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Abstract
This paper presents a model of a linear roller guide that considers geometric errors in rails. A five degree-of-freedom model 
of a table supported by linear roller guides with guide rail errors was built to determine table-motion errors during its motion 
along erroneous rails. The model was verified by comparing the simulated displacements of a linear guide estimated by the 
proposed model and those by an existing transfer-function method. Two types of geometric errors were considered for the 
guide rail: general form and waviness errors. The influence of external load, initial preload, and a few important parameters 
of the rail—such as wavelength and amplitude—on the displacement of the carriage and table were investigated extensively. 
The simulation results demonstrated the ability of the model to obtain complicated motion errors for moving tables with a 
number of supporting linear guides subjected to guide errors.

Keywords  Linear roller guide · Carriage · Linear table · Rail waviness error · Geometric error

1  Introduction

A linear guide unit consists of a guide rail and a carriage 
moving along the guide rail under rolling contact with balls 
or rollers. Linear guides are commonly employed in modern 
machine tools to support the movement of cutting tools or 
workpieces. Because the linear guide is directly responsi-
ble for the machine’s axis movements, its precise motion 
plays a vital role in the precision of the whole machine [1,2]. 
However, unpredictable deviation in linear-guide dimensions 
from their ideal geometries is a common problem that causes 
deterioration of precision motion. Among them, straight-
ness and angular errors are known to be two most common 
factors; these are often caused by the manufacturing pro-
cess [3–5]. In addition, carelessness during the assembling 

process can cause errors in linear-guide systems, for exam-
ple, parallel misalignment in the rails and unequal height 
level of the rails. Moreover, during installation and use of 
the linear guide, various factors can produce relevant geo-
metric imperfections such as unequal elastic deformation 
due to bolt fastening, unflattening of the mounting surface, 
and thermal distortion of the rail.

Studies on geometric errors and their influence on the 
motion accuracy of linear tables supported by linear bear-
ings have attracted great attention from researchers. Rah-
mandi and Bleicher [6] examined the influence of geomet-
ric deviations on the performance of linear ball bearings in 
machine tools. Wang et al. [7] studied the statistical charac-
teristics of the dynamics of linear ball bearings with random 
geometric parameters. The motion error of a table supported 
by multiple linear ball bearings with an erroneous guide rail 
has been analyzed using a transfer-function (TF) method 
[8–10]. Majda [11] simulated the joint kinematic errors of 
a machine tool caused by guideway geometric errors. He 
reported that geometric error of the guide rail is one of the 
major factors affecting the precision of machine tools. Zhang 
et al. [12] analyzed the guide-rail error in a hydrostatic bear-
ing and showed that the motion error is related to the spatial 
frequency of the guide-rail error. Zhang et al. [13] estimated 
the motion error of a linear-bearing table considering guide-
rail form errors. Later, they investigated the influences of 
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geometrical errors of guideways on the positioning repeat-
ability in the linear axes of machine tools [14]. The effect of 
geometric error in the linear guideway on the accuracy of a 
vertical three-axis CNC milling machine was investigated 
by Kwintarini et al. [15]. Fan et al. [16] predicted the kin-
ematic errors of a multi-axis machine tool with guideways 
with dimensional tolerance. The aforementioned studies 
highlight that the geometric errors of guide rails have a sig-
nificant influence on the motion errors of linear guideways, 
and the joint kinematic motion of the machine as a whole. 
Recently, Tong et al. [17] proposed a full analytical model to 
determine the stiffness matrix and displacement of a linear 
ball guide considering carriage flexibility.

