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Abstract
Deformable boring bar is the executive component of embedded giant magnetostrictive actuator (GMA), which plays a key 
role in the output performance of embedded GMA in precision machining of non-cylindrical piston pinhole. In this paper, 
a multi-parametric coupling design method was presented for deformable boring bar and giant magnetostrictive material. 
Firstly, the dynamic model of deformable boring bar was built. Second, the performance index of length-diameter ratio was 
introduced, and the problem of multi-parametric coupling design was solved by using the idea of nonlinear programming. 
The first-order natural frequency, the end output displacement and the output force of deformable boring bar were taken as 
the evaluation indexes to ensure the performance requirements of embedded GMA. Finally, according to project require-
ments and proposed method, an embedded GMA with high frequency response and large output displacement was further 
designed, which met the performance requirements of displacement and stiffness in precision machining of non-cylindrical 
piston pinholes and also verified the validity of the design method.

Keywords Embedded giant magnetostrictive actuator · Deformable boring bar · Multi-parametric coupling design · 
nonlinear programming

1 Introduction

Giant magnetostrictive actuator (GMA) is a kind of preci-
sion electromechanical component, which is widely used 
because of its nanometer output precision, high frequency 
and large thrust output [1, 2]. For example, GMA is used as 
displacement actuator in precision machining [3, 4], and as 
active vibration isolator component in vibration field [5].

GMA can be divided into direct GMA and embedded 
GMA according to its structure and magnetic circuit charac-
teristics [1]. The giant magnetostrictive intelligent boring bar 
device designed in this paper belongs to embedded GMA, 
which can be used for precise boring of non-cylindrical 

piston pinholes to reduce it’s stress concentration [6]. At 
present, there have been many related studies about the 
design of direct GMA [7–9], and a relatively perfect design 
criterion has been formed, such as improving the intensity 
and uniformity of magnetic field, reducing eddy current loss 
and magnetic leakage, and improving electromagnetic con-
version efficiency. However, the design of embedded GMA 
cannot directly apply the design criteria of direct GMA 
due to its own structural characteristics, which needs to be 
considered comprehensively, but there is little research on 
this aspect at present. Zhao et al. [10] established a three-
dimensional finite element model of embedded GMA based 
on piezo-magnetic equation and Hamiltonian principle, and 
solved the model with the form of weak solution. However, 
the solution efficiency of designed model was low and the 
stiffness of corresponding deformable boring bar was insuf-
ficient. Zhang et al. [11] established a coupling optimization 
model of mechanical, electrical, magnetic and thermal fields 
to analyze embedded GMA. But the output displacement 
did not meet the requirements, and the specific method for 
solving the initial parameters of deformable boring bar was 
not given.
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In GMA, flexible hinge mechanism is widely used as 
magnifying mechanism of magnetostrictive displacement 
because of its high dynamic performance [12, 13]. Deform-
able boring bar plays a role of displacement amplification 
in the embedded GMA, and its performance determines the 
machining quality of the non-cylindrical piston pinholes. 
However, the structure of the embedded GMA is compact, 
the deformation boring bar and GMM parameters are cou-
pled with each other, the dimension parameters of GMM 
determine the output force and displacement of the embed-
ded GMA, and the dimension parameters of the deformation 
boring bar determine its static and dynamic characteristics, 
so the design method of direct GMA cannot be applied 
directly. It is necessary to establish a model to reflect the 
performance of embedded GMA, and to find an effective 
multi parameter coupling design method, the most important 
of which is to model the deformable boring bar.

At present, the main methods to establish models of flex-
ible hinge mechanisms are mathematical modeling method 
and finite element modeling method [14, 15]. Common 
mathematical modeling methods include Pseudo-rigid-body 
method [16, 17] and Castigliano second theorem method 
[18]. The pseudo-rigid-body modeling method can charac-
terize the kinematic and dynamic characteristics of flexure 
hinge from mechanism. Castigliano second theorem involves 
the calculation of partial differential equation, which makes 
the solution of model complex. The mathematical modeling 
method mainly depends on the accuracy of the model, the 
deviation between mathematical model and experimental 
simulation may be as large as 50% [19]. Finite element 
method is a variational method and can minimize the error 
function, which is the most accurate modeling method for 
flexible hinge mechanism up to now. For example, Huang 
et al. [20] used FEA-based response surface methodology 
to solve the multi-objective optimization problem, which 
improved the static and dynamic characteristics of a flex-
ure-based XY positioning platform. The response surface 
methodology can reduce the error caused by the mathemati-
cal model and shorten the calculation time. But if GMM’s 
nonlinear characteristics are added to the finite element 
simulation, the analysis will become very complex. So the 
mathematical modeling method is more efficient for design-
ing deformable boring bar of embedded GMA.

