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Abstract
Determination of dynamic tensile response of materials has been a challenge because of experimental difficulty. The split 
Hopkinson tensile bar (SHTB) is one of the most widely used devices for characterization of various materials under 
dynamic-tensile loading conditions. Since one-dimensional wave propagation in bars is disturbed by specimens and grips, 
however, SHTB measurement accuracy may not be guaranteed. This means that the stress–strain curve of the specimen that 
is calculated using strains at bars may not indicate the real stress–strain relation of the specimen. In this study, simulations 
for the SHTB test were carried out to investigate the effects of thread pitch, specimen length, specimen diameter, and thread 
inner diameter of the specimen on the measurement accuracy for two types of metals with medium and high yield strengths. 
Finally, specimen shapes are recommended for accurate measurement of the stress–strain relation of tantalum and tungsten 
carbide.

Keywords  Split hopkinson tensile bar · High strain rate · Tantalum · Tungsten carbide

1  Introduction

The split Hopkinson bar (SHB), first introduced by Kol-
sky [1], is the most commonly applied technique to study 
material behaviors under high rate deformation. The SHB 
was originally designed for measurement of dynamic con-
stitutive properties in compression condition. The need for 

in-depth study of the high-strain-rate deformation mecha-
nisms of materials motivated the development of various 
types of SHB apparatus. In general, SHB techniques are 
classified into torsion (SHToB) [2, 3], tension (SHTB), and 
compression (SHPB) split Hopkinson bars [4–13]. In the 
SHB technique, a short cylindrical specimen is sandwiched 
between incident and transmit bars. When a striker is fired at 
an incident bar, a stress wave propagates upon impact along 
the incident bar. At the end of the incident bar, a part of the 
stress is reflected because of impedance mismatch between 
the bars and the specimen. A part of the stress wave keeps 
transmitting to the transmit bar until it reaches the end of 
the bar. The strain and stress of the specimen are calculated 
using strains measured at the incident and transmit bars, 
respectively. Lei and Xu [7] modified the Johnson–Cook 
(JC) [8] constitutive model and determined the model coeffi-
cients of cupronickel B10. Shin and Kim [9] studied the long 
duration time of the transmit pulse when a soft specimen was 
tested. Chunzheng et al. [10] carried out SHPB testing to 
derive the dynamic recrystallization temperature. Kim et al. 
[11] used self-organizing map analysis and SHPB to study 
the damage mechanisms in armor structural materials under 
high strain rate deformation.

Recently, measurements of dynamic constitutive proper-
ties in tensile condition have been studied. Several specimen 
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and grip shapes were proposed for SHTB. Lindholm and 
Yeakley [12] carried out SHTB with hat type specimens 
and compared their results with those of SHPB. Staab and 
Gilat [13] investigated the effect of bar type specimens in 
SHTB tests. When the length to diameter ratio of a specimen 
is larger than or equal to 1.6, the experimental results show 
that the dynamic tensile strength is consistent for repeti-
tive experiments. Bang and Cho [14] studied the failure 
behavior of fabric reinforced polymer matrix composite via 
SHTB. Huh et al. [15] used bolts to fix sheet type specimens. 
Using SHTB, Nicholas [16] employed threaded specimens 
to determine stress–strain curves for more than 20 different 
materials.

Most of these studies were carried out only by experi-
ment; validation of SHTB was not performed. In contrast to 
the compressive test, a special method to fix specimens to 
bars, such as grips or bolts, is needed, so that tensile stress 
waves can transfer through the grip between bars and speci-
mens in SHTB. Using a bolted grip assembly, Pham et al. 
[17] numerically studied measurement errors in SHTB. 
Nguyen et al. [18] investigated the effect of thread geom-
etry on the stress wave propagation characteristics from the 
incident bar to the transmitter bar. In this research, proper 
thread geometries were proposed to transfer the incident 
stress wave to the transmit bar with minimum distortion in 
the SHTB apparatus. Prabowo et al. [19] simulated several 
sets of SHTB cases with dumb-bell shaped specimens, and 
showed that the stress–strain relation can be measured when 
the length-to-diameter ratio of the specimen is 0.75. This 
paper studied only the length-to-diameter ratio of the speci-
men; other crucial specimen geometries such as grip struc-
ture were not clarified.