Along with the analytical modeling approach, finite ele-
ment (FE) analysis has also been used to analyze the motion 
error of linear-motion guides. Chlebus and Dybala [16] cal-
culated the static properties of guideway joints based on an 
FE model. Kwon et al. [18,19] proposed a combined analyti-
cal and FE model to determine the static deflection of linear 
roller bearings. Majda [20] used the FE method to examine 
the relationship between kinematic straightness errors and 
angular errors of a table supported by guideways with geo-
metric errors. He et al. [21] predicted the normal deforma-
tions of a guide rail and their effects on the joint kinematic 
errors of a horizontal machine center using FE analysis. 
Although the modeling method based on FE is advantageous 
over the analytical approach in terms of solving complicated 
systems, the FE approach is time-consuming.

To the authors’ best knowledge, limited studies have 
focused on the geometric error of linear roller bearings. Most 
previous studies have analyzed linear ball bearings and rel-
evant elements without any geometric imperfection. In reality, 
the geometric imperfection commonly occurs in mechanical 
joint elements such as rolling and linear bearings [22,23]. 
Because modeling of a linear roller bearing is very different 
from that of a linear ball bearing, existing models for ball bear-
ings cannot be employed for roller bearings. Recently, several 
researchers have presented the motion error analysis results 
for linear roller guide and table system using the transfer func-
tion method [24,25]. However, the existing models commonly 
analyzed only two degree-of-freedom displacements for linear 
guide. This study proposes a general approach for the analysis 
of the effect of guide-rail error on the motion accuracy of a 
linear roller guide, as well as a table supported by multiple 
linear guides. The proposed method can determine five degree-
of-freedom displacements of the table and linear roller guides 
simultaneously based on an effective use of vector and matrix 
method for reducing the complexity of the modeling and 
numerical procedure. The proposed model can be employed 
for a moving table with arbitrary number of linear guide sets 
under general external loading condition. This paper is struc-
tured as follows: In Sect. 2, we first present a description of the 
geometric error of the guide rail. Then, we describe how the 

linear roller-guide model previously proposed by the authors 
[18] was modified to consider the geometric error of the guide 
rail. We constructed a new five degree-of-freedom model for 
a linear system with full components including a table and 
several linear roller guides. Section 3 presents the validation 
of the proposed model. We verified the proposed model by 
comparing the calculated displacements of the linear guide 
along an error rail with those determined by the TF method 
[8–10]. Subsequently, Sect. 4 presents the motion errors of the 
individual carriages, as well as a table with consideration of 
various error factors influencing the rail. Here, we considered 
two kinds of rail errors: a general form of rail error, and a 
fundamental waviness-form error described by a sinusoidal 
function. Finally, we provide conclusions in Sect. 5.

2 � Modeling of Linear Roller Guide and Table

This section presents the model for the linear roller guide with 
rail error. The effect of accessories—such as the front and rear 
covers—and the roller retainer, are ignored because they have 
a negligible effect on the displacement of the carriage. A five 
degree-of-freedom table was constructed based on the model 
of the single linear roller guide.

2.1 � Rail Error

There are a number of possible geometric errors in a guide 
rail not only by its own geometric error but also by instal-
lation height or level mounting error, which may occur due 
to unflattening of the mounting surface, straightness errors, 
and rail misalignment. However, the purpose of this study is 
to develop and demonstrate a general analysis method for a 
moving table with multiple linear roller guides subjected to 
geometric errors in the guide rail. This study considers the rail 
geometric error in the vertical direction, as shown in Fig. 1b, 
for the purpose of showing the applicability of the proposed 
model. Figure 1 shows the linear roller guide with the ideal and 
error guides. To define the rail error, a coordinate system ORXR
YRZR is used, in which origin point OR is fixed at the left-end of 
the rail’s upper surface. The error magnitude is mathematically 
represented by function �(z) , as shown in Fig. 1. In general, 
�(z) can bear any mathematical form. One fundamental form 
considered in this study is the sinusoidal (or waviness) error 
with the error magnitude at an axial distance z defined by:

where �0 and E represent the error amplitude and wavelength 
of the error, respectively. Angle � is the phase angle.