This paper put forward a multi-parametric coupling 
design method for embedded GMA. First of all, a dynamic 
model of deformable boring bar was built. Then, the prob-
lem of multi-parametric coupling design between GMM and 
the deformable boring bar was solved with the idea of non-
linear programming. Finally, according to the requirements 
of given project, an intelligent boring bar structure with high 
frequency and large output displacement was designed based 
on the proposed method in this paper, and finite element 
analysis and the relative key performance tests were carried 

out. The results showed that the designed intelligent boring 
bar met the required performance of displacement and stiff-
ness, which indicated the effectiveness of design method.

2  Structure Scheme of Embedded GMA

As shown in Fig. 1, embedded GMA is mainly composed of 
GMM, deformable boring bar, magnetic conducting block, 
magnetic yoke, excitation coil, coil skeleton and coil shell. 
Among them, deformable boring bar, GMM and magnetic 
conducting block are combined into one part. The pre-pres-
sure of GMM is adjusted by controlling the thickness of 
magnetic conducting block. Magnetic yoke, front and back 
magnetic conducting blocks and GMM form a closed mag-
netic circuit. Driven by excitation coil, GMM will generate 
axial elongation ΔL . Through the amplification of deform-
able boring bar, the controllable radial displacement ΔR at 
the end of deformable boring bar will be put out. It is dif-
ficult to design embedded GMA because of the parameters 
interaction between GMM and deformable boring bar.

3  Dynamic Modeling of Deformable Boring 
Bar

As shown in Fig. 2, the geometric model of deformable 
boring bar is simplified. The embedded GMA is a cantile-
ver structure, which can be simplified as a damped forced 
vibration system with small angle assumption. According to 
Newton’s second law and D’Alembert principle, the dynamic 
equation of the deformable boring bar is as Eq. (1):

where I� is the total moment of inertia,C� is the total rota-
tional damping, Kθ is the total rotational stiffness, Fy(t) is the 
radial resistance, FGMM is the output force of GMM.

The evaluation indexes of the deformable boring bar 
include the maximum radial output displacement at the 
end of deformable boring bar ΔRmax , the radial output force 

(1)I𝜃�̈� + C𝜃�̈� + K𝜃𝜃 = FGMM(t)l3 − Fy(t)L0

Fig. 1  Structure of embedded GMA. (1 deformable boring bar, 2 end 
cover, 3 coil shell, 4 excitation coil, 5 coil skeleton, 6 GMM, 7 mag-
netic conducting block)
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FR−max at the end of deformable boring bar corresponding 
to the maximum displacement, and the first-order natural 
frequency of deformable boring bar fn.

3.1  The Maximum Radial Output Displacement

Due to the magnetostrictive saturation of GMM, the length 
of GMM should be long enough to meet the maximum strain 
requirement. Meanwhile, during the process of elongation, 
GMM is subjected to increasing compressive stress of the 
deformable boring bar, so the length of GMM is derived as 
follows:

where ΔLs is the saturation elongation of GMM; �s is the 
actual saturated strain of GMM, which is the difference of 
strain caused by saturated magnetostriction and compressive 
stress; �′ is the mathematical factor, and the linear work-
ing displacement of general design is half of the saturation 
elongation, thus take �� = 0.5 ; Kt is the axial stiffness coef-
ficient of the deformable boring bar, which is the ratio of the 
compressive stress of GMM on deformable boring bar to the 
axial elongation of the deformable boring bar. The larger 
Kt is, the greater the stress σ variation of GMM, and more 
unfavorable to the elongation of GMM; EGMM is Young’s 
modulus of GMM; KR is the displacement amplification ratio 
of the deformable boring bar, i.e., KR = l0∕l3 , and thus:

