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Abstract
This study focused on investigating the surface roughness in the feed direction (Ra-Fd), surface roughness in the transverse 
direction (Ra-Td), and thin-walled parts deformation (TWD) during milling of Al alloy 5083. The response surface method 
(RSM) was used to conduct experiments and establish the models of Ra-Fd, Ra-Td, and TWD under various cutting param-
eters. The significance of cutting parameters on Ra-Fd, Ra-Td, and TWD was analyzed by analysis of variance. It was observed 
that the Ra-Fd and Ra-Td are mainly influenced by the spindle speed, depth of cut, transverse size and feed rate, while the 
TWD is mainly influenced by the depth of cut. A comparison of RSM-optimum function and artificial bee colony (ABC) 
algorithm optimum programming was conducted to obtain the best cutting conditions leading to minimum Ra-Fd, Ra-Td and 
TWD simultaneously. From the presented results, ABC algorithm was able to obtain the better cutting strategy. Finally, the 
performance of the proposed cutting strategy was verified by confirmation experiments.
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1  Introduction

Al alloy has the characteristics of low density, high strength, 
corrosion resistance, good formability and low cost. Thus, 
it is widely used in aerospace, automotive, shipbuilding, 
plastic molding, and electronics applications [1–5]. In 
general, thin-walled parts refer to lightweight structural 
parts composed of various thin plates and stiffeners, and 
the wall thickness is less than 2.5 mm or the ratio between 
wall thickness and outline size is less than 1:10 [6]. During 
machining of thin-walled parts, the thin sections elastically 
deform occurs due to the low stiffness [7]. This is a common 
problem in the machining of Al alloy thin-wall components. 
Surface roughness is also one of the significant indexes to 
measure the performance of thin-walled parts. The value 
of surface roughness directly affects the wear resistance, 
fatigue strength, corrosion resistance, lubrication and fric-
tion of thin-walled parts [8, 9]. Thus, machining of Al alloy 

thin-wall components essentially requires precise setting of 
machining parameters to obtain the desired process perfor-
mance i.e. dimensional accuracy and superior quality surface 
finish [6].

Recently, some researchers studied on the prediction of 
surface roughness, thin-walled parts deformation, and opti-
mization of the cutting parameters. Wang et al. [10] carried 
out cutting experiments on AlMn1Cu, and established a sur-
face roughness prediction model based on cutting parameters 
through partial least squares regression. Hao et al. [3] intro-
duced the tool wear model and the tool forced deformation 
model into the basic roughness prediction model to improve 
the roughness model, which is a comprehensive prediction 
model for the surface roughness of curved thin-walled parts. 
Khanghah et al. [11] established an empirical model of 
stainless steel 316 using the RSM and ANOVA. Then, it is 
associated with simulated annealing to obtain the minimum 
optimal combination of parameters for the burr character-
istics in both up-milling and down-milling processes. Zeng 
et al. [12] proposed a forward milling process parameters 
optimization method based on the real-coded self-adaptive 
genetic algorithm and Grey relational analysis, and validated 
the effectiveness of the model through additional experi-
ments. Vipindas et al. [13] investigated the influences of 
surface roughness and top burr on the milling of Ti–6Al–4V 
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with 0.5 mm and 1 mm cemented carbide tools by ANOVA, 
and reported the significant factors. Neelesh et al. [14] pro-
posed a surface roughness model of high-speed machining 
Ti–6Al–4V by ANOVA with stepwise backward elimination 
method, and obtained the optimal combination of process 
parameters with minimum surface roughness.