(1)�(z) = �0sin
(
2�

z

E
+ �

)
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2.2 � Equilibrium of Carriage with Rail Error

The carriage equilibrium with the rail error was constructed 
based on a five degree-of-freedom linear roller bearing 
model [18]. The original model [18] was modified in this 
study to take into account the rail error. Figure 2 shows the 
linear roller bearing under external loads {F} = {Fx, Fy, Mx, 
My, Mz}T, which causes displacements {δ} = {δx, δy, γx, γy, 
γz}T. These loads and displacements are defined based on a 
global coordinate system Oxyz with the origin located at the 
center point of the upper surface of the carriage (Fig. 2a). 
The position of the carriage on the rail is indicated by ZO. 

Figure 2b shows a cross-section of the linear roller guide 
determined at an axial distance lj. Under external loading, 
the carriage and rollers are displaced from their original 
positions, whereas the rail is assumed to be fixed in the 
space. Accordingly, the displacements of the roller and car-
riage cross-section at the roller are indicated by {ui} = {uξi 
θi}T and {vi} = {vξi ψi}T, (i = 1,…,4), respectively, as shown 
in Fig. 3a. In this figure, uξ and vξ are the displacements of 
carriage cross-section and roller along the axis that is normal 
to the roller centerline. θ and ψ represent the titled angles of 
carriage cross-section and roller, respectively. i and j are the 
row and roller indexes, respectively.

(a) Linear roller guide with ideal rail

(b) Guide rail with error in plane ORYRZR

Lower raceway

Upper raceway

Rail

Carriage

Roller

Ideal rail

ε (z)OR
ZR

YR

z E

OR

ZR

YR

XR

OR XR

YR

Fig. 1   Guide-rail error of linear roller bearing
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(a) Global load and displacement of the carriage

(b) Projection views of the linear roller guide with geometric parameters
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Fig. 2   Five degree-of-freedom model of the linear roller guide
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(a) Cross-section of roller and carriage displacement (b) Slicing method

Fig. 3   Cross-section of roller and carriage displacements, which generates the contact load
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Owing to the displacement of the rollers and carriage, the 
contact load— such as contact force Q and moment M—are 
generated at the contact point of the roller and raceways, 
which can be determined by the slicing method as illustrated 
in Fig. 3b:

where the contact loads caused by a slice are equal to

where c, Δl, and lk represent the contact constant, con-
tact length of the slice, and axial position of the k-th slice, 
respectively; and ns is the total number of slices. qk repre-
sents the contact force of a slice. The contact compression 
between the roller and the rail is calculated taking the rail 
error into account by:

where Δ0 indicates the initial preload, which is equal to the 
amount of oversize of the roller diameter; hk is the contact 
drop caused by the profiled roller; and e is the compression 

(2)Q =

ns∑
k=1

qk

(3)M =

ns∑
k=1

mk

(4)qk = cΔ
10∕9

k
Δl,

(
Δk > 0

)

(5)mk = qklk

(6)Δk = v� + � lk + Δ0 − hk + e

caused by the rail error, which is determined for the rollers 
in rows 1 and 2 by:

and for the rollers in rows 3 and 4 by:

The contact compression between the roller and carriage is 
calculated as:

The roller equilibrium equations can be generated from the 
roller and raceway contact loads, which are then solved to 
determine the roller displacements. Following this, the car-
riage equilibrium equation is built and then solved to deter-
mine the global displacement of the carriage. Details of the 
roller and carriage equilibrium equations are described in 
Ref.[18].