3.2  The Output Force of the Deformable Boring Bar

For quasi-static loads, GMM can be simplified as a linear 
elastomer with a stiffness of kg , The relationship between 

(2)LGMM =
ΔLs

�s
=

ΔRmax∕KR

���s − KtΔRmax∕
(
KREGMM

)

(3)ΔRmax =
LGMM�s�

�KREGMM

EGMM + LGMMKt

the output force and the output displacement at the end of 
deformable boring bar is derived as follows:

where Fb is the maximum output force of deformable boring 
bar when ΔR = 0 ; AGMM is the cross sectional area of GMM. 
The stiffness of GMM is described as follows:

Due to the displacement amplification, the output force 
of GMM is derived as follows:

where F0 = �0AGMM is the pre-pressure of GMM. When 
GMM reaches the status of saturation magnetostriction, its 
output force becomes 0. For Eq. (2), take �� = 1 , and the 
saturated output displacement at the end of deformable bor-
ing bar is obtained as follows:

With FR

(
ΔRs

)
= 0,

In conclusion, the relationship between the output force 
and the output displacement at the end of the deformable 
boring bar in embedded GMA is shown in Fig. 3.

3.3  First‑Order Natural Frequency of Deformable 
Boring Bar

According to Eq. (1), the first-order natural frequency of 
deformable boring bar

(4)FR = Fb −
(
Kg + KtAGMM

)
ΔR∕K2

R

(5)Kg =
EGMMAGMM

LGMM

(6)
FG = FRKR + ktAGMMΔR∕KR + F0 = FbKR − KgΔR∕KR + F0

(7)ΔRs =
LGMM�sKREGMM

EGMM + LGMMKt

(8)Fb =
EGMMAGMM�s

KR

Fig. 2  Simplified geometric model of deformable boring bar

Fig. 3  Relationships between the output force and the output dis-
placement of the ideal GMM and embedded GMA
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From the above modeling, it could be seen that the param-
eters in the design of embedded GMA are mutually coupled, 
and the existence of many contradictory design indicators 
will bring great difficulties to the parameter solution. There-
fore, it is necessary to find an effective decoupling design 
method.

4  Coupling Dimension Design 
of Deformable Boring Bar and GMM

In order to simplify the design, the dimensions of the clamp-
ing part and the displacement amplification part of the 
deformable boring bar have been determined according to 
the requirements for embedded GMA applying for specific 
occasions, so the dimensions of l2 , l5 , n and d0 in Fig. 2 are 
given.

4.1  Determine the Thickness m of Magnetic 
Conducting Block

The principle of determining the thickness of magnetic con-
ducting block is that the thickness of the magnetic conduct-
ing block should be equal to the thickness of magnetic yoke. 
In order to reduce the cantilever length of the deformable 
boring bar, the thickness of magnetic conducting block with 
small size should be selected under the condition of pre-
venting magnetic saturation and ensuring smooth magnetic 
circuit.

4.2  The Optimization Design of Deformable Boring 
Bar and GMM

4.2.1  Determine Design Variables, Design Objectives 
and Constraints

The design variables are length and radius of GMM, diam-
eter of deformable section of deformable boring bar and 
radius of flexure hinge, which are as follows:

The design objectives of embedded GMA are as follows:

(9)fn =
1

2�

√
K�

I�

(10)Xb =
(
LGMM,RGMM, d1,R1

)

(11)

⎧⎪⎨⎪⎩

ΔRmax ≥ ΔR0

FR_max ≥ Fy_max

fn ≥ fn_0

where ΔR0 , Fy_max and fn_0 respectively denotes the maxi-
mum design output displacement of embedded giant magne-
tostrictive micro-feed mechanism driven by low frequency, 
the output force requirement for maximum output displace-
ment, and the first-order natural frequency requirement of 
deformable boring bar.

Since the semi-cylindrical GMM is embedded in the 
groove of the deformable boring bar together with the front 
and rear magnetic conducting blocks, the dimensions of 
deformable boring bar and GMM are coupled mutually, 
making it impossible to design the deformable boring bar 
independently. Therefore, an effective decoupling design 
method needs to be found out.

