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Abstract
In the present work, multiple forming tests were conducted under different forming conditions by Single Point Incremental 
Forming (SPIF). In which surface roughness, arithmetical mean roughness (Ra) and the ten-point mean roughness (Rz) of 
AlMn1Mg1 sheet were experimentally measured. Also, an Artificial Neural Network (ANN) was used to predict the (Ra) and 
(Rz) by adopting the data collected from 108 components that were formed by SPIF. Forming tool characteristics played a 
key role in all the predictions and their effect on the final product surface roughness. In the aim to explore the proper materi-
als and geometry of forming tools, different ANN structures, different training, and transfer functions have been applied to 
predict (Ra) and (Rz) as an output argument. Furthermore, Support Vector Regression (SVR) with different kernel types 
have been used for prediction, together with Gradient Boosting regression to sort the effective parameters on the surface 
roughness. The input arguments were tool materials, tool shape, tool end/corner radius, and tool surface roughness (Ra and 
Rz). The actual data subjected to a fit regression model to generate prediction equations of Ra and Rz. The results showed 
that ANN with one output gives the best R-Square (R2). Levenberg-Marquardt backpropagation (Trainlm) training function 
recorded the highest value of R2, 0.9628 for prediction Ra using Softmax transfer function whereas 0.9972 for Rz by Log- 
Sigmoid transfer function. Furthermore, tool materials, together with tool surface (Ra), are playing a significant importance 
role, affecting the sheet surface roughness (Ra). Whereas tool roughness Rz was the critical parameter effected on the Rz of 
the product. Also, there was a significant positive effect of tool geometry on the sheet surface roughness.

Keywords  SPIF · Incremental sheet forming · Single point · ANN · SVR · Flat tool · Predict surface roughness · Aluminum 
alloy foils

1  Introduction

Conventional Sheet forming needs punch and die for shaping 
as stamping or deep drawing. The traditional sheet forming 
is useful when mass-production shares the cost of the punch 
and die, which significantly reduces the tooling costs. Small 
batches of production with precise geometry and the good 
surface finish has still been a challenge of conventional and 
unconventional sheet forming processes. Incremental Sheet 
Forming (ISF) as an unconventional method is very suitable 
for economical prototyping, creating customized sheet prod-
ucts, complex components, and non-symmetric geometries 
[1], even with a process variant of two synchronized tools 
like in [2]. A comprehensive literature review about ISF is 
presented in [3] about the recent developments in this field, 
the mechanism of the deformation by the process, modeling 
techniques, forming force predictions, and the investigations 
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of process. Moreover, a brief review of the history of ISF 
focusing on technological progress is given in [4], where the 
reviewed articles mentioned earlier all state that ISF is suita-
ble for economical prototyping and customized and complex 
sheet products. In [5], P. Shrivastava and P. Tandon investi-
gated components formed by SPIF experimentally and ana-
lyzed them using Finite Element Analysis to understand the 
characteristics of sheet deformation, forming behavior, and 
dominant deformation mechanism. They state that ISF is a 
process in which capable of fulfilling the industry’s demand 
as a highly complex, economic, and customized product. In 
particular, S. H. Wu et al. [6] claimed that SPIF is a process 
featuring flexibility in sheet forming, which lets it be capable 
of producing customized complex dimensional shape parts 
using different materials. The patent of ISF dates back to 
1967, which is similar to the spinning process [4]. Since 
1967 ISF developed to different concepts, mainly depend-
ing on the number of tools used at the forming process such: 
SPIF, TPIF, and DSIF. Therefore, industry vastly advocated 
the ISF in the last two decades to produce non-mass pro-
duction with versatile, low cost, and higher quality. One of 
the most important criteria for product quality is surface 
roughness. S. Singh in [7] investigates the effects of seven 
parameters at different levels of surface roughness of Alu-
minum-2014 with three different thicknesses higher than 
1 mm. He found that the sheet thickness has an extreme 
effect on surface roughness, followed by spindle speed and 
lubrication. Furthermore, step size, feed rate, tool path, and 
tool diameter have little effect on surface roughness. Four 
parameters have been studied on a 1.5 mm thickness of PVC 
(polyvinylchloride) and PC (polycarbonate) by I. Bagudanch 
et al. [8]. They found that increasing spindle speed strongly 
increased surface roughness, and increased step size has less 
affect on increasing surface roughness. Tool diameter and 
feed rate have an independent effect on surface roughness. 
A. Mulay et al. [9] investigated the effect of feed rate, wall 
angle and step size on the surface roughness of 0.8 mm steel 
DC04 and aluminium alloy AA5754-H22. They reported 
that the most significant parameter is step size, followed by 
the feed rate. Moreover, they observed that an increasing 
formed depth increased the average surface roughness of 
the components and vitally increased due to increasing step 
size. Also, the increment of feed rate conduces increment 
of the average surface roughness. V. Gulati et al. in [10] 
experienced six different parameters on surface roughness of 
the formed components of Aluminum 6063, having different 
thickness higher than 0.5 mm. They concluded that dec-
rementing tool rotational speed, sheet thickness, feed rate, 
and step depth resulted in decreasing surface roughness and 
increase with a decrease in tool radius. Lubrication greatly 
affected the surface roughness compared to a dry process, 
so they used coolant lubricant for forming. Four process 
parameters have been investigated by S. A. Nama et al. [11]. 