2.3 � Equilibrium of Table Supported by Linear 
Guides with Rail Error

Figure 4 shows a table supported by four linear roller guides. 
A five degree-of-freedom model for the table is constructed. 
The table is loaded by an external load vector {P} = {PX, PY, 
TX, TY, TZ}T, which causes displacements of {Δ} = {ΔX, ΔY, 
ΦX, Φy, Φz}T. The table is assumed rigid, and therefore the 
displacements of the table under load are only attributed to 
the displacements of the supporting linear roller guides. The 

(7)e = �cos�2

(8)e = −�cos�1

(9)Δk =
(
u� − v�

)
+ (� − �)lk + Δ0 − hk

Linear guide

Table

O

Z

PY, ∆Y

PX ,∆X

TX, ΦX

TZ, ΦZ

TY, ΦY

1

2

3

4

X

Y

∆X

δx1

ΦY

γy1

L

W

δx2γy2

δx3

γy3

δx4

γy4

∆Y

∆XΦZ

δx1

δy1

γz1
δx41

δy4

γz4

Fig. 4   Table supported by linear roller guides. Coordinate system OXYZ is introduced to determine displacement of the table, where O is located 
at the center of the table
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displacements at each linear roller guide are related to the 
global displacements of the table as follows:

where R and β are calculated by:

where L is the distance between the centers of two car-
riages on a guide rail. W is the distance between the centers 
of two guide rails. In a matrix form, these equations can be 
rewritten as:

where [K] represents the transformation matrix. Similarly, 
for carriages 2, 3, and 4, the relationship between the dis-
placement vectors of the carriages and the table is written 
in the following form:

where the remaining transformation matrices are given by:

(10)�x1 = ΔX − RΦYcos�

(11)�y1 = ΔY +
L

2
ΦX +

W

2
ΦZ

(12)�x1 = ΦX

(13)�y1 = ΦY

(14)�z1 = ΦZ

(15)R =
1

2

√
L2 +W2

(16)� = tan−1
(
W

L

)

(17)

⎧⎪⎪⎨⎪⎪⎩

�x1
�y1
�x1
�y1
�z1

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 −R cos � 0

0 1 L∕2 0 W∕2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

ΔX

ΔY

ΦX

ΦY

ΦZ

⎫⎪⎪⎬⎪⎪⎭

(18)or{�}1 = [K]1{Δ}

(19){�}m = [K]m{Δ}, (m = 1,… , 4)

(20)

[K]m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1 0 0 R cos � 0

0 1 −L∕2 0 W∕2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, m = 2

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 −R cos � 0

0 1 −L∕2 0 −W∕2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, m = 3

⎡⎢⎢⎢⎢⎢⎣

1 0 0 −R cos � 0

0 1 L∕2 0 −W∕2

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

, m = 4

.

Assume initial displacement of the table {∆}

Determine displacements of each linear roller guide 

using Eq. (10)

Solving the linear roller guide model to determine the 

applied loads and stiffness matrices

Determine equivalent load {f} using Eq. (27)

Determine increment of table displacement {ε} based 

on Newton-Raphson algorithm in Eq. (29)

{ε} < 10-5?

End

Input: geometric parameters of linear guide and table, 

external load {P}

No

Yes

Fig. 5   Iterative scheme to solve the equilibrium of the table
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Knowing the displacements of a carriage, the applied 
load on the carriage {F}m = {Fxm, Fym, Mxm, Mym, Mzm}T, 
can be found using the linear guide model presented in the 
previous section, where m = 1,…,4 are the carriage index. 
However, with given displacements, the model equation 
can be solved without obtaining global equilibrium of the 
carriage; only the equilibrium of each roller is needed. The 
loads at the carriage are transformed to the global coordi-
nate system of the table, resulting in equivalent loads; for 
carriage 1, these are:

or, in a matrix form:

The equivalent loads at the remaining carriages can be found 
in a similar manner. Then, the equivalent loads can be writ-
ten in the following form:

Summation of all equivalent loads {f}and external load 
{P} applied to the table yields the following equilibrium 
equations:

The iterative Newton–Raphson method is used to solve the 
table equilibrium equations. In the n-th loop of the iterative 
process, the algorithm of the Newton–Raphson method is 
written as

where {�} is the increment of displacement vector {Δ} of the 
table. [J] is a Jacobian matrix, determined by