By comparing design variables with design objectives, it 
is found that four design variables could not be accurately 
solved with three design objectives. Therefore, another con-
straint condition is introduced, that is the length-diameter 
ratio of deformable boring bar, kd =

(
l1 + l2

)
∕d1 . For shaft 

parts, if kd < 5 , it is called a rigid shaft; If kd = 5 ∼ 10 , it 
is called a moderately rigid axis; If kd > 10 , it is called a 
flexible axis [21]. Aiming at the embedded giant magne-
tostrictive micro-feed mechanism for specific occasions, 
the stiffness of deformable boring bar can be guaranteed by 
restricting the length-diameter ratio of deformable boring 
bar. So the constraint is as follows:

where kd_0 is the length-diameter ratio of the deformable 
boring bar limited by requirements.

The length diameter ratio parameter kd characterizes the 
dimension relationship between the deformable boring bar 
and GMM, then it is possible to solve the four design vari-
ables of deformable boring bar and GMM by Eqs. (11) and 
(12). However, it could be seen from the modeling in the 
previous section that the design objectives are higher-order 
functions of design variables, which puts forward a difficult 
problem for the solution of design variables. But the feasible 
region of design variables can be found by using the method 
of nonlinear programming.

4.2.2  Select the Values of R1 and kd and Draw the Influence 
Law Figures of Design Variables on Design Objectives

The typical value of radius R1 of flexure hinge is determined 
according to the requirements. The selection principle of 
R1 is as follows: under the condition of preventing stress 
concentration, choosing a smaller R1 value could reduce the 
diameter d1 of the deformable section of deformable boring 
bar and reduce the diameter of excitation coil on the premise 
of guaranteeing the performance of deformable boring bar. 
In order to ensure the rigidity of the deformable boring bar, 

(12)kd ≤ kd_0
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generally, the smaller length diameter ratio kd of deformable 
boring bar is taken.

Due to the size limitation of GMM in common use, the 
range of each variable is set as Eq. (13).

Set R1 = 5mm , kd = 5 as an example, the effect of design 
variables on design objectives are shown in Fig. 4.

According to Fig. 4, under the constraints of constant 
length-diameter ratio, with the increase of RGMM and d1,the 
maximum output displacement at the end of deformable bor-
ing bar increases while the natural frequency of deformable 
boring bar decreases. The output force increases with the 
increase of RGMM and the decrease of d1 , and the value of d1 
seems to have little effect on the output force.

These rules can be explained as follows: under the 
condition of constant length-diameter ratio, the length of 
GMM and the cantilever length of deformable boring bar 
become longer with the increase of d1 , and the stiffness of 
deformable boring bar decreases with the increase of RGMM . 
Therefore, with the increase of RGMM and d1 , the maximum 
output displacement at the end of deformable boring bar 
increases and the natural frequency decreases. The increase 
of RGMM makes the output force of GMM enlarge. Thus, the 
output force increases with the increase of RGMM when the 
displacement at the end of deformable boring bar reaches 
the maximum. However, assuming that RGMM is constant, 
with the increase of d1 , the stiffness of deformable boring 
bar increases and the displacement amplification ratio kR 
decreases. According to Eqs. (4) and (8), it could be seen 
that Fb increases. However, with the increase of kt and 
ΔRmax , the output force FR corresponding to the maximum 
displacement at the end of deformable boring bar decreases, 
whereas, the effect is not significant.

4.2.3  Determine the Feasible Region of Design Variables 
by Nonlinear Programming Method

Based on the requirements of each design objective, the 
intersection lines between the design objectives’ sections 
and the surfaces of Fig. 4 are obtained to calculate the fea-
sible region of design variables. If the feasible region could 
not be obtained, it means that there is no feasible solution 
among the current variables range, and thus the value of 
R1 or length-diameter ratio kd needs to be adjusted until a 
feasible solution appears. The influence of R1 and kd on the 
feasible region of design variables is shown in Figs. 5 and 
6 respectively.