They found that the surface roughness decreases in 0.6 mm 
Aluminum 1100 sheets by increasing tool tip diameter, tool 
rotation speed, and feed rate. Besides that, the grease gave 
less surface roughness when compared with coolant oil in all 
cases. Effective speed on DIN 1.0037 steel was studied by 
K. Rattanachan and C. Chungchoo [12]. They claimed that 
the increase of roughness and wear of components due to 
increased tool rotational speed led to decreased formability. 
According to D. H. Nimbalkar and V. M. Nandedkar review 
[13], the main element in a single point incremental process 
is the tool. Because forming tools are not available in mar-
kets as a part of an assortment made, thus a used tool, which 
usually is a hemispherical tool, was designed and manufac-
tured by researchers. A review article pointed out the effect 
of forming tools and other process parameters on surface 
roughness in ISF [14]. They observed 89 publications from 
2000–2005, 457 from 2005–2010, 1490 from 2010–2015, 
and 829 from 2015–2017. However, they claimed that pub-
lishing would be rising in the coming years. They said that 
“Presently no papers have been found that investigate spe-
cifically the influence of tool materials on roughness.” In 
their survey, 20 articles referred to the effects of forming 
tool size (in the range of 2.5–25 mm) on surface roughness. 
Moreover, five papers were studied with a different sheet 
thickness (between 0.55 and 2.54 mm) on surface rough-
ness. Recently ANNs are implemented to develop prediction 
models in the field of metallurgy, end milling and high-speed 
machining [15–17]. In the last decade, the most useful pre-
dictive models for developing manufacturing was machine 
learning [18–22]. Furthermore, there are different optimiza-
tion algorithms commonly used in the manufacturing pro-
cess. For example, the Johnson-Cook model constants (J-C 
constants) of ultra-fine-grained titanium were determined by 
J. Ning et al. [23]. The J-C constants identified via enforcing 
the gradient search method using a Kalman Filter based on 
the chip formation model. Therefore, by utilizing the defined 
J-C constants, the machining forces were foretold under 
various cutting conditions and compared to the forces of 
corresponding experimental. They found close agreements 
between predicted forces and experimental forces. J. Ning 
and S. Y. Liang [24] developed the inverse identification 
method for J-C constants by replacing the exhaustive search 
method with an iterative gradient search method based on 
the Kalman filter algorithm. They predicted the machining 
forces by the modified chip formation model and the J-C 
constants, where they identified using an iterative gradient 
search method when the minimal difference between pre-
dicted forces and the experimental forces was obtained. Zuo 
et al. [25] presented a new approach to reduce the design 
space and to guarantee the topology outcome in terms of 
manufacturability and accepted engineering. The approach 
was introducing manufacturing and machining constraints 
to the topology optimization method formula. Therefore, 
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modified topology optimization has been capable of solving 
nonmanufacturing and non-machining problems in engineer-
ing applications. Maji and Kumar [26] found that the adap-
tive neuro-fuzzy inference system (ANFIS) has more 
accurate prediction using a hybrid algorithm than using 
a Back-propagation algorithm. They developed Response 
surface methodology and ANFIS to predict the outcome of 
SPIF components considering different process parameters 
and inverse predictions of the process parameters in SPIF. 
Furthermore, they have utilized desirability function and a 
non-dominated sorting genetic algorithm for performing 
multi-objective optimization in SPIF.

Researchers Modeled and optimized different parameters 
in a SPIF process using an artificial neural network. In [27], 
S. Kurra et al. focused and developed models to predict the 
surface roughness of the SPIF. The used inputs were tool 
diameter, vertical step, wall angle, feed rate, and lubricant. 
M. Oraon and V. Sharma, in [28], used the Model of ANN 
to predict the quality of the SPIF component surface. The 
inputs were step size, feed rate, spindle speed, sheet thick-
ness, wall angle, and density of lubricant. C. Radu et al. 
prescribed the accuracy of the component of SPIF by utiliz-
ing the ANN model. Tool diameter, feed rate, step depth, 
and spindle speed used as input [29]. In [30], tool diameter, 
sheet thickness, feed rate, and step depth were used as input 
in a developed ANN model to predict average surface rough-
ness and the wall angle of AA5052-H3 SPIF components. In 
[31], feed-forward backpropagation (FFBP) used to predict 
surface roughness of brass Cu67Zn33 manufactured by the 
SPIF process. The developed ANN structure was 6-6-1.

