
of 0.18574 μm. Besides, the value in the X direction is 
0.0318 μm; the value in the Y direction is 0.15101 μm, and 
the value in the Z direction is 0.0318 μm, 0.108 μm.

As the key part of the whole machine, the crossbeam 
bears the cutting force and weight of the spindle and feed 
systems, and plays a vital role in the machining accuracy. It 
has an impact on the machining precision directly. There-
fore, the modal analysis is necessary to investigate whether 
it creates resonance with the spindle during machining. The 
modal coordinate will be replaced by a physical coordinate 
formed by a differential equation of vibration through the 
modal analysis. After decoupling equations set, the inde-
pendent equation described by modal coordinate and param-
eters should be established, so that the system modal param-
eters can be solved. Hence, the optimization process was 
preceded by modal analysis. Figure 4 presents the results of 
the modal analysis.

The first-order modal frequency of the crossbeam was 
1604 Hz (Fig. 4a). The higher-order modes with higher 
frequencies (especially the third-, fifth-, and sixth-order 
modes) have complex mode shapes or large deformations 
(Fig. 4b–f). Therefore, the crossbeam structure should be 
modified further and the spindle speed should be properly 
selected to avoid resonance, which is probably generated 
between the spindle motor and cross beam.

Based on the modal analysis results, the internal struc-
ture of the crossbeam was optimized as shown in Fig. 4. 
The internal structure changed from X-type to O-type. The 
structural differences between these two designs are com-
pared in Fig. 5a.

According to experimental studies, in the internal elements 
of the beam, the O-type is better than the X-type in terms of 
static and dynamic characteristics. Changing the internal ele-
ment structure of the crossbeam from X-shaped to O-shaped 
reduced the total deformation, equivalent stress, and modal 
frequency of the crossbeam. Based on analysis, it can be con-
cluded that the O-type structure changed the connection type 
of the ribs, improved the stress concentration condition in the Fig. 1  The procedure of finite element analysis

Fig. 2  Schematic of the 
machine and its crossbeam 
structure. a Machine model with 
a gantry structure. b Structure 
of crossbeam

(a) Machine model with a gantry structure (b) Structure of crossbeam
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center point. The front section of the optimized structure has 
two slots at each side, providing higher stiffness than the single 
slot in the original schedule. Table 2 shows the FEM analysis 
results of both crossbeam designs.

The FEA tool with topology optimization was used to 
validate the structure designing solution further. Based on the 
FEM model of the crossbeam, the structure topology optimi-
zation was conducted using the variable density method in 
FEM software. As an efficient method, density is assumed 
variable. After the discrete of the original structure, taking the 
unit density as a design variable, the task of structure topology 
optimization aims to find the inner material distribution of the 
structure, changing the unit density using algorithm to get the 
smallest deformation energy.

The mathematical model is shown as follows:

⎧⎪⎨⎪⎩

Find P =
�
p1, p2,… , pn

�
Min U = f (P)

s.t. V ≤ V0 − V1

0 ≤ Pi ≤ 1 (i = 1, 2,… , n)

where U is the structure deformation energy, Pi is unit den-
sity, V is structure volume, V0 is structure volume before 
optimization, V1 is structure volume of material removal.

Based on the variable density method and topology opti-
mization, the optimum material distribution of the cross-
beam is obtained using FEM software, as shown in Fig. 6, 
the material is gray cast iron (HT250) with a density of 
7340 kg/m3, a Young’s modulus of 1.3 × 1011 Pa, a Poisson 
ratio of 0.25.

The load was applied on the top surface of the crossbeam. 
Displacement boundary condition was applied on the two 
sides in vertical direction. The topology and iteration results 
show that the structure works well and meets the machine 
structure lightweight demanding.

3  Optimization of the Specific Dimensions

The multi-objective optimized method based on adaptive 
response surface methodology and NSGA-II algorithm 
was used for the lightweight design about crossbeam. 
The deformation, mass and frequency were regarded as 

the X direction

the 

(a)The total deformation (b)The deformation in 

Y direction (d)(c)The def ormation in The deformation in the Z direction

Fig. 3  Statics analysis of the crossbeam. a The total deformation. b The deformation in the X direction. c The deformation in the Y direction. d 
The deformation in the Z direction
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optimized function due to the complexity of the cross-
beam structure. According to the sensitivity theory, the 
wall thickness that has different influence on structure 
sensitivity was balanced, and the important wall thick-
ness dimensions which need to be optimized were filtered. 
Using adaptive response surface methodology and NSGA-
II algorithm, the optimized dimensions were concluded.