In this study, with the development of numerical analysis 
such as the finite element method, the measurement accu-
racy of the dynamic constitutive properties measured using 
SHTB is investigated numerically based on the work of 
Nguyen [20]. Also, the effects of specimen geometries, such 
as specimen length, specimen diameter, thread pitch, and 
thread inner diameter on measurement accuracy are investi-
gated. Finally, specimen geometries to secure the measure-
ment accuracy in SHBT testing are proposed.

2 � Principle of Split Hopkinson Tensile Bar

2.1 � Split Hopkinson Tensile Bar System

A schematic illustration of the SHTB employed in this study 
is shown in Fig. 1. The main parts of the apparatus are an 
incident bar, a transmit bar, a striker tube, and a specimen. 
The striker tube is fired so as to impact the incident bar. 
From the impact, a tensile pulse is generated in the incident 
bar and propagates to the specimen. When the pulse reaches 

the specimen, which is sandwiched between the incident and 
transmit bars, a part of the incident pulse is transmitted to 
the specimen and propagates to the transmit bar as a tensile 
pulse. The rest of the pulse reflects to the incident bar as the 
compressive pulse. The transmitted and reflected pulses are 
measured by strain gages attached to the two bars. The stress 
and strain of the specimen are calculated using the strains 
measured at the transmit (transmitted wave) and incident 
(reflected wave) bars, as follows:

In Eqs. (1) and (2), E0 is the elastic modulus of the bars. 
A0 and A are the cross-sectional areas of the bar and the 
specimen, respectively. εT and εR are the transmitted and 
reflected strains measured at the transmit and incident bars, 
respectively. C is the wave speed and LS is the specimen 
length. Equations (1) and (2) were derived with assumptions 
of one-dimensional wave propagation and complete contact 
condition of specimen with the two bars.

Nguyen et  al. [18] studied the measurement error 
when the specimen is not properly designed, as shown in 
Fig. 2. They carried out simulations for SHTB test using 
ABAQUS/Explicit. Figure 2a provides a detailed view of 
the assembled specimen and bars, utilizing a screw fixing. 
Specimen dimensions are shown in Fig. 2b. In the simula-
tion, stress and strain can be obtained by monitoring the 
specimen elements or by calculation using Eqs. (1) and 
(2). Figure 2c, d show a comparison of the stress–strain 
relations calculated using Eqs. (1) and (2) and obtained 
(monitored) directly from the specimen for specimen 
diameters of 2.0 and 8.0 mm, respectively. It can be seen 
that it is possible to measure the stress–strain relation 
accurately when the specimen diameter is 8.0 mm, while 
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Fig. 1   Schematic illustration of SHTB system
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a large discrepancy between the measured and monitored 
curves is found when the specimen diameter is 2.0 mm. In 
contrast to SHPB, therefore, proper design of the specimen 
shape is needed in SHTB. In this study, therefore, simula-
tions were carried out for SHTB using ABAQUS/Explicit; 
proper design of specimen shapes was also carried out.

For all of the simulation in this study, the diameter 
and length of incident and transmitter bars are 16.0 and 
2000.0 mm, respectively; the inner diameter, the outer 
diameter, and the length of striker bar are 16.1, 30.0, and 
300.0 mm, respectively; the strain gages are attached in the 
middle of the incident and the transmitter bars.

2.2 � Error Definition and Material Model

Since grip structures such as threads may distort one-
dimensional wave propagation between bars and speci-
men, a specimen stress–strain curve calculated from strain 
at bars (εcal) may not match a curve directly monitored 
at the specimen (εmo). To evaluate the SHTB measure-
ment accuracy, two types of error are defined, as shown in 
Fig. 3. The first is the total axial strain difference between 
calculated strain (εcal) [obtained using Eq. (2)] and moni-
tored strain (εmo) at the specimen, as follows:

In Eq. (3) εcal and εmo are the total strains (calculated and 
monitored, respectively) of the specimen up to necking. The 
second one is the ‘area discrepancy ratio (η)’, which was 
defined as the ratio of area discrepancy of the stress–strain 
curve to the true area of the stress–strain curve, as follows:

(3)Δ� = ||�cal − �mo
||

In Eq. (4) σcal is the calculated stress using Eq. (1), and σmo 
is the stress monitored at the specimen. The strain error Δ� 
and the area discrepancy ratio η are used to evaluate the 
measurement accuracy of the test. In this study, specimen 
characteristics such as thread shapes, specimen diameter, 
and specimen length are chosen to minimize the measure-
ment error.