Based on the literature review, until now no investigation 
in SPIF has been done to study the effect of tool materials on 
surface roughness, no experiments found to studying the sur-
face roughness on a sheet of thickness lower than 0.5 mm, 
and no perusal carried out to investigate the effect of a tiny 
corner radius of a flat forming tool on the surface roughness. 
Thus, the objective of this study is the examination of some 
process parameters on formed component surface rough-
ness experimentally in the previously mentioned conditions 
and making predictions on Ra and Rz values by ANN and 
SVR. Furthermore, the effect of forming tool tip surface 
roughness on the surface roughness of the formed sheet is 
also investigated.

2 � Material Properties

In this study, steel (C45), Brass (CuZn39Pb3), Bronze 
(CuSn12), copper (E-Cu57), Aluminum AlMgSi 0,5 and 
polymer VeroWhitePlus, RGD835 were utilized as form-
ing tool material in all experiments (See Fig.  1). The 
tool scheme is shown in Fig. 2, where a different corner 
radius (r) for the flat tool and different radius (R) for the 

hemispherical tool was used. The (r) values are 0.1 mm, 
0.3 mm, and 0.5 mm, while the (R) values are 2 mm, 
4 mm, and 6 mm. The hardness of the tools has been 
tested experimentally by Wolpert Diatronic 2RC S hard-
ness tester, and the measurement was carried out based 
on ISO 6506-1:2014. The materials were measured by 
FOUNDRY-MASTER Pro2 Optical Emission Spectrom-
eter to determine the ISO code of each type of tool mate-
rial. Using the ISO code of each material, the chemical 
composition and the mechanical properties were listed in 
Tables 1 and 2, respectively. The sources of the proper-
ties are provided by measurements from [SAARSTAHL, 
L. KLEIN SA, AURUBIS, PX PRECIMET SA, ALU-
MINCO S.A.] based on the sequence of the materials in 
the mentioned tables. The properties of the polymer’s tip 
shown in Table 3 are provided by STRATASYS. AlM-
n1Mg1 aluminum alloy has been used in the present inves-
tigation, and the chemical compositions blank material 
has been displayed in Table 4. By cutting the specimens 
from the sheet at 0 °,45°, and 90° of the rolling direc-
tions, tensile tests were carried out at room temperature 
on the INSTRON 5582 universal testing machine. The ten-
sile tests had been done based on EN ISO 6892- 1:2010 
standard. Advanced Video Extensometer (AVE) used to 
measure the planar anisotropy values (r10). The mechani-
cal properties are tabulated in Table 5.

Brass Aluminum Copper

SteelBronzePolymer

Fig. 1   Tool materials

Fig. 2   Tool scheme
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3 � Experiments

To clarify the experimental work, the aims of this study have 
been listed below:

•	 Inspect the effect of different tool materials on the formed 
sheet surface roughness by SPIF.

•	 Examine the effect of the tool tip roughness on the rough-
ness of the formed sheet.

•	 Determination of the differences in term of formed sheet 
surface roughness due to tool shape change.

•	 Investigate the variance of formed sheet surface rough-
ness by different tool diameters.

•	 Implement all experimental data on machine learning 
models to predict the Roughness value.

•	 Compare different models and different functions based 
on the coefficient of determination (R-Square) and 
adjusted R-Square.

•	 Detect effective parameters on the surface roughness with 
Gradient Boosting Regression [32], see Sect. 4.3.

Table 1   Tools material chemical composition

Material wt%

Steel
C45

C Si Mn P S Cr Mo Ni Cr + Mo + Ni
0.42–0.50 <0.40 0.50–0.80 <0.045 <0.045 <0.40 <0.10 0.40 <0.63

Brass (CuZn39Pb3) Cu Fe Ni Pb Sn Al Others Zn
57–59 0.5 0.3 2.5–3.5 0.3 0.005 0.2 Rest

Bronze (CuSn8) Sn Fe Ni Pb Zn P Cu
7.5–8.5 0.1 0.2 0.02 0.2 0.01–0.4 Rest

Copper (E-Cu57) O Others Cu
0.04 0.06 Rest

Aluminum AlMgSi 0.5 Si Fe Cu Mn Zn Cr Mg Ti+Zr Others Al
0.3–0.6 0.1–0.3 0.1 0.1 0.15 0.05 0.35–0.6 0.1 0.05–0.15 Rest

Table 2   Tools mechanical properties

Material Tensile 
strength
Rm MPa

Yield strength
Rp 0.2 MPa

Brinell 
hard-
ness
HB

Steel (C45) 700 490 223
Brass (CuZn39Pb3) 500 390 186
Bronze (CuSn8) 450 300 135
Copper (E-Cu57) 395 365 88
Aluminum (AlMgSi 0.5) 215 160 73

Table 3   Polymer properties

Polymer Density 
(g/cm3)

Elastic 
modulus 
(MPa)

Tensile 
strength 
(MPa)