3.1  Sensitivity Theory

The structure optimization of the crossbeam performed in 
this study is based on sensitivity theory. Static deforma-
tion sensitivity means that the entire static deformation 
responds to changes in the design variables:

(a) First-order mode shape (b) Second-order mode shape

(c) Third-order mode shape (d) Fourth-order mode shape

(e) Fifth-order mode shape (f) Sixth-order mode shape

Fig. 4  Modal frequencies of the crossbeam. a First-order mode shape. b Second-order mode shape. c Third-order mode shape. d Fourth-order 
mode shape. e Fifth-order mode shape. f Sixth-order mode shape
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(1)Sbx
(
x1, x2 … , xn

)
=

�b
(
x1, x2 … , xn

)
�xi

,

(2)Smx
(
x1, x2 … , xn

)
=

�m
(
x1, x2 … , xn

)
�xi

,

Fig. 5  Section of the new 
crossbeam. The internal ele-
ments of the original structure 
(top left) are changed to O-type 
(top right). a Front sections of 
the two structures. b Top–down 
section of the new crossbeam

(a) Front sections of the two structures

(b) Top–down section of the new crossbeam

Table 2  Performance comparison of the two crossbeam designs

Parameters Crossbeam
(X-type structure)

Crossbeam
(O-type structure)

Total deformation (μm) 0.1857 0.1847
Equivalent stress (MPa) 0.16726 0.14814
Frequency of the first-

order modal (Hz)
1604 1610.5

Mass (kg) 21.42 20.534

Fig. 6  Material removal of 
the crossbeam unit based on 
topology analysis. a Iteration 
progress (30%). b Second itera-
tion (80%)

(a) Iteration progress(30%) (b) Second iteration(80%)
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where (x1, x2…, xn) are the values of the selected dimensions, 
b is the total deformation of the structure (μm), m is the mass 
of the structure (kg), Sbx and Smx are the sensitivities of the 
total deformation and mass to changes in the dimensions, 
respectively, and Sbm is the sensitivity of the total deforma-
tion to mass changes.

The dynamic sensitivity refers to the frequency sensitivity 
of the part to changes of the selected dimension variables. It 
is calculated as follows:

where M and K are matrices describing the system mass and 
stiffness, respectively, and ẍ and x are the n-dimensional 
acceleration and displacement vectors of the mass nodes, 
respectively. The displacement vector is given by the fol-
lowing equation:

where A is the amplitude (mm) and ω is the vibration fre-
quency of the vector (Hz).

Substituting ẍ and x into Eq. (4), we get the characteristic 
formula:

where ωj and Aj are the jth-order modal frequency and 
amplitude of the structure, respectively.

Taking the partial derivative of Eq. (6) with respect to the 
dimension design variable xi, multiplying on the left by AT

j
 , 

and substituting ω = 2πf, the sensitivity of the modal frequency 

(3)Sbm =
�b

(
x1, x2 … , xn

)

�m
(
x1, x2 … , xn

) =

�b

�xi

�m

�xi

=
Sbx

Smx

,

(4)MẌ(t) + KX(t) = 0,

(5)x = A sin (�t),

(6)
(
K − �

2

j
M
)
Aj = 0,

of the structure to a given dimension variable is obtained as 
follows:

From Eqs. (2) to (7), the sensitivity of the modal frequency 
to mass is obtained as follows:

Figure 7 is the flow chart of the sensitivity analysis of 
crossbeam.