The Johnson–Cook (JC) constitutive model is used to 
describe the plastic behavior of bars and specimen. This 
model is described by Eq. (5).

where T* is the homologous temperature given by Eq. (6).

(4)� =
∫ �

0
||�cal − �mo

||d�

∫ �

0
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(5)𝜎 = (A + B𝜀n)

(

1 + C ln
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𝜀̇0

))

(1 − T
∗m),

Fig. 2   Examples of meas-
urement error: a schematic 
illustration of screw fixing, b 
dimensions of specimen, and 
c, d comparison of calculated 
(using incident and transmitter 
bar strains) stress–strain relation 
with that monitored from speci-
men for specimen diameters of 
2.0 and 8.0 mm, respectively
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where T is the temperature of the specimen, T0 is the refer-
ence temperature, and Tmelt is the melting temperature of the 
specimen. The JC model contains five material constants, 
A, B, n, C, and m. Simulations for SHTB were carried out 
for two types of material, i.e., tungsten carbide for relatively 
high strength and tantalum for relatively low strength. The 
JC model coefficients of AISI 4340 steel, tungsten carbide, 
and tantalum are shown in Table 1. The model coefficient of 
tantalum was determined [23, 24] using the data of Maudlin 
et al. [25] and Nemat-Sasser and Isaacs [26].

3 � Effect of Specimen Geometries 
on Measurement Accuracy

The thread type specimen is shown in Fig. 4. The main 
parameters for specimen shape are thread inner diameter 
(Di), pitch, specimen length, and diameter (D). According to 
the thread standard, the thread outer diameter is determined 
from the thread inner diameter and pitch. In this study, the 
effect of the abovementioned specimen geometries on meas-
urement accuracy in SHTB is investigated. The effect of 
element size on the analysis results was first studied and 
proper size was used.

3.1 � Thread Pitch

In the SHTB system, the thread pitch of the specimen affects 
the stress wave transmission through the specimen from the 
incident to the transmitter bars. To investigate the effects 
of thread pitch on measurement accuracy, simulations were 
carried out for specimens having thread pitches of 2.0, 2.4, 

(6)T
∗ =

T − T
o

T
melt

− T
o

.

2.8, and 3.2 mm. The thread inner diameter, specimen diam-
eter, and striker velocity were 9.0 mm, 8 mm, and 20 m/s, 
respectively. The thread length was fixed at 20 mm. Figure 5 
compares values of a stress–strain curve calculated using bar 
strains with values obtained directly from the specimen for 
thread pitches of 2.4 and 3.2 mm for tantalum. The strain 
rate is about 1100 s−1 for all of the analysis. It can be seen 
that the thread pitch affects the measurement accuracy. For a 
clearer understanding, the strain error and area discrepancy 
ratio are presented in Fig. 6. Nguyen et al. [18] mentioned 
that the plastic strain on the thread region has an effect on 
stress wave propagation through the thread. So, the maxi-
mum plastic strain in the thread region is also presented in 
Fig. 6. In Fig. 6, the strain error and area discrepancy ratio 
are lowest when thread pitch is 2.4 mm. Also, it is shown 
that the strain error and the area discrepancy ratio are highly 
dependent on the plastic strain of the thread region. As the 
maximum plastic strain of the thread region decreases, the 
measurement error decreases. Numerical analysis for SHTB 
were also carried out for tungsten carbide, which has rela-
tively high yield strength. Figure 7 shows the strain error and 
area discrepancy ratio for tungsten carbide. For the tungsten 
carbide specimen, the thread inner diameter, the specimen 
diameter, the specimen length, and the striker velocity are 
7.5 mm, 7 mm, 25 mm, and 20 m/s, respectively. Based on 

Table 1   Material properties of bar and specimens

Property Material

AISI 4340 [21] Tungsten Carbide [22] Tantalum [23–26]

Density [kg/m3] 7865 17,600 1897
Young’s modulus [MPa] 200 389 100
Poisson’s ratio 0.285 0.213 0.3
JC model coefficients
A [MPa] 792 1050 185
B [MPa] 510 177 675
C 0.014 0.014 0.047
n 0.26 0.12 0.3
m 1.03 1 0.425
Tm [K] 1700 1723 3250
TRef [K] 298 298 298
𝜀̇
0
.[1/s] 1 1 1

Fig. 4   Specimen shape and element discretization
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these results, the thread pitch of 2.4 mm was chosen for 
tantalum, and also for tungsten carbide in the next analysis.