Elonga-
tion at 
break %

Shore D 
hardness

VeroW-
hitePlus, 
RGD835

1.19 2500 58 25 85

Table 4   Blank material 
chemical composition

Al Si Fe Cu Mn Mg Zn Cr Ni Others

96.90 0.201 0.448 0.212 0.807 1.260 0.071 0.022 0.006 0.073

Table 5   Blank material 
mechanical properties

Direction Yield strength 
(MPa) 0.2

Ultimate tensile 
strength (MPa)

Elongation (%) Elongation 
A50 (%)

n5 r10

00 88.3 183.0 16.44 16.88 0.297 0.554
450 90.0 155.5 9.27 10.45 0.266 0.580
900 86.3 170.3 12.48 12.95 0.268 0.594
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Frustum cones, as shown in Fig. 3, were formed from 
the blanks having a thickness of 0.22 mm and a size of 
150 mm × 150 mm. Experiments were performed on SIE-
MENS Topper TMV-510T 4-axis CNC milling machine 
with sinumerik 840-D controller. The machine and the 
experimental setup of SPIF are shown in Fig. 4. The other 
process parameters were fixed, as shown in Table 6. Once 
the components were formed, the roughness was measured 
by Mitutoyo SJ.400, as shown in Fig. 5. To increase the 
reliability of measures, each sample was formed three times 
experimentally. The total number of the formed components 
was 108. The data collected from these samples have been 
used as an actual dataset (input and output) for prediction 
purposes: considering the process parameters as inputs and 
the measured surface roughness of the formed sheet as out-
puts. The measurement direction of the surface roughness is 

along to the forming depth, and the average surface rough-
ness was taken from the inner surface of the parts. In each 
forming process, the surface roughness of the tool surface 
has been measured before and after the forming. The value 
of the surface roughness of the forming tool before the form-
ing process is the adopted input value of the formed product. 
As for the value tool surface roughness after the forming 
process, it was taken for the subsequent forming process 
and so on. This method has been applied to all used tools in 
this research. Nevertheless, due to the wear on the polymer 
tool surface caused by the forming, a new polymer-forming 
tool was used in each forming process, and each polymer 
tool surface roughness has been measured before starting 
the process.

4 � Predictive models

In this section, different methods like Artificial Neural 
Networks (ANN), Support Vector Regression (SVR), and 
Gradient Boosting Regression (GBR) will be introduced for 
prediction.

4.1 � Artificial Neural Networks (ANN)

In the present study, ANN was modeled to predict the Sur-
face roughness (Ra and Rz) of SPIF components using dif-
ferent structures, different training, and transfer functions. 
Training, testing, and validation are applied to the networks 
by using MATLAB ANN toolbox. Two network structures 
are built consisting of input, hidden, and output layers, and 
the number of neurons is (5-10-2, or 5-10-1), respectively, 
as shown in Fig. 6a, b. Tool materials, tool shape, tool end 
corner radius, and tool surface roughness (Ra/Rz) used in the 
five neurons of the input layer. The tools were classified into 

Fig. 3   Frustum geometry

Forming Tool

Formed Sheet

Fast Clamping

Upper Plate

Tool Holder

Lower Plate

Fig. 4   SIEMENS Topper CNC and Experimental setup

Table 6   Fixed process parameters

Path strat-
egy

Feed rate 
(mm/min)

Spindle 
speed (rpm)

Step down 
(mm)

Lubricant

Helical 1500 2000 0.05 Machine oil

Magnatic Base

Display Unit

Formed Part

Measure Prop

Adjusting Column

Vacuum Base Vise

Fig. 5   Mitutoyo SJ.400 surface roughness measurement
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two groups based on their shapes (Flat and Hemispherical) 
to check the effect of tool shape on surface roughness (Ra 
and Rz). Furthermore, each shape was divided into three 
sections based on the corner radius values (r) for flat tool 
and the tip radius values (R) for the Hemispherical tool 
in order to assess the effectiveness of these factors on the 
sheet roughness. Ten neurons are implemented in one hid-
den layer, and the main difference between the structures 
is the number and types of output arguments (Ra and Rz 
together, Ra as a single output, and Rz as a single output) at 
the output layer.

4.1.1 � Training and Transfer function

Three different training functions with six different transfer 
functions have been run to map the output parameters. The 
training functions are Levenberg-Marquardt backpropaga-
tion (Trainlm), Conjugate gradient backpropagation with 
Powell-Beale restarts (Traincgb), and Resilient backpropa-
gation (Trainrp). In each of the training functions, different 
transfer functions applied individually at the hidden layer. 
The transfer functions are Linear transfer function, Log-Sig-
moid, Tan-Sigmoid, Softmax, Radial basis, and Triangular 
basis. Finally, Purelin function is used in the output layer 
for all running.