3.2  Sample Design

The optimized crossbeam is a box with O-shaped structure 
units. The outer wall is 8- and 10-mm thick, and the inner 
wall is 10 mm thick. The outer wall and rib thicknesses of the 
O-shaped element were selected as the experimental elements 
for optimization. The aim is to optimize the values of the 21 
dimension variables listed in Table 3. Taking the original value 

(7)

Sfx =
�f
(
x1, x2 … , xn

)
�xi

=
1

8�2f
AT
j
AT
j

�K

�xi
Aj −

f

2
�
2

j
AT
j
Aj

�M

�xi
,

(8)Sfm =
�f
(
x1, x2 … , xn

)

�m
(
x1, x2 … , xn

) =

�f

�xi

�m

�xi

=
Sfx

Smx
,

Fig. 7  Flow chart of sensitivity 
analysis

Table 3  Variables in the structure dimension design

Variable number Original value (mm) Range (mm)

H1–H4 10 8–12
H5–H7 20 18–22
H8–H9, H12 10 8–12
H10 20 18–22
H11 8 6–10
H13–H20 6 4–8
H21 6 6–10
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of each variable as the center point, sets of five variables were 
generated by implementing two increments and two decre-
ments with a step size of 1 mm. For example, the variable set 
for H1–H4 was generated as {8, 9, 10, 11, 12}. The multi-
objective optimized function was designed as follows:

where xi is the wall thickness (designed variable), 
Sf ≥ 1610.5 Hz constrains the first-order frequency to at least 
1610.5 Hz, and Sb ≤ 0.1847 μm constrains the entire defor-
mation to at most 0.1847 μm. mmin is the objective function 
that minimizes the mass of the crossbeam.

4  Results and Discussion

4.1  Sensitivity Calculation and Analysis Results

4.1.1  Crossbeam Deformation and First-Order Modal 
Sensitivity Analysis

The relation between the variable values and crossbeam 
deformation of the samples prepared in Sect.  3.2 were 

(9)

⎧⎪⎨⎪⎩

xi
Sf ≥ 1610.5 Hz

Sb ≤ 0.1847 μm

mmin

,

analyzed through FEM analysis. The results showed almost 
linear relationships between the crossbeam deformation and 
the values of each dimension variable and between the first-
order modal frequency and the values of each dimension 
variable (see Tables 4, 5, respectively).

The sensitivities of the deformation to the 21-dimension 
variables is plotted in Fig. 8. As shown in Fig. 8, the defor-
mation responded most sensitively to the dimension variable 
H11. Recall that the Z axis and spindle are connected with 
the crossbeam at the H11 side (Fig. 2). Therefore, the high 
sensitivity of deformation to the H11 dimension is expected. 
The modal frequency to the 21-dimension variables is plotted 
in Fig. 9.

4.1.2  Mass Sensitivity Analysis of Crossbeam

The mass of the crossbeam increased when the value of any 
selected dimension increased. The crossbeam mass was lin-
early related to the dimension variables; its sensitivity to 
each dimension is plotted in Fig. 10.

Because H11 dominated in all three sensitivity pro-
files, we must determine whether it has a significant 
impact on the constraints. As shown in Fig.  11. The 
deformation exhibits linear change while changing the 
dimension from 6 to 10  mm. It shows that the total 

Table 4  Deformation of crossbeam for different values of each 
dimension

Dimension 
number

− 2 − 1 0 1 2

H1 0.19253 0.18849 0.1847 0.18191 0.17788
H2 0.18902 0.18598 0.1847 0.18311 0.18068
H3 0.18538 0.18476 0.1847 0.18446 0.18398
H4 0.18558 0.18526 0.1847 0.18449 0.18413
H5 0.18927 0.18681 0.1847 0.18409 0.18334
H6 0.18669 0.18592 0.1847 0.18377 0.18319
H7 0.1895 0.18692 0.1847 0.18409 0.18328
H8 0.18563 0.18524 0.1847 0.18446 0.18402
H9 0.18538 0.18506 0.1847 0.18449 0.18408
H10 0.18505 0.18497 0.1847 0.18455 0.18437
H11 0.20351 0.19095 0.1847 0.17837 0.16979
H12 0.18585 0.18541 0.1847 0.18442 0.1821
H13 0.18568 0.18534 0.1847 0.18339 0.18263
H14 0.18584 0.18517 0.1847 0.18315 0.18256
H15 0.18626 0.1853 0.1847 0.18384 0.18274
H16 0.18573 0.18533 0.1847 0.18358 0.1824
H17 0.18572 0.18523 0.1847 0.18391 0.18301
H18 0.1858 0.18531 0.1847 0.1839 0.18266
H19 0.18622 0.18556 0.1847 0.18379 0.18254
H20 0.18574 0.18534 0.1847 0.18364 0.1824
H21 0.18103 0.18299 0.1847 0.18601 0.18738