In addition, Taguchi method was also applied widely to 
analyze the significance of cutting parameters on surface 
roughness during milling and optimized the process param-
eters [15–17]. Mahesh et al. [18] proposed a second-order 
mathematical models of surface roughness using RSM. 
Then, the genetic algorithm (GA) was applied to obtain the 
optimum cutting parameters via MATLAB programming. 
Kan and Lmalghan et al. [19, 20] constructed a compre-
hensive prediction model of surface roughness integrated 
into particle swarm optimization (PSO) algorithm. Dikshit 
et al. [4] studied the effect of cutting parameters on sur-
face roughness in high-speed milling of Al2014–T6, and 
established an empirical mathematical model for surface 
roughness. It reported that the most significant is cutting 
speed followed by feed rate. Ying et al. [21] established the 
surface roughness model through BP artificial neural net-
work algorithm with considering material removal rate, and 
optimized the processing parameters. Sheng et al. [22] estab-
lished a regression model of cutting force and surface rough-
ness through experimental results, and obtained the optimal 
milling parameters for thin-walled parts via non-dominated 
sorting genetic algorithm (NSGA-II) to. Karkalos et al. [23] 
developed an ANN model for predicting the surface rough-
ness of titanium alloy and indicated that the ANN model 
was able to predict the surface roughness with a mean error 
of 0.97%. Gao et al. [24] proposed a deformation control 
strategy by modifying tool location point for deformation 
of thin-walled curved surface parts. Wang et al. [25] applied 
the particle swarm algorithm to establish the machining 
residual stresses model, and validated the prediction model 
by two cases. Qiong et al. [26] applied the Finite differ-
ence method (FDM) to predict the aerospace thin-walled 
plates and compared with the finite element method (FEM). 
Yue et al. [27] proposed a method to calculate the surface 
error with considering the chip thickness and coupling force. 
Song et al. [28] applied thin palate theory in developing a 
time-space discretization method for milling of thin-walled 
parts stability. The effect of residual stress on the thin-walled 
parts deformation was investigated with considering the heat 
treatment process, cutting parameters and machining process 
[29–33]. Sepp et al. [34] proposed a milling error prediction 
method for the outer surface of thin-walled parts based on 

the selection range of tools and process parameters. Wang 
et al. [35] proposed a methodology of 3D machining allow-
ance modeling and analyzed the machining deformation of 
aerospace thin-walled parts.

Although many studies have been done in optimization 
of milling parameters, fewer surveys are performed with 
consideration of machining deformation and surface quality 
simultaneously in milling thin-walled plates. Moreover, most 
of the previous papers are available for identifying the opti-
mal machining parameters by incorporating the soft comput-
ing techniques Taguchi method, GA, BP, PSO, NSGA-II and 
ANN. Therefore, this study explores the feasibility for multi-
objective optimization with the RSM-ABC method, which 
is employed to optimize the Ra-Fd, Ra-Td and TWD simul-
taneously in Al alloy thin-walled parts machining process. 
In this paper, experiments were conducted to investigate the 
influence of cutting parameters on surface roughness and 
machining deformation simultaneously. Especially for the 
spindle speed and feed rate with a wider range were selected 
to increase the cutting efficiency. The models of Ra-Fd, Ra-
Td, and TWD were developed using RSM with considering 
spindle speed (S), feed rate (f), transverse size (ts), and depth 
of cut (doc). The significance of cutting parameters on sur-
face roughness and machining deformation was analyzed 
by ANOVA. A comparison of RSM-optimum function and 
ABC algorithm optimum programming was performed to 
obtain the best cutting conditions leading to minimum Ra-
Fd, Ra-Td and TWD simultaneously. Finally, the optimiza-
tion cutting parameters was implemented through experi-
ments, which validates the feasibility of the proposed cutting 
strategy.

2 � Experimental Procedure

The high-speed milling operations were conducted on Quick 
Jet AV1612 machining center that is equipped with HEI-
DENHAIN CNC system for precise control of machining 
process, which has a maximum spindle speed of 20,000 rpm 
and feed rate of 25 m/min. The workpiece selected for the 
experiment was Al alloy 5083 that has a rectangle block 
shape of 140 mm × 70 mm × 5 mm. The workpiece was 
mounted on a special fixture by applying 6 bolts further 
clamped on the bed of machine tool. The composition of 
workpiece material is given by Table 1.

In this test, a three-edge carbide flat end mill was 
employed which has a diameter of 12 mm, a helix angle of 
40°, a radial rake angle of 13°, and a radial relief angle of 

Table 1   Chemical composition 
of workpiece Al alloy 5083

Elements Al Cr Cu Mg Mn Si Ti Zn

Wt (%) Balance 0.2 0.1 4.5 0.6 0.4 0.15 0.25
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14°. The cutting tool path was programmed by using NX 10 
software, and the follow periphery tool path strategy was 
employed to guarantee the machined surface quality. Fig-
ure 1 shows the schematic of the setup milling experiment. 
The chosen cutting parameters and their ranges are shown 
in Table 2.

In this study, following the investigation method of sur-
face roughness proposed from Refs. [36–38]. The surface 
roughness is investigated along two directions: feed direc-
tion and transverse direction. According to scallop height 
model [36, 37], the values of feed rate and transverse size 
are the important control factors in the calculation of the 
surface residual height. In addition, surface roughness along 
the feed direction and along the transverse direction has dif-
ferent spatial patterns [39]. Thereby, the surface roughness 
evaluated in Ra pattern was investigated in two directions can 
achieve optimum surface quality of the milling process with 
considering control factors.