From the above analysis, it could be seen that when the 
value of kd keeps constant, the feasible area of design vari-
ables increases with the increase of R1 . When R1 is constant, 

(13)
{

5mm ≤ RGMM ≤ 25mm

40mm ≤ d1 ≤ 80 mm

the feasible area of design variables decreases with the 
increase of kd . Therefore, in order to meet the requirements 
of design objectives, it is necessary to reasonably select the 
values of R1 and kd , so that the feasible region of design 
variables would exist.

4.2.4  Determine the Diameter of Deformable Bar d1

In the case of feasible region, any value of 
(
R1,RGMM, d1

)
 

in the feasible region can satisfy the requirements of design 

Fig. 4  Influences of design variables on design objectives; a ΔRmax , b 
fn , and c FR_max
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objective, and then the length of GMM can be calculated 
by Eq. (14).

As there are many feasible solutions, the solution with the 
smallest diameter of the deformable boring bar should be 
selected on the premise of satisfying the performance of the 
embedded GMA, which can reduce the length of GMM and 
the diameter of solenoid coil, so as to reduce the inductance 
and resistance of coil and reduce the driving power.

4.3  Discussion

Through the above four steps of multi-parametric coupling 
design method, using the idea of non-linear programming, 
the design problem of coupling parameters between the 
deformable boring bar and GMM is solved. Because R1 and 
kd have influence on the feasible region, it is necessary to 
iterate the values of R1 and kd repeatedly, so as to obtain the 
optimal solution with the minimum d1 , this process can be 
solved in MATLAB, and the design method will be used in 
the design of an intelligent boring bar for precise machining 

(14)LGMM = kdd1 − l2 − n − 2m

of non-cylindrical piston pinholes, and the validity of the 
design method is verified by finite element and experiment.

5  A Design Example of an Intelligent 
Boring Bar for Precision Machining 
of Non‑Cylindrical Piston Pinholes

5.1  Design Objectives

The embedded GMA for precision machining of non-cylin-
drical piston pinholes, needs to meet the technical require-
ments of precision, frequency response, displacement, stiff-
ness and cutting stability of non-cylindrical piston pinholes. 
In this example, In order to bore an elliptical hole with a 
radius difference of not less than 100 μm, the rotation speed 
of the boring bar is 3000r/min, so the vibration frequency 
of the embedded GMA is 100 Hz, the first-order natural 
frequency of the deformable boring bar should be far away 
from the vibration frequency of 100 Hz, it should be not less 
than 550 Hz according to our previous study. So the design 
objectives are as follows:

Fig. 5  Influence of R1 on the feasible region of design variables when kd = 4.7 . (a R1 = 0 mm , b R1 = 5 mm , c R1 = 10 mm)

Fig. 6  Influence of kd on the feasible region of design variables when R1 = 5 mm . (a kd = 4.6 , b kd = 4.7 , c kd = 4.8)
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(1) Maximum working trip: ≥ 100�m;
(2) The output force must be sufficient enough to resist the 

radial cutting force;
(3) First-order natural frequency: ≥ 550Hz;

According to reference of [21], the empirical formula of 
radial cutting force is described as follows:

where ap, f , v are cutting depth, feed and cutting speed 
respectively; Coefficient CFy

 , index nFy
, xFy

, yFy
 and correc-

tion coefficient kFy
 could be obtained from “Metal Cutting 

Principles” [21]. For pistons made of aluminum, CFv
 , + , YFv

 , 
nFv

 and kFv
 were 40, 0.9, 0.75, 0 and 1.0, respectively. The 

machining cutting parameters ap = ΔR , f = 0.0515 mm∕r 
and v = 5.485 m/s , therefore,

In order to ensure the stiffness of deformable boring bar, 
its length-diameter ratio must be kept less than 5 

(
ks ≤ 5

)
 . 

Then, the overall design objectives of high performance 
embedded GMA could be set as Eq. (17):

Withing ranges:

5.2  Parameter solution

Set the thickness of magnetic conducting block as 8 mm 
(m = 8 mm) and the length of measuring surface as 22 mm 
(n = 22 mm) . After iterative calculation in MATLAB, when 
kd = 4.7 , R1 = 5 mm , the feasible region of the structural 
parameter design variable of deformable boring bar was 
shown in Fig. 7. In order to reduce the diameter of driving 
coil, the minimum point of d1 was selected as the initial 
variable value, where d1 = 48.6 mm , RGMM = 14.4 mm , and 
LGMM = 49.6 mm.