Table 5  First-order modal frequency of the crossbeam for different 
values of each dimension

Dimension 
number

− 2 − 1 0 1 2

H1 1603 1607.5 1610.5 1615.4 1617.9
H2 1603 1607.5 1610.5 1615.4 1617.9
H3 1606.9 1607.6 1610.5 1611.8 1614.4
H4 1604.5 1608.6 1610.5 1613.5 1615.4
H5 1604.5 1607.6 1610.5 1610.9 1611.3
H6 1614.8 1613.4 1610.5 1610.1 1609.4
H7 1604.5 1607.6 1610.5 1610.9 1611.3
H8 1604.5 1608.6 1610.5 1613.5 1615.4
H9 1606.9 1607.6 1610.5 1611.8 1614.4
H10 1608 1609.4 1610.5 1613.8 1615.5
H11 1600.3 1604.8 1610.5 1613.8 1616
H12 1600.3 1604.8 1610.5 1613.8 1616
H13 1613.4 1611.2 1610.5 1609.7 1608.2
H14 1606.5 1607.9 1610.5 1611.2 1614.7
H15 1605.6 1608.6 1610.5 1611.9 1614.7
H16 1606.5 1607.9 1610.5 1611.2 1614.7
H17 1613.4 1611.2 1610.5 1609.7 1608.2
H18 1606.5 1607.9 1610.5 1611.2 1614.7
H19 1605.6 1608.6 1610.5 1611.9 1614.7
H20 1606.5 1607.9 1610.5 1611.2 1614.7
H21 1612.9 1611.2 1610.5 1610.4 1610.3
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deformation decreased with the increase of the dimen-
sion. Moreover, the frequency and mass increased while 
the dimension increased. Therefore, it can be concluded 

that the influence of H11 on the total deformation, first-
order modal frequency and mass were consistent with the 
actual situation.

Fig. 8  Sensitivity of deforma-
tion to each dimension variable

Fig. 9  Sensitivity of first-order 
modal frequency to each dimen-
sion variable

Fig. 10  Sensitivity of cross-
beam mass to each dimension 
variable
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4.2  Optimization of the Specific Dimension 
Variables

Based on sensitivity theory and adaptive response surface 
methodology, the relation between dimension and mass, the 
sensitivities of the crossbeam deformation and modal fre-
quency to the mass increment were analyzed and calculated 
indirectly; the results are given in Table 6.

As shown in Table 6, the dimension variables H5, H6, 
H7, H14, H16, H18, and H20 significantly influenced the 
sensitivity of deformation to the mass increment, whereas 
H1, H2, H10, H11, H15, H19, and H21 exerted a moder-
ate effect, and H3, H4, H8, H9, H10, H12, H13, and H17 
exerted a smaller influence. Meanwhile, the variables H4, 
H5, H6, H7, H8, H10, H14, H16, H18, and H20 signifi-
cantly influenced the sensitivity of frequency to the mass 
increment, followed by H1, H2, H3, H9, H15, and H19. The 
variables H11, H12, H13, H17, and H21 exerted the smallest 
influence. The more influential variables were selected for 
further optimization. The optimization variables H1, H2, 
H4, H5, H6, H7, H8, H10, H11, H14, H15, H16, H18, H19, 
and H20, (15 dimensions in total) were renamed as shown 
in Table 7.

In the multi-objective optimization, D1–D12 and 
E1–E3 were chosen as the independent variables, and the 
total deformation, first-order modal frequency and mass 
were assigned as the constraints and optimization tar-
gets. Multi-objective optimization was performed using 
a back-propagation (BP) neural network and the NSGA-
II algorithm. The samples were chosen using the space-
filling design method. Fifteen-dimension variables were 
constructed using this method, and 287 groups of sam-
ples were chosen. Among these, 277 groups of data were 

(a) The influence trend of H11 to total deformation 

(b) The influence trend of H11 to first-order modal frequency

(c) The influence trend of H11 to mass

Fig. 11  The influence trend of dimension H11 to deformation, fre-
quency, and mass. a The influence trend of H11 to total deformation. 
b The influence trend of H11 to first-order modal frequency. c The 
influence trend of H11 to mass