4.1.2 � Distribution of dataset

ANN is capable of predicting the results of the form-
ing process, which can estimate the output based on the 
historical data of inputs without a new forming process. 
Based on a survey paper of ANN applications in predict-
ing [33], the performance of the ANN model affected by 
the dividing data to train and test sets. One of the dividing 
problems is the number of data in (training and test) ’s 
dataset, and there is no general setting to solve this prob-
lem. Inappropriate dividing datasets affected negatively on 

the prediction performance. Based on the literature, most 
researchers divide their datasets, adopting training versus 
testing as 90% with 10%, 80% with 20%, or 70% with 
30%. For our structure, the optimal results were achieved 
by 80% of the actual data (108 experiments) for training 
and 20% stored for testing. 90% of 80% of the dataset 
used for training, 5% for validation, and 5% for testing. 
In other words, 86 datasets (“rows”) from the actual data 
have been used for training, and 22 rows of them are used 
to test the network. All other ANN control parameters are 
listed in Table 7.

4.2 � Support Vector Regression (SVR)

Support Vector Regression is an extension of the concept 
of Support Vector Machine SVM. SVM is developed by 
Vapnik et al., where a nonlinear function builds a relation-
ship between the input and output of the training dataset. 
Parrella [34], developed an online toolbox for SVR and 
used it in this present paper to model the SPIF. The same 
data size used in ANN (80% training via 20% testing) has 
been adopted for SVR. The training data set was executed 
twice individually with different outputs (Ra and Rz). Four 
different kernels have been used as a kernel type in each 
running to predict the (Ra and Rz). The kernel types are 
Radial basis function (RBF), Gaussian (RBF), Linear, and 
Exponential (RBF). In this research, the SVR toolbox has 
been implemented with 30 kernel parameters, and the ε 

Fig. 6   ANN structures modelling of SPIF. (a) Two outputs, (b) One output

Table 7   ANN Control 
parameters

ANN parameters

Learning rate 0.01
Performance goal 0.001
Number of epochs 1000
Number of hidden layers 1
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value is 0.001, which ε value is the epsilon tube size illus-
trated in Fig. 7.

The following equations can be used for prediction in 
Support Vector regression [27].

where wT is the transposed version of the weight vector w, 
b is the bias, and ∅(x) is the kernel function. The goal is to 
find a function f(x), which must be as flat as much as can by 
finding the smallest w, to deny the overfitting. To increase 
the machine tolerance slack –variables (ξi and �∗

i
 ) should 

be added to the function of minimum weight w as shown 
in equation 2 and 3. (ξi and �∗

i
 ) is equal to zero inside the 

epsilon tube, and increase based on the error point outside 
the tube.

where C is a constant to determine the trade-off the largest 
deviations.

Equation (2) with the output subjected to the following:

(
�i + �∗

i

)
 are ≥0, any data above the ε will be captured in ξi 

and any data that is below the ε will be captured in �∗
i
 . The 

definition of this ε-insensitive loss function is as follows:

(1)f (x) = wT
⋅∅(x) + b

(2)
min

w, b

1

2
wT

⋅ w + C

l∑

i=1

(
�i + �∗

i

)

(3)yi −
(
wT

⋅∅(x) + b
)
≤ � + �i

(
wT

⋅∅(x) + b
)
− yi ≤ � + �∗

i

(4)|𝜉|𝜀 = 0; if |f (x) − y| < 𝜀

|f (x) − y| − ε;otherwise

4.3 � Gradient Boosting Regression (GBR)

Regression with Boosted Decision Trees is used to deter-
mine the regression of SPIF parameters on the expected out-
put of surface roughness (Ra and Rz) based on their effects. 
Boost technique is sequentially learning the learners with 
previously learners that fitted to the data and analyzing the 
errors. In the present paper, the Gradient Boosting Regres-
sion code [32] is implemented. Five MinLeaf applied for the 
regression tree and 500 Ensemble Members to increase the 
efficiency of the predictions because shallow trees are used 
in boost algorithms usually. MinLeaf is the number of leaf 
node observations. Each leaf has at least MinLeaf obser-
vations over a tree leaf. Least-squares boosting algorithm 
(LSBoost) used to train an ensemble of regression trees. 
LSBoost is an algorithm to create regression ensembles to 
minimize mean-squared error MSE. Minimizing the MSE 
is by finding the difference between the observed response 
and the aggregated prediction of all learners trained before, 
and fits a new learner to the difference [35].

5 � Results and discussion

Two different models are developed to estimate the surface 
roughness (Ra and Rz) of the components. Boosted Deci-
sion Trees are used for regression and to detect the effective 
SPIF parameter on the values of Ra and Rz of the compo-
nents. Divers transfer functions were trained with different 
training functions to find the optimal ANN. All the model 
results with different ANN structures and different kernel 
types validated based on the correlation coefficient R-Square 
and Mean Square Error MSE values. Table 8 lists the R2 and 
MSE for the first structure (5, 10, 2) and different training 
and transfer functions with their results for all datasets.