Experiments were carried out on the constructed test rig. 
For each experimental run, the thin-walled part deforma-
tion, average surface roughness in the feed direction and 
transverse direction was measured respectively. Surface 
roughness was measured using an Olympus laser confocal 
microscope as shown in Fig. 2. The final values of Ra-Fd 
and Ra-Td under each experiment were calculated by the 
mean of 5 locations in the feed direction and transverse 
direction, respectively. The machining deformations of the 
thin-walled parts were detected using the global status three 
coordinate measuring machine (CMM) as shown in Fig. 3. 

In this study, following the measuring method of thin-walled 
plate deformation proposed from Refs. [40–42], the machin-
ing deformation values of workpiece are measured along two 
directions (length direction and width direction) in response 
to before milling and after milling respectively. The position 
of the measured points on the top wall is shown in Fig. 4a. 
Before milling, a measuring point on fixture surface is set 
as basis point and its deformation is set to zero. Then, the 
CMM is used to measure the deformation variation by mov-
ing along two directions for the unmachined surface and 
record the data. After machining, the deformation measuring 
process is repeated on the finished surface, and the meas-
urement points are arranged as the same with the unma-
chined surface. The deformation of each measured point is 
obtained by the difference of deformation values between 
unmachined surface and finished surface. According to Ref. 
[43], the maximum value of the measured deformation is 
suggested to develop the response model. Therefore, the 
obtained maximum deformation value is used in this study. 
The deformation measuring process for thin-walled plate is 
shown in Fig. 4.

Fig. 1   Experimental setup

Table 2   Cutting parameters and their ranges

Cutting parameters Symbols Units Ranges

Min Max

Spindle speed S rpm 9000 15,000
Feed rate F mm/min 3600 9000
Depth of cut doc mm 0.1 0.3
Transverse size ts mm 3 7

Fig. 2   Olympus laser confocal microscope

Fig. 3   Global status three-coordinate measuring machine
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3 � Design of Experiments

In this paper, the primary objective of the experimental 
investigation is to analyze the influence of machining 
parameters on machining deformation and surface qual-
ity simultaneously. The selection of machining param-
eters in milling Al alloy thin-walled plates affects defor-
mation, quality, and productivity of the machined parts 
[22]. Various parameters influence on surface roughness 
and machining deformation are investigated according to 
Refs. [6, 22, 41–43]. Among the machining parameters, 
the following control factors have the significant effect 
on surface roughness and machining deformation that are 
selected for evaluation in this paper: spindle speed, feed 
rate, transverse size, and depth of cut. The levels adopted 
for the control factors were defined considering tool sup-
plier recommendations. The influences of spindle speed, 
feed rate, depth of cut, and transverse size were studied in 
terms of Ra-Fd, Ra-Td, and TWD. In order to test the effect 
of parameters on the three indicators, the RSM was used. 
The relationships between the parameters and responses 
are given as follows:

where Ra-Fd, Ra-Td, and TWD are the functions of the spin-
dle speed, feed rate, transverse size, and depth of cut. In 
RSM, optimal design method is commonly used to construct 
the curvature of the model, which consisting of categorical 
factors and constrained regions. In addition, the evaluation 
of performance of developed model is analyzed by ANOVA, 
which helps to find out the significance of cutting parameters 
on the Ra-Fd, Ra-Td, and TWD respectively.

(1)Ra − Fd = f (S, f , ts, doc)

(2)Ra − Td = f (S, f , ts, doc)

(3)TWD = f (S, f , ts, doc)

In this study, the analysis was performed using the Design 
Expert 8 software. All experimental runs were based on opti-
mal design method that contains a total of 25 experimental 
runs. Four parameters (S, f, ts, doc) were selected as input 
variables to measure the Ra-Fd, Ra-Td, and TWD values as 
output results. 25 experiments were carried out and exam-
ined at various parametric conditions as list in Table 3.

4 � Results and Discussion

In this study, for each experimental run, the Ra-Fd, Ra-Td, 
and TWD were measured respectively. Table 3 provides the 
measured Ra-Fd, Ra-Td, and TWD results in response to the 
various parametric factors. In RSM, the residual analysis 
was applied to check the adequacy of the proposed Ra-Fd, 
Ra-Td, and TWD models. In addition, ANOVA was applied 
to analyze the significance of cutting parameters on the Ra-
Fd, Ra-Td, and TWD respectively. In the analysis, the asso-
ciated p value of less than 0.05 indicates that the cutting 
parameters and their interactions are statistically significant.