(21)fx1 = −Fx1

(22)fy1 = −Fy1

(23)mx1 = −
L

2
Fy1 −Mx1

(24)my1 = Rcos�Fx1 −My1

(25)mz1 = −
W

2
Fy1 −Mz1

(26){f }1 = −[K]T
1
{F}1

(27){f }m = −[K]T
m
{F}m, (m = 1,… , 4)

(28){P} +

4∑
m=1

{f }m = 0

(29){�} = −[J]−1

(
{P} +

4∑
m=1

{f }m

)

Table 1   Geometric parameters 
of linear roller guide and table

Parameter Unit Value Parameter Unit Value

Linear roller guide
Roller effective length lw mm 5.5 Lower contact angle α1 deg (°) 48
Horizontal distance of rows lx mm 29.76 Upper contact angle α2 deg (°) 48
Vertical distance of rows ly mm 8.58 Number of rollers per row ne – 24
Roller mean diameter Da mm 4.3 Carriage effective length lz mm 104
Table
Longitudinal distance L mm 400 Transversal distance W mm 250

(a)

(b)

(c)

Fig. 6   Assumed rail error, a shape of rail with error, b cosine coef-
ficients, c sine coefficients
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(a) Rail and linear guide carriage at start and stop positions

lw
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lw
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stop position 

lw/2 lw/2

(b) Vertical displacement of carriage, estimated by the proposed method and TF method
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Fig. 7   Verification of single carriage displacement

Fig. 8   Effect of vertical load on 
displacement of carriage
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where 
[
F′
]
 represents the stiffness matrix of the linear guide, 

which is a (5 × 5) matrix written as:

[
F′
]
 is calculated by:

where 
[
JB
]
 represents the Jacobian matrix of the carriage 

global-equilibrium equations. Detailed calculations of 
[
JB
]
 

are presented in Appendix 1 of Ref.[18]. Figure 5 shows the 
computational process of the table equilibrium.

(30)[J] =

4∑
m=1

[K]T
m

[
F�
]
m
[K]m

(31)[F�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Fx

��x

�Fx

��y

�Fx

��x

�Fx

��y

�Fx

��z
�Fy

��x

�Fy

��y

�Fy

��x

�Fy

��y

�Fy

��z
�Mx

��x

�Mx

��y

�Mx

��x

�Mx

��y

�Mx

��z
�My

��x

�My

��y

�My

��x

�My

��y

�My

��z
�Mz

��x

�Mz

��y

�Mz

��x

�Mz

��y

�Mz

��z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)
[
F�
]
= −

[
JB
]

3 � Simulation and Model Validation of Linear 
Roller Guide

This section presents the analysis of the characteristics of the 
table and linear roller bearing with rail error. The geometric 
parameters of the simulated linear roller guide and table are 
given in Table 1 and Fig. 2b.

3.1 � Model Verification

The displacement of the carriage along the error rail is 
calculated to verify the present model. The displacement 
results determined by the proposed model are compared 
with those calculated by a TF method, which has been 
clearly described and proved useful in several recent stud-
ies [7–9]. The TF method is applicable to general moving 
tables with multiple carriages, including single carriage. 
For more information of TF method, readers can refer to 
Refs.[8–10]. The linear guide is preloaded by a 3.89-μm 
oversized roller diameter and is under no external loading. 
The rail error is represented by a Fourier series based on 
the wavelength of the guide-rail length as [8]:

where E is the length of the guide rail; E = 500 mm. 
Figure 6 plots the assumed guide-rail error and its Fourier 
coefficients from Eq. (33). Figure 7a displays the rail and 

(33)�(z) =

15∑
n=1

[
ancos

(
2n�

E
z
)
+ bnsin

(
2n�

E
z
)]

Fig. 9   Effect of preload on 
displacement of carriage 
(Fy = 0 N)
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linear guide carriage at the start and stop positions. Fig-
ure 7b shows a comparison of the vertical displacement of 
the carriage calculated by the proposed model and the TF 
method. It is observed that the results of the two methods 
agree well with a negligible discrepancy.