Generally, the results of two output structures show that 
the Trainlm output is better than Traincgb and Trainrp; also, 
Traincgb is better than Trainrp. The highest prediction was 
given by using Trainlm training function with a Softmax 
transfer function, which the R2 values are 0.9236 and 0.9922 
for Ra and Rz, respectively. Furthermore, higher values of 
R2 results from Traincgb training function adopting Radbas 
transfer function 0.9174 via 0.9858 for Ra and Rz, respec-
tively. For Trainrp training function, Logsig transfer func-
tion recorded a higher R2 value of Ra and Rz by 0.8893 and 
0.9757, respectively.

The second and third structures have the same architec-
ture (5,10,1) with different outputs. The second structure has 
Ra as an output and the third one mapping Rz as an output. 
Table 9 shows the results of these two structures based on 
different training functions and six transfer functions.

ANN structure with one output recorded a better predic-
tion of Ra in all cases than the structure of two outputs. 

Fig. 7   Support Vector regression
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Generally, the Trainlm function of two output structures 
has better results in the prediction of Rz in spite of the 
highest value of R2 of Rz obtained via one structure using 
Logsig. One output structure showed high values in R2 
using Traincgb or Trainrp training function except for 
small differences in R2 (0.0071) using purelin transfer 
function with Trainrp in favor of the two output structure.

Again, the results of predicting using one argument in 
the output of the ANN structures show that the Trainlm 
output is better than Traincgb and Trainrp in both Ra 
and Rz; but this time Trainrp recorded better results than 
Traincgb. The highest value of predicted Ra (0.9628) 
achieved by Trainlm with Softmax, and Trainlm with Log-
sig for Rz (0.9972). Tansig and Radbas showed the best 
value for Ra (0.9549) and (0.9552), and Rz (0.9871) and 
(0.9830) by implementing Traincgb or Trainrp as train-
ing function, respectively. Figure 8 shows the variation 
between the Actual data of the best (Ra and Rz) obtained 
from the SPIF experiments and the predicted values with 
two used ANN models for surface roughness in SPIF.

Table 10 shows the results of the prediction based on the 
list of different kernels adopted in the SVR model. Radial 
basis function shows the highest value of R2 than the other 
kernel to predict Ra and Rz. Even though there are only 
slight differences between the prediction results of the ANN 
and the SVR, comparing the two results, it can be seen that 
the prediction from the ANN is more accurate than the SVR. 
Furthermore, after splitting the data into training and testing 
datasets, the single most striking observation to emerge from 
the result is that the prediction of test data by SVR is sharply 
inaccurate than the training data prediction. Table 11 shows 
the results obtained from the analysis of the predicted Ra 
and Rz using SVR with RBF kernel.

Due to the poor prediction in test results using SVR, as 
shown in Fig. 9, this paper has focused on ANN analysis 
more than SVR.

Based on the result ANN of one structure that used 
Trainlim training function showed the best result, Softmax 
transfer function to predict Ra and Logsig transfer function 
for estimate Rz. Table 12 shows more details for these two 

Table 8   R2 and MSE for the first structure (5, 10, 2) with different training and transfer functions

Model ANN 2 Output Ra and Rz

Training function Levenberg-Marquardt backpropagation (Trainlm)
Transfer function Purlin Logsig Tansig Softmax Radbas Tribas
Response Ra Rz Ra Rz Ra Rz Ra Rz Ra Rz Ra Rz
R2 % 0.5556 0.6410 0.8969 0.9464 0.9066 0.9796 0.9236 0.9922 0.9238 0.9906 0.8969 0.9756
MSE 0.00428 0.19112 0.00125 0.04185 0.00108 0.01472 0.00102 0.00622 0.00097 0.00759 0.00114 0.01503
Training function Conjugate gradient backpropagation with Powell-Beale restarts (Traincgb)
R2 % 0.6250 0.6002 0.8948 0.9723 0.9030 0.9756 0.8701 0.9417 0.9174 0.9858 0.8692 0.9173
MSE 0.00345 0.34116 0.00133 0.02408 0.00135 0.01899 0.00157 0.04490 0.00105 0.01272 0.00175 0.05422
Training function Resilient backpropagation (Trainrp)
R2 % 0.6270 0.6228 0.8893 0.9757 0.8558 0.9702 0.8825 0.9564 0.8439 0.9708 0.8279 0.8915
MSE 0.00344 0.19207 0.00142 0.01908 0.00168 0.02301 0.00151 0.03862 0.00195 0.02366 0.00206 0.07990

Table 9   R2 and MSE for the second and third structures (5, 10, 1) with different training and transfer functions