3.2 � Specimen Length

To investigate the effect of specimen length on the meas-
urement accuracy, analyses were carried out for various 
specimen lengths in a range of 5 to 30 mm. For tantalum, 
thread pitch, thread inner diameter, specimen diameter, and 
striker velocity are 2.4 mm, 9.0 mm, 8.0 mm, and 20 m/s, 

respectively. Figure 8 compares the stress–strain curve cal-
culated using the bar strains with that monitored directly at 
the specimen for the specimen lengths of 5.0 and 25.0 mm. 
The strain rates are about 4300 and 1100 s−1 for the case of 
specimen length of 5.0 and 25.0 mm, respectively. As can 
be seen, the specimen length has a great effect on SHTB 
measurement accuracy. When the specimen length is 5 mm, 
the calculated total strain is far greater than the real (moni-
tored) strain. The strain error and area discrepancy ratio for 
tantalum and tungsten carbide are presented in Fig. 9. For 
the case of tantalum, the strain error and area discrepancy 
ratio are low when the specimen length is 15 or 20 mm. For 
the case of tungsten carbide, the strain error is lower than 
3 mm when the specimen length is greater than or equal to 
10 mm. The area discrepancy ratio is between 2.0 and 3.2% 
for all cases. Based on these results, the specimen lengths 
were chosen as 20 and 25 mm for tantalum and tungsten 
carbide, respectively.

3.3 � Specimen Diameter and Thread Inner Diameter

Numerical analysis for SHTB were carried out for vari-
ous specimen diameters from 4.0 to 9.0 mm. For tantalum, 
thread pitch, thread inner diameter, specimen length, and 
striker velocity are 2.4, 9, 20 mm, and 20 m/s, respectively. 
For tungsten carbide, thread pitch, thread inner diameter, 
specimen length, and striker velocity are 2.4, 7.5, 25 mm, 
and 20 m/s, respectively. For all of the analysis cases, the 
strain rate is about 1100 s−1. The strain error and area dis-
crepancy ratio of specimens are shown in Fig. 10. For tan-
talum, when the specimen diameter is 8 mm, the strain error 
and area discrepancy ratio are low. Therefore, the specimen 
diameter of 8.0 mm is recommended for tantalum. For the 
case of tungsten carbide, strain error is minimum when the 
specimen diameter is 7.0 mm. When the specimen diameter 
is 4.0 mm or 9.0 mm, both the strain error and the area dis-
crepancy ratio become high.

Figure 11 shows the effect of thread inner diameter on 
the measurement accuracy. When the thread inner diameter 
is greater than or equal to 7.5 mm and lower than or equal 

Fig. 5   Comparison of moni-
tored stress–strain curve with 
that calculated using bar strains 
for thread inner diameter of a 
2.4 and b 3.2 mm (tantalum)
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Fig. 8   Comparison of moni-
tored stress–strain curve with 
that calculated using bar strains 
for specimen lengths of a 5.0 
and b 25.0 mm (tantalum)

Fig. 9   Effect of specimen length 
on measurement error for a tan-
talum and b tungsten carbide
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to 10.5 mm, measurement errors are low compared to other 
cases. When the thread inner diameter is 12.0 mm, the thread 
region of the bars is too thin and large error is caused. Based 
on these results, 9.0 mm of thread inner diameter is recom-
mended for both tantalum and tungsten carbide.

