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Abstract
Harmonic drives are the core components to enable movement in industrial robots. Unfortunately, the deformation of flex-
spline causes obvious partial axial load on gear engagement. This synthetic error leads to a series of additional problems, 
such as the deterioration of transmission quality, and the reduction of both precision and fatigue life. This study focuses on a 
harmonic drive with a double circular-arc tooth profile. A coordinate transformation is carried out based on the kinematics 
of harmonic drives. On this basis, the conjugate tooth profile of a circular spline is derived. A simulation model is developed 
based on the motion relationship for harmonic transmission. The effect of inhomogeneity of the load distribution on the 
surface of the gear teeth was investigated using the partial axial-load index. The effect of different factors on the partial axial 
load is analyzed. To reduce the effect of partial axial load of flexspline, we select a suitable material and wall thickness. For a 
certain practical range, both tooth width and chamfering of the flexspline teeth help reduce the partial axial load and increase 
the flexspline length. These conclusions enable improvements of future designs of reliable flexspline.

Keywords Harmonic drive · Flexspline · Partial axial load · Stress superposition · Spatial elastic deformation

1 Introduction

Due to their high transmission-ratio, high precision, compact 
structure, and coaxial input and output, harmonic drives are 
widely used for light-load joints of small and medium-sized 
robots. In other words, they are becoming an essential part 
of industrial robots [1, 2].

Harmonic drives consist of three components: circular 
spline, flexspline and wave generator. They enable the trans-
fer of movement and power using a periodic spatial deforma-
tion of the flexspline. Because the wave generator is ellipti-
cal, or similar to an ellipse, when it rotates continuously, the 
shape of flexspline also changes. Furthermore, both defor-
mation and rotation of flexspline also change the meshing 
state of the harmonic drive. Thus, a larger transmission ratio 

is obtained if there is a smaller number of teeth difference 
[3]. A harmonic drive is shown in Fig. 1. 

Unfortunately, harmonic drives always had problems with 
operating lives and accuracy over time with flexspline. Har-
monic drives rely on the periodic elastic deformation of the 
flexspline to transmit motion. This makes the motion rela-
tionship between flexspline and circular spline more com-
plex than for a general transmission device. Under normal 
circumstances, the design life of harmonic drives should be 
at least 8000–10,000 h. Harsh working conditions, the need 
for a long operating-life, and high accuracy are great chal-
lenges for the design and manufacturing of flexspline. For a 
periodic rotation and load action of the wave generator, the 
flexspline produces a cone angle and distortion following 
large deformation. Because of manufacturing and assembly 
errors, there are significant axial loading and several trans-
mission problems, such as higher stress concentration, non-
linear meshing, a reduction of meshing stiffness, increasing 
transmission errors, and deterioration of transmission qual-
ity. These problems substantially affect the accuracy main-
tenance, fatigue life as well as operating noise of flexspline.

For engineering applications, because of manufacturing 
and assembly errors, bearing-clearance and deformation, and 
torsional deformation of the gear itself, the ideal meshing 
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frequently cannot be achieved. Manufacturing and assembly 
errors, bearing-clearance and deformation will lead to the 
deviation between the actual geometric center and the theo-
retical geometric center. And the torque applied on flexspline 
will make the teeth deflect in the circumferential direction, 
resulting in the uneven force on the teeth in the meshing 
range. This leads to unwanted phenomena such as partial 
load during the meshing process, which also reduce gear 
meshing quality. Chase [4] from Brigham Young University 
studied the partial load for spline coupling caused by the 
manufacturing error. The model considered factors such as 
hardness, partial load, and clearance, and the stress for the 
tooth pair was predicted. Li [5, 6] from Shimane University 
carried out a loading tooth contact analysis (LTCA) using 
a stress calculation and finite element method. Gonzalez 
et al. studied the effect of axial error on partial gear load, 
and how to improve contact stress and transmission error by 
modifying the dislocation compensation [7]. Considering the 
effect of geometric parameters, as well as the partial load, 
Liu et al. proposed a 10-DOF nonlinear dynamic model. 
The effect of different modification on the dynamic load 
were determined [8]. Using the theory of the concentrated 
parameter, Wu et al. used a nonlinear dynamic model for 
a ravigneaux compound planetary gear with an intermedi-
ate floating component. The effect of both assembly error 
and eccentricity error on the system load characteristics was 
analyzed. The analysis results indicate that the installation 
error for the planet gear caused the planets to experience a 
continuous “partial load”, while the eccentricity error for the 
planet gear endowed the corresponding meshing pairs with 
a greater impact during the movement [9, 10].