4.1 � Analysis of Surface Roughness in Feed Direction

Figure 5 shows two sample results of surface roughness at 
different parametric factors. It can be noticed that the cutting 
parametric factor influences the Ra-Fd. The normal plot of 
residuals and residuals versus run number for the Ra-Fd are 
shown in Fig. 6. For residual normal plot results, it can be 
observed that the points are closeness (close) to the straight 
line. In addition, there is no special pattern and unused struc-
ture in residuals versus run number. The above results con-
clude the proposed model adequacy.

According to Table 4, ANOVA results show that the spin-
dle speed, feed rate, depth of cut and transverse size are the 
most significant factors on Ra-Fd. In addition, the most sig-
nificant interaction factor is the depth of cut-transverse size 

Fig. 4   Deformation measuring process for thin-walled plate a unmachined surface, b finished surface
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interaction. Optimal design method containing 25 experi-
mental runs was applied to establish the statistical model. 
According to the actual variables, the RSM model of surface 
roughness Ra-Fd is given by:

The statistical model with R2 and R2
adj

 are list in Table 4. 
R2 shows that the error of the regression model as a percent-
age of the total error (the multivariate correlation coefficient) 
is 94.72%, and the adjusted error as a percentage of the total 
error R2

adj
 (that is, the modified multivariate correlation coef-

ficient) is 92.96%, which is less than R2.Also, the values of 
R2 and R2

adj
 are both greater than 85%.

The main effect represents direct the influence of cutting 
parameters on response variable. Figure 7 plots the main 
effect plot for Ra-Fd. It can be noted that the Ra-Fd correlates 
negatively with spindle speed. At low spindle speed, the 
built up edge (BUE) is formed and the chip fracture readily 
producing the rough surface. As the spindle speed increases, 
the BUE vanishes and chip fracture decreases, hence the 

(4)
Ra − Fd = 2.68319 − 0.00003S − 0.360952doc + 0.088515ts + 0.000511f

+ 0.558146doc ⋅ ts − 2.49357 × 10−8f 2

surface roughness decreases [44, 45]. Thereby, a higher spin-
dle speed leads to a smaller Ra-Fd.

The Ra-Fd almost linearly increases as the depth of cut 
and transverse size increase. This is because the cutting 

area and the cutting force increase with the increasing of 
the depth of cut and transverse size. Application of large 
and intermittent cutting forces during milling of low rigidity 
components results in regular deflections of thin wall during 
the machining operation. This causes the material removal 
in an uneven fashion and poor surface quality [6]. Therefore, 
a larger depth of cut or transverse size will lead to a larger 
surface roughness.

In addition, a non-linear increase of Ra-Fd with increas-
ing of feed rate is observed. This is attributed to a higher 
feed rate leads to a higher cutting force and cutting heat 
temperature in the machining zone, thus cut chips deposit 
onto the work surface which results in poor surface quality 
[6, 45]. Hence, a high feed rate result in a large Ra-Fd. From 

Table 3   Plan of experiments 
and their responses

Run no Cutting factors Responses

S (rpm) doc (mm) ts (mm) F (mm/min) Ra-Fd (µm) Ra-Td (µm) TWD (mm)

1 12,431 0.21 4.00 3600 4.583 3.952 0.060
2 14,490 0.22 5.26 6668 5.457 4.742 0.066
3 15,000 0.30 7.00 9000 6.540 4.979 0.105
4 12,840 0.10 4.96 9000 5.716 5.169 0.059
5 11,935 0.15 3.00 8892 5.394 5.527 0.060
6 12,780 0.30 3.00 6192 5.356 5.275 0.100
7 9000 0.10 3.00 8055 5.174 5.432 0.064
8 9000 0.30 3.00 9000 5.833 6.264 0.084
9 9000 0.22 5.44 6867 6.019 5.173 0.061
10 15,000 0.10 3.00 3600 4.263 4.028 0.051
11 9000 0.30 7.00 3600 5.594 4.028 0.079
12 9000 0.10 7.00 9000 5.987 5.394 0.086
13 12,810 0.20 7.00 3600 5.262 3.844 0.069
14 14,490 0.22 5.26 6668 5.591 4.825 0.052
15 11,400 0.10 4.34 5652 5.055 4.640 0.056
16 12,000 0.20 6.92 8783 6.056 5.053 0.071
17 11,400 0.10 4.34 5652 5.081 4.372 0.077
18 9000 0.26 3.00 3600 4.495 4.353 0.070
19 15,000 0.20 3.00 9000 5.290 5.179 0.055
20 15,000 0.10 7.00 6354 5.510 4.038 0.052
21 12,840 0.10 4.96 9000 5.386 5.005 0.062
22 12,780 0.30 3.00 6192 4.885 4.788 0.106
23 15,000 0.30 5.08 3600 4.864 3.854 0.105
24 9000 0.10 6.26 3600 4.653 3.918 0.067
25 9000 0.22 5.44 6867 5.764 5.044 0.066
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Fig. 5   Measured surface roughness for different cutting parameters
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above results, it is observed that a smaller Ra-Fd can be 
achieved by increasing the spindle speed or decreasing the 
feed rate, depth of cut, and transverse size.