Model ANN 1 Output Ra or Rz

Training function Levenberg-Marquardt backpropagation (Trainlm)
Transfer function Purlin Logsig Tansig Softmax Radbas Tribas
Response Ra Rz Ra Rz Ra Rz Ra Rz Ra Rz Ra Rz
R2 % 0.6143 0.6363 0.9391 0.9972 0.9581 0.9942 0.9628 0.9846 0.9527 0.9827 0.9443 0.9265
MSE 0.00344 0.18506 0.00082 0.00224 0.00054 0.00408 0.00044 0.01254 0.00060 0.01349 0.00070 0.05864
Training function Conjugate gradient backpropagation with Powell-Beale restarts (Traincgb)
R2 % 0.6371 0.6447 0.9447 0.9852 0.9549 0.9865 0.9494 0.9661 0.9528 0.9871 0.9477 0.9316
MSE 0.00332 0.19162 0.00072 0.01206 0.00065 0.01083 0.00060 0.02688 0.00063 0.01140 0.00068 0.05471
Training function Resilient backpropagation (Trainrp)
R2 % 0.6335 0.6157 0.9545 0.9821 0.9552 0.9809 0.9345 0.9778 0.9434 0.9830 0.9403 0.9422
MSE 0.00334 0.19087 0.00059 0.01496 0.00061 0.01548 0.00079 0.01735 0.00067 0.01405 0.00077 0.04532
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models after dividing the data into the training set and test 
set. The values of R2 decrease due to dividing the dataset 
that led to a decrease in the number of samples in train and 
test sets.

Actual and predicted training and testing datasets of sur-
face roughness (Ra and Rz) are shown in Figs. 10 and 11 for 
the best two models of Ra and Rz, respectively.

The actual dataset subjected to the fit regression model 
to generate the prediction equation of Ra and Rz, as shown 
in the following form:

where λa = Constant and it is equal to 0.4243, 0.3125, 
0.3610, 0.3438, 0.4434, and 0.4300 using Flat tool, and 
λa=0.3084, 0.1967, 0.2452, 0.2279, 0.3275, and 0.3141 
using Hemispherical tool for Copper, Aluminum, Brass, 
Bronze, Polymer, and steel, respectively.

(5)
Predicted Ra =λ

a
− 0.01022 Tool Corner Radius

+ 0.00944 Tool Ra + 0.01744 Tool Rz

(6)

Predicted Rz =λ
z
− 0.15550 Tool Radius + 0.0037 Tool Ra

+ 0.14866 Tool Rz

Fig. 8   Actual and predicted values of Ra and Rz

Table 10   R2 and MSE for SVR 
Model with different kernels

Model SVR

Kernel RBF Gaussian-RBF Linear Exponential-RBF

Response Ra Rz Ra Rz Ra Rz Ra Rz

R2 % 0.9829 0.9851 0.5657 0.4124 0.6640 0.6639 0.5804 0.2956
MSE 0.00023 0.01199 0.00331 0.32601 0.00328 0.18777 0.00328 0.31881

Table 11   Details of best SVR 
models for prediction Ra and Rz

SVR

Kernel RBF kernel to predict Ra RBF kernel to predict Rz

Data sets Training dataset Testing dataset Training dataset Testing dataset

R2 % 0.9665 0.0576 0.9703 0.2239
adj. R2 % 0.9653 −107.7321 0.9696 −4.4720
Mean error −0.0017 −0.0115 −0.0136 0.0036
Mean absolute error 0.0035 0.0897 0.0210 0.6469
Standard error 0.0206 0.1223 0.1501 0.8809
MSE 0.00042 0.0144 0.0225 0.7406
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Fig. 9   Actual and predicted testing data via SVR where (a) shows Ra and (b) shows Rz

Table 12   Details of best two 
ANN models for prediction Ra 
and Rz

ANN with one output- Levenberg-Marquardt backpropagation (Trainlm)

Transfer function Softmax transfer function to predict Ra Logsig transfer function to predict 
Rz

Data sets Training dataset Testing dataset Training dataset Testing dataset

R2 % 0.9231 0.9186 0.9840 0.9509
adj. R2 % 0.9124 0.9284 0.9832 0.9599
Mean error −0.046 0.0103 −0.0121 0.1163
Mean absolute error 0.0194 0.0246 0.0775 0.1630
Standard error 0.0269 0.0278 0.1102 0.1831
MSE 0.00074 0.00084 0.0122 0.0455

Fig. 10   Actual and predicted Ra via ANN (a) training data, (b) testing data
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Fig. 11   Actual and predicted Rz via ANN (a) training data, (b) testing data

Fig. 12   “Important SPIF param-
eter” effect on the sheet surface 
roughness Ra

Fig. 13   “Important SPIF param-
eter” effect on the sheet surface 
roughness Rz
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where λz = Constant and it is equal to 3.023, 2.451, 2.828, 
2.801, 3.460, and 3.289 using Flat tool, and λz=2.118, 1.546, 
1.923, 1.896, 2.555, and 2.385 using Hemispherical tool 
for Copper, Aluminum, Brass, Bronze, Polymer, and steel, 
respectively.