The occurrence of partial gear-load causes several prob-
lems such as non-linearity of the meshing, reduction of 
meshing stiffness, increase of transmission error, deteriora-
tion of transmission quality, and a reduction of the fatigue 
life. Tugan et al. believed that the non-linearity of gear 
meshing is due to contact loss in the gear meshing. A model 
which could describe the distribution of the contact force 
for any tooth surface, was introduced [11]. Matsumura et al. 
[12] analyzed the relationship between load distribution and 
mating surface deformation. They developed a numerical 
analysis-method for gear vibration, which can take any type 
of deviation into account. The vibration behavior of a pair of 
helical gears under partial load with tooth surface deviation 
was analyzed. The results show that when the transmission 
operates under light load, the contact mode of the gear pair 
does not cover the entire tooth surface, and the vibration 
response varies with the transmission load. Ghaffari [13, 14] 
used the damage mechanics method to simulate the cracks 
on the gear surface. The effect of friction on fatigue was 
investigated considering the partial load conditions. Wang 
[15, 16] used the lumped parameter method to analyze the 
contact of the spur gear pair. The impact of the assembly 
error on the gear drive dynamics was studied. Even if the 
assembly errors are assumed sufficiently small, they can lead 
to load concentration and deterioration of the gear transmis-
sion quality. Tang [17] established a gear-dynamics equation 
and analyzed the effects of modification, parallelism of the 
gear axis, and load on the dynamic response of gears using 
numerical solutions. A study by Wang shows that the key 
factor, which causes failure of wind turbine gearboxes, is 
caused by partial load rather than material defects [18]. Li 
[19] studied the partial load problem of a planetary gear train 
used in helicopters. The optimized design of the tooth pro-
file is conducive to any improvement of partial load. Yuan 
[20] studied the effect of diagonal modification on the tooth 
surface load distribution, the overall meshing stiffness, and 
the bearing transfer error. Pacana [21] analyzed the stress of 
flexspline by theoretical calculation and simulation analy-
sis, and carried out experimental verification to obtain the 
relationship between rotation angle and stress. Sahoo [22] 
established the evidence of secondary contacts and probable 
load shared by those contacts experimentally over the finite 
element analysis. Wang [23] studied the stress calculation 
methods for short flexspline, based on mechanics analysis 
and finite element method (FEM). The stress under differ-
ent design parameters is analyzed to provide reference for 
design. Many researchers have been trying to improve the 
performance of harmonic drives by designing better tooth 
shapes or choosing more suitable materials [24–32].

To summarize, in the large field of harmonic drive 
research, recent studies always focused on a reduction of the 
impact of partial load using the lumped parameter method 
or modification of the tooth shape. Systematic analyses of 

Fig. 1  Harmonic drive process-diagram
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the cause of partial load are not sufficient. The partial load 
of flexspline introduces several transmission problems such 
as short service life and insufficient accuracy. We explore 
the above problems by analyzing the structural and material 
choices that affect the partial load of flexspline.

2  Motion Geometry and Tooth‑Profile 
Design

This paper focuses on a flexspline with a double-circular-
arc tooth profile, which is widely considered to have better 
meshing quality [29, 33–35]. Based on the kinematics of the 
harmonic drive, a coordinate transformation was carried out. 
The tooth profile for the circular spline was derived using 
envelope theory.

2.1  Solution for the Flexspline Deformation

The relationship between the neutral layer original curve of 
flexspline and the wave generator is shown in Fig. 2.

The wave generator is assumed a standard ellipse. It can 
be described using

The neutral layer original curve is actually a normal 
curve that is equidistant from the wave generator. The unit 
normal vector at any point can be written as

The parameters describing the flexspline motion geom-
etry are shown in Table 1.