Then, the initial design values can be rounded, 
d1 = 50 mm , RGMM = 15 mm , and LGMM = 50 mm . The 
design objectives were verified to meet the requirements 
and the results were shown in Tables 1 and 2, which met the 
design requirements.

(15)Fy = 9.81 × 60
nFy CFy

⋅ a
xFy
p ⋅ f

yFy
⋅ v

nFy
⋅ kFy

(16)FR_max ≥ Fy = 42.421ΔR0.9
max

(17)

⎧⎪⎨⎪⎩

ΔRmax ≥ 100 �m

FR_max ≥ Fy

fn ≥ 550 Hz

(18)

⎧⎪⎨⎪⎩

5 mm ≤ RGMM ≤ 25 mm

40 mm ≤ d1 ≤ 80 mm

0 mm ≤ R1 ≤ 5 mm

0 ≤ ks ≤ 5

5.3  Finite Element Analysis of Deformable Boring 
Bar

In order to verify the design results, a finite element analy-
sis was carried out in SolidWorks 2014 Edition. According 
to the installation method of the boring bar on the boring 
machine, the positioning axis and the step surface at the left 
end of the deformable boring bar were fixed. As depicted in 
Fig. 8, the model was meshed via element type of curvature 
based solid, and the semi-circular flexure hinge and the bot-
tom of both sides of the groove are refined to ensure the 
mesh quality. The deformation boring bar is made of ASTM 
304 stainless steel, it’s modal analysis results are shown in 
Fig. 9, and the first-order natural frequency is 558.85 Hz . 

Fig. 7  Design variable feasible region of deformable boring bar

Table 1  Initial values and actual values of the design variables

Parameters LGMM(mm) RGMM(mm) R1(mm) d1(mm) kd

Initial 45.42 14.4 5 48.6 4.7
Actual 50 15 5 50 4.66

Table 2  Actual values of design objectives

Design objectives fn  (Hz) ΔRmax  (μm) FR_max (N) Fy (N)

Value 554.3 104.7 643.9 5.6

Fig. 8  FEA model of deformable boring bar
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When a force of 6100 N is applied on the GMM action sur-
face, the output displacement on the end of the deformable 
boring bar is 102 μ m, as shown in Fig. 10a,The stress dis-
tribution of the deformable boring bar is shown in Fig. 10b, 
the maximum stress is 69.3 MPa, which is far less than the 
maximum yield of 206.8 MPa.

5.4  Key Performance Test

The designed embedded GMA intelligent boring system was 
shown in Fig. 11. The key performance of deformable bor-
ing bar was tested to verify whether it could meet the design 
performance requirements.

5.4.1  Static Stiffness Test of Deformable Boring Bar

Loads were applied to the deformable boring bar along y 
direction and then the displacement on the response direction 
at the end of deformable boring bar was tested by an eddy 

Fig. 9  Modal analysis of 
deformable boring bar

Fig. 10  Static simulation of 
deformable boring bar; a dis-
placement distribution, b stress 
distribution

Fig. 11  Embedded GMA intelligent boring system
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current sensor(Model CWY-DO-810301–00-02–05-02). The 
experimental scheme is shown in Fig. 12, and the test results 
were shown in Fig. 13.

Thus, the static stiffness of deformable boring bar along 
is calculated as follows:

5.4.2  First‑Order Natural Frequency Test of Deformable 
Boring Bar

The deformable boring bar was installed at the front of the 
spindle of the boring machine, and its natural frequency was 
measured by hammering method. A modal hammer(Model 
SALC02K) was used to apply the excitation to the deform-
able boring bar, the end displacement response of the 
deformable boring bar was measured by an eddy current 
sensor(Model CWY-DO-810301–00-02–05-02), and an 
NI acquisition card(Model PCI-6251) was used to record 
the data. The experiments are repeated three times. The 
frequency spectrum analysis of the displacement response 
curve of the deformable boring bar is carried out, the result 
is shown in Fig. 14, the natural frequency of the component 
is 370.7 Hz.