3.4 � Discussions and Validation

In this study, the effects of specimen geometries such as 
thread pitch, thread inner diameter, specimen length, and 
specimen diameter on measurement accuracy were investi-
gated. The strain error and area discrepancy ratio were found 
to have almost the same tendency. By looking at the values 
of the strain error for tantalum shown in Figs. 6, 9, 10, 11, it 
is shown that the specimen length and thread inner diameter 
have greater effects on the strain error and area discrepancy 
ratio than do the thread pitch and specimen diameter. For 
the case of tungsten carbide, shown in Figs. 7, 9, 10, 11, the 
effects of specimen diameter and thread inner diameter on 
strain error and area discrepancy ratio are greater than those 
of the thread pitch and specimen length.

Figure 12a shows the deformed shape and von-Mises 
stress distribution for the case in which the specimen length 
is 5.0 mm, as shown in Fig. 9a. It can be seen that too short 
a specimen length can fail to guarantee uniform deformation 
in the specimen region. So, 10–20 mm of specimen length 
is recommended. Figure 12b shows the deformed shape and 
von-Mises stress distribution for the case of that the speci-
men diameter is 4.0 mm in Fig. 10a. Local deformation takes 
place in some parts of the specimen and the uniform defor-
mation assumption in the specimen region is not satisfied. To 
secure uniform deformation, therefore, a specimen diameter 
of greater than or equal to 6 mm is recommended. When the 
specimen diameter is greater than or equal to 9.0 mm, suffi-
cient force to induce plastic deformation on specimen region 
cannot be transferred through the thread. This means that the 
force required to induce plastic deformation on the specimen 
also causes plastic deformation on the thread region; this is 
the main source of measurement error. So, a specimen diam-
eter less than or equal to 8.0 mm is recommended.

Based on the simulation results, the recommended speci-
men dimensions are listed in Table 2. There are two main 

issues in the design of specimen dimensions. The first is 
to secure uniform deformation through the specimen. The 
second is that sufficient force should be transferred between 
the specimen and the bars, without plastic deformation on 
the thread region. Therefore, the recommended dimen-
sions are not identical for the two materials. Considering 
the above mentioned issues, this means that the specimen 
shapes should be determined for each specimen materials.

To validate the measurement accuracy of the proposed 
specimen dimensions, simulations were carried out. Fig-
ure 13 shows the stress–strain relation for tantalum and tung-
sten carbide obtained using the dimensions in Table. 2. The 
strain errors are 4.2 and 1.5 mm for tantalum and tungsten 
carbide, respectively. The area discrepancy ratios are 2.8 
and 2.6% for tantalum and tungsten carbide, respectively. 
As can be seen in Fig. 13, the measured stress–strain curves 
show values almost identical to those with that of monitored 
in the specimen.

4 � Conclusions

The effects of specimen shape on measurement accuracy in 
SHTB were investigated. According to the analysis results, 
the following conclusions were drawn:

1. The strain error and area discrepancy ratio were 
defined to evaluate measurement accuracy in SHTB. The 
effects of pitch and inner diameter of thread, and length 
and diameter of specimen on the strain error and area 

Fig. 12   Deformed shape and 
von-Mises stress distribution 
for cases of a specimen length 
of 5.0 mm, shown in Fig. 9a, b 
specimen diameter of 4.0 mm, 
shown in Fig. 10a

Table 2   Recommended specimen geometries for tantalum and tung-
sten carbide. (unit: mm)

Parameter Specimen material

Tantalum Tungsten 
carbide

Thread pitch 2.4 2.4
Thread inner diameter 9.0 7.5
Specimen length 20.0 25.0
Specimen diameter 8.0 7.0
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discrepancy ratio were investigated. Finally, dimensions 
of specimens with two different materials having medium 
(tantalum) and high (tungsten carbide) yield strength 
were recommended for SHTB to obtain high measure-
ment accuracy.
2. For the case of tantalum, it is shown that the speci-
men length and thread inner diameter have greater effects 
on the measurement error than do the thread pitch and 
specimen diameter. For the case of tungsten carbide, the 
effect of specimen diameter and thread inner diameter on 
measurement error is greater than do the thread pitch and 
specimen length.
3. Dimensions of specimens were recommended for tan-
talum and tungsten carbide. Validation analyses for rec-
ommended dimensions were carried out. It is shown that, 
with the recommended specimen shapes, the dynamic 
stress-strain relation can be accurately measured in 
SHTB.
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