Table 6  Sensitivities of crossbeam deformation and first-order fre-
quency to mass increment

Dimension 
number

Sensitivity of deformation to 
mass increment

Sensitivity of 
frequency to mass 
increment

H1 − 0.00195 2.046133
H2 − 0.00106 2.046133
H3 − 0.00067 4.129032
H4 − 0.00079 5.741935
H5 − 0.00572 6.627451
H6 − 0.00359 − 5.52941
H7 − 0.00599 6.627451
H8 − 0.00086 5.741935
H9 − 0.00068 4.129032
H10 − 0.00223 24.25
H11 − 0.00308 1.555342
H12 − 0.00033 1.555342
H13 − 0.00097 − 1.42943
H14 − 0.00409 9.380952
H15 − 0.00144 3.644068
H16 − 0.004 9.380952
H17 − 0.00081 − 1.42943
H18 − 0.00366 9.380952
H19 − 0.00155 3.644068
H20 − 0.00399 9.380952
H21 − 0.00285 1.085973
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randomly selected as the training data, and the remaining 
ten groups were reserved for testing the network.

A three-layer neural network with 15 neural network 
nodes in the input layer and three neural network nodes in 
the output layer was constructed. Because there were 19 
nodes in the hidden layer (by calculation), the structure 
of the BP neural network was 15–19–3. The data were 
normalized, and the learning rate, training error, and the 
number of training times were set to 0.02, 0.01, and 1000, 
respectively. Figure 12 shows the relative errors obtained 
in 10 sets of test data. The maximum prediction errors 
in the mass, total deformation, and first-order modal fre-
quency were 0.1493%, 1.0586%, and 0.3667%, respec-
tively, which meet the requirements of multi-objective 
optimization.

The multi-objective optimization of the beam was 
performed using the NSGA-II algorithm. The relevant 

parameters in the algorithm were set as follows: number of 
initial populations = 200, maximum number of evolution 
iterations = 100, mutation probability = 0.02, crossover 
probability = 0.98. The Pareto frontier solution is shown 
in Fig. 13.

The three coordinate axes in Fig. 13 correspond to the 
total deformation, first-order modal frequency, and mass. 
The optimum values of the dimension variables are listed 
in Table 8.

To verify the optimization results, the FEM analysis 
was repeated using the optimized dimension variables. The 
parameters of the original and optimized structures are 
compared in Table 9. The optimization lowered the mass 
of the crossbeam by 7.45%, reduced the deformation by 
3.08%, and increased the modal frequency by 0.42%.

Table 7  Dimension variables selected for the multiobjective optimi-
zation

Variable 
number

New variable 
number

Original value 
(mm)

Range (mm)

H1 E1 10 8–12
H2 E2 10 8–12
H4 D1 10 8–12
H5 D2 20 18–22
H6 D3 20 18–22
H7 D4 20 18–22
H8 D5 10 8–12
H10 E3 20 18–22
H11 D6 8 6–10
H14 D7 6 4–8
H15 D8 6 4–8
H16 D9 6 4–8
H18 D10 6 4–8
H19 D11 6 4–8
H20 D12 6 4–8

Fig. 12  Error analysis of sam-
ples about mass, deformation, 
and frequency

Fig. 13  The values of deformation, frequency, and mass after multi-
objective optimization
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5  Conclusions

Using FEM analysis, this paper performed a modal fre-
quency analysis of a CNC machine crossbeam with an 
X-type unit structure. The internal structure of the cross-
beam was improved by changing the X-type units to O-type 
units. The characteristic dimensions of the crossbeam were 
divided into different groups, and their influences on the 
crossbeam mass, frequency, and deformation were cal-
culated and analyzed using sensitivity theory. From the 
sensitivity analysis results, 15 dimensions were defined as 
independent variables using multi-objective optimization. 
The deformation, modal frequency, and crossbeam mass 
were input as the constraints and optimization goals into 
the multi-objective optimization process, comprised of a 
BP neural network and NSGA-II algorithm. The cross-
beam mass decreased by 7.45%. The total deformation of 
the crossbeam decreased by 3.08%, and the modal fre-
quency of the crossbeam increased by 0.42%. The cross-
beam with the optimized structure and dimensions was 
more lightweight, less deformable, and vibrated at a higher 
modal frequency than the original design.
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