If the thickness of the flexible bearing is db, and the 
thickness of the cup body of the flexspline is df, then the 
neutral layer curve can be expressed as

Assuming:

Equation 3 can be rewritten as

Thus, the neutral layer curve can be expressed as

Combined with Eqs. (1), (5) can be rewritten as

(1)
{

x = a cos (�)

y = b sin (�)

(2)
⇀

lu=

⎛
⎜⎜⎜⎝

dy

d��
(
dx

d�
)2 + (

dy

d�
)2
, −

dx

d��
(
dx

d�
)2 + (

dy

d�
)2

⎞
⎟⎟⎟⎠

(3)�⃗L = �⃗𝜌 + �⃗db +
��⃗df

2

l⃗ = �⃗db +
��⃗df

2

(4)�⃗L = �⃗𝜌 + l⃗

(5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 = x + l

dy

d��
(
dx

d�
)2 + (

dy

d�
)2

y1 = y − l

dx

d��
(
dx

d�
)2 + (

dy

d�
)2

Fig. 2  Relationship between the neutral layer original curve of flex-
spline and wave generator

Table 1  Parameters describing the flexspline motion geometry

Symbol Name Symbol Name

a Long axis of wave-generator ellipse ρ Vector of corresponding point on wave generator
b Short axis of wave-generator ellipse db Normal vector of flexible bearing thickness
φ Turning angle of wave generator df Normal vector of flexspline thickness
rm Neutral-layer radius of undeformed flexspline ω Amount of radial deformation of neutral layer
lu Unit normal vector μ Tangential displacement of neutral layer
L Vector at any point for the neutral layer v Normal turning angle of neutral layer
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After the wave generator was installed in the flexible 
bearing, the amount of radial deformation for the neutral 
layer can be expressed as

Then, the tangential displacement v and normal angle 
μ for any point on the neutral layer original curve can be 
obtained using Eq. (8) [36, 37].

2.2  Flexspline Tooth Profile Design

The tooth profile consists of two circular arcs (at the tooth 
face and at the tooth flank) and a straight line-segment. The 
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straight line-segment near the index circle is the tangent of 
two circular arcs.

A dynamic coordinate-system (x1, o1, y1) is used with 
regard to the axial section of the flexspline tooth, where y1 
is the symmetrical axis of the tooth and o1 is the intersection 
point between the neutral curve and the y1 axis. The variable 
parameters are shown in Fig. 3.

According to the definition shown in Fig. 3, the tooth 
profile can be defined by Table 2.

We use the tooth-profile arc length s as an independ-
ent variable to describe the double arc profile function as 
follows:

1. Tooth-flank arc segment (AB)—see Eq. (9)

where

2. Straight line segment (BC)—see Eq. (10)

where

3. Tooth-flank arc segment (CD)—see Eq. (11)
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Fig. 3  Definition of variable parameters for the flexspline tooth pro-
file

Table 2  Parameters for 
flexspline tooth profile

Symbol Name Symbol Name

ρa Arc radius 1 s Tooth-profile arc length
ρd Arc radius 2 δs Obliquity angle between the straight line 

of tooth profile and y1

lAB Arc length of tooth flank (AB) lBC Length of the straight line-segment (BC)
lCD Arc length of tooth face (CD)
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where

2.3  Motion Geometry of Harmonic Drive 
and Solution for the Tooth Profile

For the process of conjugate engagement, it is necessary to 
clarify the motion relationship.

By defining the vertical direction as the y2 axis, and the 
rotation center of circular spline as the origin o2, a fixed 
coordinate-system {x2, o2, y2} for the circular spline is estab-
lished. Furthermore, by defining the rotation center of the 
wave generator as the origin o, a coordinate-system {x, o, y} 
for a circular spline is established—see Fig. 4.

Consistent with the principle of harmonic drives, the 
wave generator rotates counterclockwise. We now need to 
describe the tooth profile equation for a fixed coordinate 
system {x2, o2,  y2}.
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By analyzing the coordinate transformation, the trans-
formation matrix from the coordinate system of flexspline 
{x1, o1, y1} to the coordinate system of circular spline {x2, 
o2, y2} can be expressed as

where Δφ is the angle between the meshing teeth of flex-
spline and the vertical direction. Mfc is the transformation 
matrix (Eq. 13) from {x1, o1, y1} to the coordinate system of 
circular spline {x2, o2, y2}.