4.2 � Analysis of Surface Roughness in Transverse 
Direction

It can be also noticed from Fig. 5 that the cutting parametric 
factor influences the Ra-Td. Figure 8 shows the normal plot 
of residuals and residuals versus run number for the Ra-Td. 
Residual normal plot results shows the points are closeness 
to the straight line. Furthermore, no special pattern and 
unused structure is observed in residuals versus run number.

Table 5 presents ANOVA results for the Ra-Td. It is 
observed that the spindle speed, feed rate, transverse size, 

and depth of cut are the most significant factors on Ra-Td. 
In addition, interactions affecting the Ra-Td are: the most 
significant is spindle speed-feed rate interaction followed 
by depth of cut-feed rate interaction.

According to the actual variables, the RSM model of Ra-
Td is given by:

The statistical model with R2 and R2
adj

 are list in Table 5. 
R2 shows that the error of the regression model as a percent-
age of the total error is 96.49%, and the adjusted error as a 

(5)

Td = 3.34602 + 0.000024S − 0.268298doc

− 0.102436ts + 0.000402f

− 1.66911 × 10
−8Sf + 0.000299doc ⋅ f

Fig. 6   Residual plot for surface roughness in feed direction

Table 4   Modified ANOVA 
results for surface roughness in 
feed direction

Source Sum of squares Degree of 
freedom

Mean of squares F-value P-value

Model 6.73 1 1.12 53.84  < 0.0001
S 0.1175 1 0.1175 5.64 0.0289
doc 0.8759 1 0.8759 42.05  < 0.0001
ts 2.33 1 2.33 111.99  < 0.0001
f 4.23 1 4.23 202.86  < 0.0001
doc‧ts 0.1183 1 0.1183 5.68 0.0284
f 2 0.1658 1 0.1658 7.96 0.0113
Lack of fit 0.1675 13 0.0129 0.3107 0.9585
R2 = 0.9472, R2

adj
= 0.9296
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percentage of the total error R2
adj

 is 95.32%, which is less than 
R2.Also, the values of R2 and R2

adj
 . are both greater than 85%.

The main effect plot for Ra-Td is shown in Fig. 9. As 
seen from Fig. 9, the Ra-Td decreases with increasing of the 
spindle speed, meanwhile, the Ra-Td increases as the feed 
rate and depth of cut increase. The explanations for these 
phenomena are already described in Sec. 4.1. For the trans-
verse size, it found that the Ra-Td presents descending trend 
as transverse size increases. The observed trend is consist-
ent with the pattern reported by other researchers [36, 37]. 
From above results, we reach the conclusion that a smaller 
Ra-Td can be obtained by increasing the spindle speed and 
transverse size or reducing the depth of cut and feed rate.

4.3 � Analysis of Thin‑Walled Part Deformation

Figure 10 shows the normal plot of residuals and residu-
als versus run number for the TWD. Residual normal plot 
results shows the points are closeness to the straight line. 

Furthermore, no special pattern and unused structure is 
observed in residuals versus run number.

Table  6 presents ANOVA results for the TWD. As 
shown in Table 6, the depth of cut is the most significant 
factors on the TWD. In addition, interactions affecting 
the TWD are: the most significant is spindle speed- depth 
of cut interaction followed by spindle speed -feed rate 
interaction.