The SPIF Parameters effected on the formed sheet surface 
roughness (Ra and Rz) are classified using Boosted Decision 
Trees. The classification is based on the importance of the 
parameter that fluctuates the result of the surface roughness. 
Figure 12 shows that the most important SPIF parameters 
effect on the sheet surface roughness Ra is the tool material 
and the tool surface roughness Ra. Figure 13 shows that the 
tool surface roughness Rz has the most significant effect on 
the sheet surface roughness Rz. Changing the tool radius 
has the lowest effect on both sheet surface roughness (Ra 
and Rz).

In fact, that the tools have been created by a  turning 
machine in the same machining conditions, but as men-
tioned in section 2, different materials with different hard-
ness have been used to create the tools. Due to that, tools 
surface roughness is different, and the friction of various 
tools with different roughness values causes an effect on 
the surface roughness of the final products that have been 
formed by SPIF. E. Hagan and J. Jeswiet [36] analyzed the 
influence of several forming variables, such as step-down 
size and spindle speed, on surface roughness in the ISF 
process. They found that the large-scale wavy type surface 
finishes produced by tool path and large surface strains have 
caused the small-scale roughness type. Also, they claimed 
that tool hardness and its polished surface affect depth incre-
ment tests, and as a result, impact on the final product sur-
face roughness.

The reasons, as mentioned earlier, make the tool materials 
to have the most significant value as predictor importance on 
the surface roughness Ra as shown in Fig. 12. Tool surface 
roughness Ra, which is also one of the surface roughness 
parameters, has recorded high value as an important predic-
tor affecting sheet Ra. Ten-point mean roughness (Rz) is the 
important parameter as his effect on sheet surface roughness 
Rz. Since the difference between the highest peak and the 
most in-depth “valley” on the surface is Rz, tool surface 
roughness Rz is cultivating the sheet surface and creat-
ing new grooves continuously. Therefore, it has such high 
importance as a predictor on the sheet surface roughness Rz 
as shown in Fig. 13. In other words, the asperities on the 
sheet surface (peaks) are destroyed and recreated continu-
ously by the asperities of the tool. Finally, the tool shapes 
have been in the third and second order as important pre-
dictor parameters on Ra and Rz, respectively, because the 
tool shapes have in our experiments only two alternative 
parameters (flat or hemispherical).

6 � Conclusion

In this study, the examination of the SPIF parameters on the 
formed parts surface roughness Ra and Rz was performed 
experimentally by using AlMn1Mg1 sheets with 0.22 mm 
initial thickness. The obtained actual data have been used 
to train and test different ANN structures and SVR with 
different kernels. The results showed that ANN gives a bet-
ter result than SVR. Furthermore, ANN with one argument 
in the output predicted outcome sufficiently than two argu-
ments structure. Trainlm training function has an effective 
rule in prediction than Traincgb and Trainrp. The R2 values 
of Softmax and logsig transfer function proved better results 
than others, R2 obtained from predicted (R2 = 0.9628 for Ra 
and R2 = 0.9972 for Rz). The tool materials and tool geom-
etry are not equally affected on the surface roughness. Tools 
with different materials have different hardness, causing dif-
ferent surface strains. This is also true for the tool geometry, 
however, in the case of two tools with the same geometry but 
with different materials, forming will result in different sur-
face strains, consequently different surface roughness. The 
second significant finding was that tool materials, and tool 
surface roughness (Ra), emerged as the effective parameters 
in predictors of sheet surface (in terms of Ra) with a rate of 
26.49% and 26.33%, respectively. While the prediction of 
the sheet surface roughness (Rz) has shown that tool surface 
roughness (Rz) has a significant effect on the outcome with 
the rate of 48.73%. The high rate of Rz as a predictor is due 
to the asperities of the sheet surface that have been destroyed 
and recreated by the tool tip’s asperities. Consequently, this 
shows the importance of the selection of the right tool in 
terms of material and surface quality. Finally, based on the 
actual dataset, two equations have been determined to pre-
dict the sheet surface roughness (Ra and Rz) analytically. 
The equations are for six different materials (Copper, Alu-
minum, Brass, Bronze, Polymer and Steel) and two different 
shapes of the tool (Flat and Hemispherical).

However, several limitations to this study need to be 
acknowledged. The sample size could be considered as 
small, and the results might be used only with caution, but 
to collect more data, numerous experiments need to be exe-
cuted. Taken into account that these results can not be gen-
eralized unless adopting the same forming conditions, but 
it can provide researchers with a systematic insight into the 
influence of SPIF parameters on the surface roughness. The 
results can be widely utilized for further study, to control, 
and to predict the surface finish. Further data collection is 
required to determine precisely how the process parameters 
affect the forming process in different conditions.
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7 � Recommendations for further research 
work

This research has thrown up many questions in need of 
further investigation. It is worth to study the effect of the 
examined parameters on sheets with different materials and 
thicknesses. It would be interesting to know whether the 
mechanical properties of the forming tool affect the product 
finishing or not. Furthermore, research needs to examine 
more closely the links between forming parameters and 
formed components.
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