3.2 � Characteristics of Single Linear Roller Guide

This section details the investigation into the characteristics 
of the single linear roller guide, such as roller contact force 
and carriage displacement with rail error. First, consider the 
rail error as defined in Eq. (33). Figure 8 shows the effect of 
the vertical load on the displacement of the carriage. It is seen 
that a change in applied load leads to a parallel shift in the 
vertical-displacement curve with a slight change in its shape. 
This is explained by the fact that, when the applied vertical 
load increases, an identical contact force is added to all roll-
ers in upper rows 3 and 4. Hence, the increments of contact 
compression caused by the added contact force are also simi-
lar for all rollers in rows 3 and 4, which leads to an identical 

Fig. 10   Vertical displacement 
of carriage with different rail-
error periods (Fy = 200 N)
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increment in the vertical displacement at different carriage 
positions. Further, Fig. 8 shows that the angular displacement 
of the carriage appears to be independent of loading condition.

Figure 9 shows the effect of preload on the displacement 
of the linear guide with rail error. It is shown that the verti-
cal displacement of the linear guide is not influenced by its 
preload. This is because the preload is adjusted by changing 
the diameter of all rollers. Then, if the preload is added, the 
same amount of additional compression is induced at all roller-
raceway contacts, and therefore the contact forces of all roll-
ers increase. As a result, the carriage remains balanced with 
increasing preload, without further displacement. Figure 9 also 
implies that the motion error of a linear roller guide caused 
by rail error may not be compensated by only changing its 
preload.

Next, consider a waviness rail error with the error function 
depicted in Eq. (1), which has an amplitude �0 , a fundamen-
tal period or wavelength E , and a phase angle � . Figure 10 
shows the effect of wavelength E error on the displacement 
of the carriage. The error amplitude is selected as �0 = 2�m 

and the phase angle as � = 0 . The displacement of the car-
riage becomes a sinusoidal curve with the same wavelength 
as the rail profile. The displacement and rail-profile curves 
can be in-phase or out-of-phase depending on the wavelength 
of the rail error. In general, if the wavelength ratio is less than 
1.0, then 180° out-of-phase occurs. In contrast, the displace-
ment and rail-profile curves are in-phase if the wavelength 
ratio is higher than 1.0. Here, the wavelength ratio (r) is the 
ratio between the wavelength (E) and effective length of the 
carriage (lz), as follows:

Figure 11 demonstrates the effect of the wavelength 
ratio r on the amplitude of the displacement of the car-
riage. This figure demonstrates the displacement-ampli-
tude ratio, which is the ratio between the amplitude of the 
carriage displacement ( �� ) and that of the rail error ( �0 ), 
as shown in Eq. (35).

(34)r =
E

lz

Fig. 12   Contact-load range of 
rollers in row 1 with differ-
ent wavelengths of rail error 
(Fy = 200 N)
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It is observed that when the wavelength ratio is smaller 
than 1.0, there exists several values of r at which the dis-
placement-amplitude ratio is minimized. However, when 
r exceeds 1.0, the displacement-amplitude ratio increases 
continuously. Moreover, the amplitude of rail error �0 has 
a negligible effect on the displacement-amplitude ratio, 
as shown in Fig. 11. Theoretically, when r is very large, 
the displacement of the carriage is very close to the rail 
profile and the displacement-amplitude ratio reaches 1.0.

Because of rail error, the contact force of the roller var-
ies as the carriage moves along the rail. Figure 12 shows 
the range of contact force of the rollers in row 1, with 

(35)� =
��

�0

varying wavelength error. It is observed that the contact 
force is distributed over a larger range when the wave-
length is small. The increasing wavelength of the rail error 
reduces the roller contact force, as well as the distributed 
range of contact force. Consequently, when the wavelength 
of the error is small, the rollers may experience severe 
loading conditions, which may have an adverse impact on 
the fatigue life of the linear roller guide.