The RSM model of TWD in terms of actual variables 
is given by:

The statistical model with R2 and R2
adj

 are list in Table 6. 
R2 shows that the error of the regression model as a per-
centage of the total error is 90.78%, and the adjusted error 
as a percentage of the total error R2

adj
 is 86.17%, which is 

(6)

TWD = 0.04095 + 0.000013S − 0.990185doc

+ 0.001619ts + 5.70469 × 10
−6f

+ 0.000034S ⋅ doc − 4.42882 × 10
−10S ⋅ f

− 7.41009 × 10
−10S2 + 1.89589doc2

Fig. 7   Main effect plot for surface roughness in feed direction
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less than R2.Also, the values of R2 and R2
adj

 are both greater 
than 85%.

Figure 11 shows the main effect plot for TWD. For the 
spindle speed, when the spindle speed reaches 11,653 rpm, 
the TWD increases up to 0.065 mm, after that, it starts 
to decrease as the spindle speed future increases. This is 
due to the residual stress of cutting and the cutting force 
increase with increasing of the spindle speed, which 
results in a larger deformation of thin-walled parts. How-
ever, when the spindle speed exceeds 11,653  rpm, the 
machining vibration tends to be stable as the cutting force 
and friction force decrease, hence the TWD decreases with 
increasing of the spindle speed.

In case of depth of cut, when the depth of cut reaches 
0.151 mm, the TWD decreases up to 0.061 mm, and then, 
it starts to increase as the depth of cut increases rapidly. 
This is due to the involvement of the cutter in the cutting 
process becomes larger as the depth of cut increase, which 
cancels out a significant vibration of the workpiece, thus, 
the milling process become more stable, and the TWD 
becomes smaller. While the depth of cut increases, the 
removal material volume and the tool vibration increases, 
which leads to the TWD increases rapidly. Furthermore, 
the TWD is found to be increasing as the feed rate and 
transverse size increase, which is due to the increasing in 

Fig. 8   Residual plot for surface roughness in transverse direction

Table 5   Modified ANOVA 
results for surface roughness in 
transverse direction

Source Sum of squares Degree of 
freedom

Mean of squares F-value P-value

Model 9.37 6 1.56 82.39  < 0.0001
S 0.8698 1 0.8698 45.90  < 0.0001
doc 0.3878 1 0.3878 20.47 0.0003
ts 0.5925 1 0.5925 31.27  < 0.0001
f 7.42 1 7.42 391.77  < 0.0001
S ‧ f 0.1697 1 0.1697 8.95 0.0078
doc ‧ f 0.0629 1 0.0629 3.32 0.0851
Lack of fit 0.1617 13 0.0124 0.3468 0.9425
R2 = 0.9649, R2

adj
= 0.9532
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feed rate or transverse size makes the cutting force and 
the temperature between tool and chip thickness become 
higher, thus a higher feed rate or transverse size will result 
in a higher TWD.

From above analysis, it can be concluded that the Ra-Fd, 
Ra-Td are mainly influenced by the spindle speed, feed rate, 
transverse size and depth of cut, while the TWD is mainly 
influenced by the depth of cut. Thereby, we reach the con-
clusion that the depth of cut is the significant effect on the 
Ra-Fd, Ra-Td, and TWD simultaneously.

5 � Results of Multi‑objective Optimization

5.1 � RSM‑Optimum Function

This study aims to minimize the amplitude of deformation 
of thin-walled part and at same time minimize the surface 

roughness in feed direction and transverse direction. More-
over, the response parameters (Ra-Fd, Ra-Td, and TWD) 
are nonlinear multi-objective optimization problem due 
to the non-linear relationship between surface roughness, 
thin-wall part deformation and cutting parameters. The 
objective function is defined as follows:

The constraints on the cutting parameters are as follows:

The optimal machining parameter predicted by RSM 
optimization functions are spindle speed 14,994 rpm, feed 
rate 3600 mm/min, transverse size 3.8 mm, and depth of 

(7)Minisize (Ra − Fd,Ra − Td, TWD)

9000 rpm ≤ S ≤ 15000 rpm

3mm ≤ ts ≤ 7mm

3600mm∕min ≤ f ≤ 9000mm∕min

0.1mm ≤ doc ≤ 0.3mm

Fig. 9   Main effect plot for surface roughness in transverse direction
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cut 0.1 mm. Meanwhile, the prediction results of Ra-Fd, 
Ra-Td, and TWD are 4.263 µm, 3.938 µm and 0.049 mm 
respectively, as list in Table 8.