(19)ky =
1

0.226 × 10−6
= 4.425 × 106 N/m

5.4.3  Working Displacement Test

When the total turns of the actuated driving coil were 1140, 
a sinusoidal current of 0 ∼ 6 A, 1 Hz was applied, the dis-
placement response was measured by the eddy current sen-
sor, the result is shown in Fig. 15, the maximum displace-
ment of embedded GMA output was 102.3 �m.

6  Results and Discussions

The actual design results and test results of embedded 
GMA were shown in Table 3. From the comparative analy-
sis of design and experimental results, it could be found 
that the static stiffness of intelligent boring bar was close 
to the design value. The finite element simulation results 
show that the natural frequency of the deformable bor-
ing bar is 558.85 Hz, which is close to the design result of 

Fig. 12  Experimental scheme of static stiffness test of deformable 
boring bar

Fig. 13  Static stiffness test results of deformable boring bar

Fig. 14  Test result of first order natural frequency of deformable bor-
ing bar

Fig. 15  Maximum displacement test result
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554.3 Hz, but in the experiment, the deformable boring bar 
was installed on the hydrostatic spindle and the stiffness of 
the oil film was low, which made the measured result of 
the whole component was 370.70 Hz, and it was reduced 
by 183.60 Hz comparing to the designed value 554.30 Hz 
of the deformable boring bar. Therefore, in order to ensure 
the high frequency response characteristics of the whole 
mechanism, the design target of the first-order natural fre-
quency of deformable boring bar should be appropriately 
increased. In addition, according to Fig. 15, the hysteresis 
of output displacement at low frequency is not obvious, the 
maximum output displacement was 102.3 �m . And accord-
ing to Fig. 10, the maximum stress is 69.3 MPa, which is far 
less than the maximum yield of 206.8 MPa. In conclusion, 
the designed embedded GMA meets the design objectives.

7  Conclusions

In order to solve the design problem of the dimension param-
eters coupling between the deformable boring bar and GMM 
in the embedded GMA. In this paper, a dynamic model of 
the deformable boring bar was derived and simulated. A 
multi-parametric coupling design method was proposed, and 
it was used in the specific design example of an embedded 
GMA for the precise boring of non-cylindrical piston pin-
holes, which were verified by finite element analysis and 
experiments. The following conclusions are obtained.

(1) According to Newton’s second law and D’Alembert’s 
principle, a dynamic equation of deformable boring bar 
was given and the calculation formulas of three design 
indexes (maximum radial output displacement, output 
force and first-order natural frequency) are derived, 
providing a theoretical basis for the optimization design 
of embedded GMA.

(2) The influences of key parameters in embedded GMA 
on the three design objectives were simulated and ana-
lyzed. The four steps of the multi-parametric coupling 
design method based on nonlinear programming were 

introduced in detail to solve the problem of the dimen-
sion parameters coupling between the deformable bor-
ing bar and GMM.

(3) In order to precisely machine the non-cylindrical piston 
pinholes, the design objectives are: maximum displace-
ment ≥ 100 μm, the end output force must greater than 
the maximum radial cutting force and the first-order 
natural frequency ≥ 550hz. The optimal design method 
of nonlinear programming was applied in the design 
process. The designed maximum displacement is 
104.70 μ m, and the measured value is 102.30 μm. The 
maximum stress is 69.3 MPa by finite element simula-
tion, which is far less than the yield stress of the mate-
rial. The designed first-order natural frequency of the 
deformable boring bar is 554.3 Hz, which is close to the 
finite element simulation result of 558.85 Hz. However, 
the first-order natural frequency of the whole embedded 
GMA and spindle assembly is 370.70 Hz due to the low 
stiffness of the oil film, it is still far greater than the 
vibration frequency of 100 Hz in the process of non-
cylindrical piston pinholes machining. Therefore, the 
design results meet the requirements, it shows that the 
multi-parametric coupling design method has a certain 
effect and provides a new idea for the optimal design of 
embedded GMA.
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