4 � Motion Characteristics Of Table

This section details the investigation into the effect of rail 
error on the motion characteristics of a table supported by 
four linear roller guides are investigated. All linear guide 

(a) Rail and table at start and stop positions

(b) Displacement of table with rail-error profile according to Eq. (33)
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blocks are preloaded by a 3.89-μm oversized roller diame-
ter. Figure 13a shows the rail and table at the start and stop 
positions. Figure 13b indicates the vertical displacement 
of the table subjected to increasing vertical load with two 

rails with identical errors, as shown in Eq. (33). The mov-
ing distance of the table is set to S = 500 mm. It is seen that 
the displacement amplitude of the table is smaller than that 
of the individual carriage moving on the same rail shown 

Fig. 14   Angular and lateral dis-
placements of table in presence 
of rail-1 error

0 50 100 150 200 250 300 350 400 450 500
-0.2

-0.1

0

0.1

0.2

Carriage position (mm)
R

ad
ia

l d
is

pl
ac

em
en

t (
µm

)

∆x ∆y

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2
x 10

-3

Carriage position (mm)

A
ng

ul
ar

 d
is

pl
ac

em
en

t (
m

ra
d)

Φx Φy Φz

Fig. 15   Effect of phase of rail 2 
on displacement of table

0 50 100 150 200 250 300 350 400 450 500

Carriage position (mm)

-0.4

-0.2

0

0.2

0.4

 = 0o  = 90o  = 180 o

0 50 100 150 200 250 300 350 400 450 500

Carriage position (mm)

-0.4

-0.2

0

0.2

0.4

y 
(

∆
µ

m
)

x 
(

∆
µ

m
)



1916	 International Journal of Precision Engineering and Manufacturing (2020) 21:1903–1919

1 3

in Fig. 8. This is because the four carriage blocks are con-
strained by the rigid table. Because of restraint by the rigid 
table, the angular displacement components of all carriage 
blocks are equal, which could be attributed to the suppres-
sion of the vertical displacement. The increasing vertical 
load, Py, acting at the table’s center leads to a parallel shift 
in the displacement curves, which is similar to the behav-
ior of the individual carriage shown in Fig. 8. Compared 
to the rail profile plotted in Fig. 13, it can be seen that the 
displacement of the table becomes smoother; this means 
that only low-frequency components of displacement are 
observed. It should be noted that the rail profile depicted 
in Fig. 13 represents the portion of the rail between the 
center of the table at the start and stop moving positions. 
To contain all linear blocks, the length of the whole rail 
is greater than moving distance S, because the table and 
linear block have their own length. The whole rail profile 
can be determined mathematically using Eq. (33).

To observe the remaining displacement components of 
the table, such as horizontal and angular displacements, 
only the rail-1 geometric error is considered, while rail 2 
is assumed to be error free. Figure 14 shows all five dis-
placement components of the table. As shown, the vertical 
displacement is dominant because rail error is assumed in 
the vertical plane (Fig. 1). The angular displacement Φy is 
almost zero, while the two other components ΦX and ΦZ 
have similar orders of magnitude.

Next, consider a rail with waviness error as shown in 
Eq. (1). The effect of phase difference of two rails on the 
table displacement is considered. The phase angle of rail 1 

is set to zero, whereas the phase angle of rail 2 is selected at 
0°, 90° and 180°. The amplitude and wavelength of the two 
rails are assumed identical. The amplitude is 2 μm and the 
wavelength is 150 mm. Figure 15 shows the effect of phase 
difference on the displacement of the carriage. Horizontal 
displacement is induced, which is relatively small compared 
with vertical displacement. The vertical displacement of 
the table increases, whereas the horizontal displacement 
decreases with increasing phase difference.