5.2 � ABC Algorithm Optimum

In this study, the ABC was used to find a set of optimal 
cutting parameters to achieve the optimal surface quality, 
that is, Ra-Fd, Ra-Td, and TWD simultaneously reach mini-
mum values under a combination of optimal spindle speed, 

feed rate, depth of cut and transverse size. The ABC is a 
widely used meta-heuristic tool for multi-objective optimi-
zation with the advantages such as few control parameters, 
easy to implement, simple calculation, and it has a faster 
rate of convergence. Therefore, ABC algorithm is carried 
out to solve this multi-objective optimization problem 
by MATLAB programming. The optimization of cutting 
parameters by multi-objective ABC is obtained according 
to Fig. 12 as follows:

Fig. 10   Residual plot for thin-wall parts deformation

Table 6   Modified ANOVA 
results for thin-walled part 
deformation

Source Sum of squares Degree of 
freedom

Mean of squares F-value P-value

Model 0.0065 8 0.0008 19.69  < 0.0001
S 0.0000 1 0.0000 0.4035 0.5343
doc 0.0043 1 0.0043 103.65  < 0.0001
ts 0.0001 1 0.0001 3.41 0.0833
f 0.0000 1 0.0000 0.3972 0.5347
S ‧doc 0.0010 1 0.0010 23.67 0.0002
S ‧ f 0.0001 1 0.0001 2.88 0.1092
S2 0.0002 1 0.0002 4.98 0.0403
doc2 0.0018 1 0.0018 42.76  < 0.0001
Lack of fit 0.0003 11 0.0000 0.4197 0.8931
R2 = 0.9078, R2

adj
= 0.8617
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Step 1 Initialize the parameters, both of the number of 
the employed bees and onlooker bees are set as 80. The 
maximum number of iterations are set as 500, and then, 
generate the food locations.

Step 2 The colonies are equally divided into 3 sub-colo-
nies, and then, perform the select operation independently 
to each of the sub-objective functions in their individual 
sub-colonies.

Step 3 This is employed bee phase, where greedy selec-
tion is applied to select new food locations by calculating 
nectar amount for both of the original food locations and 
their neighborhood.

Step 4 In the onlooker bee phase, greedy selection is used 
to select new food locations after applying the roulette wheel 
selection to the results of the step 2.

Step 5 Determine if there is a solution to give up, if there 
is, then replace it with a randomly produced new location, 
or go straight to the next step.

Step 6 Memorize the best solution.
Step 7 The ABC continues to iterate until it reaches the 

maximum iteration number and finally outputs the optimal 
solution.

The convergence of the Ra-Fd, Ra-Td, and TWD are 
obtained after iteration as shown in Fig. 13. It can be seen 
that the Ra-Fd, Ra-Td, and TWD are continuously reduced 
via the continuous optimization of ABC. After conver-
gence of the ABC, 15 best optimal points are obtained as 
the Pareto optimal points. The Pareto optimal solutions 
are listed in Table 7. In the actual machining process, to 
obtain the best surface quality, it is necessary to consider 
three responses (Ra-Fd, Ra-Td, and TWD) reach the small-
est value stimulatingly. Therefore, the No.1 is considered 
as the optimal solution.

Fig. 11   Main effect plot for thin-wall parts deformation
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5.3 � Comparison Between RSM And ABC Optimal 
Results

From above analysis, both RSM-optimum function and 
ABC algorithm can obtain the best values of Ra-Fd, Ra-
Td and TWD respectively. Moreover, the RSM and ABC 
optimal results are compared as list in Table 8. Compared 

with RSM results, the values of Ra-Fd, Ra-Td and TWD 
obtained by ABC algorithm are improved by 2.7%, 2.2% 
and 16% respectively. Thereby, it can be concluded that 
the ABC algorithm can obtain a better cutting strategy.

Experiment was also conducted to validate the pro-
posed cutting strategy. Comparison between prediction 
and experimental results are shown in Table 9. It can be 
seen that the prediction errors of the ABC algorithm opti-
mum for the Ra-Fd, Ra-Td and TWD are 2.3%, 5.7% and 
4.6% respectively.

6 � Conclusions

In this paper, the influence of spindle speed, feed rate, 
depth of cut and transverse size on Ra-Fd, Ra-Td and TWD 
were investigated by milling of Al alloy 5083. Especially 
for the spindle speed and feed rate with a wider range 
were selected to increase the cutting efficiency. The Ra-
Fd, Ra-Td and TWD prediction models were established 
by RSM, and the influence of cutting parameters on the 
Ra-Fd, Ra-Td and TWD were analyzed using ANOVA. For 
optimization process, a comparison of RSM-optimum 
function and artificial bee colony (ABC) algorithm opti-
mum programming was performed to find the best cutting 
conditions leading to minimum Ra-Fd, Ra-Td and TWD 

Fig. 12   Multi-objective ABC 
optimization flow chart

Fig. 13   The ABC optimum value of fitness
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simultaneously. According to analysis results, the follow-
ing observations were drawn:

The response models are obtained for Ra-Fd, Ra-Td, and 
TWD in function of control factors. Three models present 
good data variability explanation with R2 and R2

adj
 , which 

proves the developed models are useful to study the pro-
cess effects in the results.
ANOVA results show that the Ra-Fd, Ra-Td are mainly 
influenced by the spindle speed, feed rate, transverse size 
and depth of cut, while the TWD is mainly influenced by 
the depth of cut. Thereby, it can be concluded that the 
effect of depth of cut is much more pronounced than the 
effects of other factors on the Ra-Fd, Ra-Td, and TWD 
simultaneously.

Compared with traditional RSM optimization results, 
the ABC algorithm can obtain a better cutting strategy, 
and displays extensive favorable. The ABC algorithm 
optimum parameters are found to be spindle speed 
15,000 rpm, depth of cut 0.1 mm, transverse size 3 mm, 
feed rate 3601 mm/min.
Confirmation experiment was performed to validate the 
proposed cutting strategy, the experimental results show 
a good coherence to the calculated results from ABC 
algorithm, which validates the performance of the pro-
posed cutting strategy.
The RSM-ABC methodology used in this paper is 
detailed and can be applied in other manufacturing 
processes as a multi-objective modeling and optimiza-
tion procedure. Moreover, the obtained results can be 
employed in the milling of Al alloy thin-walled parts, 
ensuring good surface roughness and low machining 
deformation.

Acknowledgements  The authors are grateful to the National Defense 
Basic Research Fund Project of China (Grant No. A0720133010) for 
supporting this research.

Table 7   Multi-objective 
solutions of ABC

No. S (rpm) doc (mm) ts (mm) f (mm/min) Ra − Fd (µm) Ra − Td (µm) TWD (mm)

1 14,999.82 0.100063 3.000156 3601.123 4.1472 3.8509 0.0416
2 14,999.82 0.100039 3.000156 3601.123 4.1472 3.8509 0.0416
3 14,999.82 0.100063 3.000156 3601.123 4.1472 3.8509 0.0416
4 14,999.73 0.100039 3.000156 3601.123 4.1472 3.8509 0.0416
5 14,977.8 0.100132 6.998268 3601.102 4.7253 3.7007 0.0483
6 14,999.82 0.100059 3.007633 3601.123 4.1483 3.8515 0.0416
7 14,995.34 0.100039 6.993355 3601.118 4.7238 3.7001 0.0481
8 14,995.34 0.100039 6.993355 3601.118 4.7238 3.7001 0.0481
9 14,995.34 0.100039 3.006645 3641.065 4.1615 3.8577 0.0416
10 14,995.34 0.100039 6.993355 3601.118 4.7238 3.7001 0.0481
11 14,999.91 0.125164 3.002075 8997.142 5.2439 4.754 0.0352
12 14,999.91 0.135335 3.002167 8917.834 5.2522 4.7752 0.0355
13 14,999.91 0.127166 3.002075 8997.59 5.2466 4.7608 0.0352
14 14,999.95 0.125944 3.002102 8996.936 5.2449 4.7566 0.0352
15 14,999.95 0.127181 3.002075 8997.595 5.2466 4.7608 0.0352

Table 8   Comparison between RSM and ABC optimal results

Improved =
|ABC−RSM|

RSM
× 100%

S (rpm) doc (mm) ts (mm) f (mm/min) Ra − Fd (µm) Ra − Td (µm) TWD (mm) Improved

Ra − Fd Ra − Td TWD

RSM 14,994 0.10 3.80 3600 4.263 3.938 0.049 2.7 2.2 16
ABC 15,000 0.10 3.00 3601 4.147 3.851 0.041

Table 9   Comparison between experimental and ABC optimal results

Error =
|ABC−Exp.|

Exp.
× 100%

Responses Exp. (µm) ABC (µm) Error (%)

Ra-Fd 4.053 4.147 2.3
Ra-Td 3.641 3.851 5.7
TWD 0.043 0.041 4.6
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