Figure 16 shows the effect of wavelength ratio on the 
displacement-amplitude ratio of the table. The two rails are 
assumed to have identical waviness errors with a phase angle 
of zero and amplitude of 2 μm. Only the vertical displace-
ment is shown because it prevails over the other displace-
ments. Unlike the displacement of a single linear guide 
block, the displacement curve of the table shows repeated 
parabolic segments throughout the wavelength ratio.

Figure 17 shows the variation in the contact-load range 
of the rollers determined for linear guide 1 with different 
wavelength ratios from one to four. It is seen that changing 
the wavelength ratio significantly changes the internal con-
tact load of the rollers. In general, the contact loads of roll-
ers become more uniform with increasing wavelength ratio. 
Moreover, the maximum contact loads of the rollers reduce 
with increasing wavelength ratio. The variation in contact 
force is reduced for the rollers at the middle of the carriage, 
whereas the rollers at the two ends suffer from higher load 
fluctuation. Hence, it can affect the performance character-
istics such as carriage wear, heat generation, and fatigue life.

Fig. 16   Effect of wavelength 
ratio on vertical displacement 
of table

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Wavelength ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
er

tic
al

 d
is

pl
ac

em
en

t r
at

io



1917International Journal of Precision Engineering and Manufacturing (2020) 21:1903–1919	

1 3

Fig. 17   Contact-load range of 
rollers of linear-guide 1 with 
different wavelength ratios (r), 
a r = 1, b r = 2, c r = 3, d r = 4 
(FY = 0 N, ϕ = 0°)

0 5 10 15 20 25

100

150

200

250

300

350

(a) Lower row

0 5 10 15 20 25

100

150

200

250

300

350
Upper row

0 5 10 15 20 25

100

150

200

250

300

350

(b)

C
on

ta
ct

 fo
rc

e 
ra

ng
e 

(N
)

0 5 10 15 20 25

100

150

200

250

300

350

0 5 10 15 20 25

100

150

200

250

300

350

(c)

0 5 10 15 20 25

100

150

200

250

300

350

0 5 10 15 20 25

100

150

200

250

300

350

(d)

Roller
0 5 10 15 20 25

100

150

200

250

300

350

Roller



1918	 International Journal of Precision Engineering and Manufacturing (2020) 21:1903–1919

1 3

5 � Conclusions

In this study, a five degree-of-freedom model was proposed 
to determine the motion characteristics and roller contact 
forces of a table supported by several linear guides subjected 
to geometric errors. The proposed linear guide model was 
validated by means of comparison with the TF technique. 
The motion characteristics and contact loads of the linear 
guide and table were investigated for the cases of general-
form error and fundamental-waviness error of the guide 
rails. The following conclusions are drawn from this study:

•	 Initial preload was unable to compensate the motion error 
of the linear guide and table with rail error.

•	 Increasing vertical load lead to a parallel shift in the 
displacement curves of both the linear guide and table.

•	 Although the rail contained high-frequency com-
ponents, mainly low-frequency components were 
observed in the displacement of the carriage and table.

•	 When the wavelength ratio exceeded 1.0, the displace-
ment amplitude of the single carriage moving on a rail 
with waviness error increased continuously. In this 
case, the displacement and rail profile curves were 
180° out-of-phase with each other. When the wave-
length ratio was below 1.0, the displacement curve of 
the carriage was in-phase with the sinusoidal rail pro-
file. There were several wavelength ratios at which the 
displacement amplitude was minimized.

•	 The increasing wavelength of the rail error reduces the 
roller contact force, as well as the distributed range of 
contact force.

•	 When the wavelength of the error is small, the rollers 
may experience severe loading conditions, which may 
have an adverse impact on the fatigue life of the linear 
roller guide.

•	 As the wavelength ratio changed, the displacement ampli-
tude of the table involved numerous parabolic segments 
over the entire wavelength-ratio range.
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