After substituting the flexspline profile curve into 
Eq. (12), we can draw a series of curve families (see Eq. 13). 
Then, we use the envelope of these curve families as tooth 
profile for the circular spline (Fig. 5). Figure 5 describes the 
envelope process of flexspline and circular spline tooth pro-
files. The wave generator rotates counterclockwise, the tooth 
profile of flexspline rotates clockwise and then conjugates 
with the tooth top and tooth root arc of the circular spline.

It can be seen that the circular spline and flexspline 
mesh very well during movement.

3  Geometric and Finite‑Element Modeling

3.1  Geometric Modelling of Flexspline

The flexspline is a very thin-walled spur-gear, which is 
subjected to alternating loads during harmonic motion. 
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Fig. 4  Coordinate transformation relationship for a harmonic drive
Fig. 5  Tooth profile for the circular spline using the envelope of the 
flexspline profile curve families
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This has a strong effect on the transmission accuracy and 
service life of the harmonic drive, and it is prone to fatigue 
damage.

In this paper we use a cup-type flexspline, which is mod-
eled as shown in Fig. 6.

According to the definition in Fig. 6, the geometric model 
can be defined by Table 3.

3.2  Finite‑Element Modelling

Three-dimensional elements are used for finite-element 
modelling. The structure is divided into two parts while 
generating mesh, the gear and the cup body. Mesh genera-
tion of the gear part and wave generator are accomplished by 
sweeping with the mesh type as hexahedron element (Solid 
185). The mesh density is gradually refined in the tooth area, 
which represents the potential contact region. Tetrahedral 
element (Solid 187) is used in the cup body part. The finite 
model consists of 56,266 elements and is shown in Fig. 7.

The material settings used in the finite element model are 
shown as Table 4.

The the bottom of the flexspline and inner hole of the 
wave generator are fully restrained. The contact type of flex-
spline, wave generator and circular spline are represented by 
CONTAC185 in ANSYS. The applied torque between the 
circular spline and flexspline is 25 Nm.

The results indicate that the stress is concentrated at both 
ends of the teeth, especially at the back end of the teeth 
(Fig. 8).

It can be seen, that, when aided by the wave generator, the 
stress distribution at the root of the gear tooth is unevenly 
distributed in the direction of tooth thickness. Stress builds 
up at the front and back end of the teeth.

Fig. 6  Geometric model of the flexspline

Table 3  Parameter of the flexspline tooth profile

Symbol Name Input value

dfi Diameter of the inner flexspline wall 48.2 mm
dfr Diameter of teeth bottom circle 48.875 mm
dfa Diameter of teeth top circle 50 mm
θ1 Chamfering of flexspline front end teeth 45°
θ2 Chamfering of flexspline back end teeth 45°
m Modulus 0.5
lg Tooth width 9.5 mm
tf Wall thickness of flexspline 0.3
lf Length of flexspline 28.5
l1 Length of flexspline (cup body) 26
r1 Fillet radius of cup body of flexspline 4 mm

The cup body 
part

The gear 
part

Wave generator

Fig. 7  Finite element model of flexspline and wave generator

Table 4  Material settings in the finite-element model

Component Material (China 
steel grades)

Property Input value

Flexspline 35CrMnSiA Tensile modulus 206 GPa
Poisson ratio 0.284
Shear modulus 80.2 GPa
Density 7830 kg/m3

Circular spline 42CrMo Tensile modulus 212 GPa
Poisson ratio 0.28
Shear modulus 82.8 GPa
Density 7850 kg/m3

Wave generator 45# Tensile modulus 209 GPa
Poisson ratio 0.269
Shear modulus 82.3 GPa
Density 7850 kg/m3
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To verify the validity of the FEM model, we compared 
the simulation results with the calculated results using a 
Hertz contact model. Hertz contact theory is used to ana-
lyze strain and stress distribution of two objects during 
compressive contact. It uses three assumptions: (1) small 
deformation in the contact area; (2) elliptical contact area; 
(3) the contact object with distributed vertical pressure 
can be regarded as elastic half space. Because the width 
of the contact zone of the harmonic drive is much smaller 
than its curvature, Hertz contact theory can be used for 
stress analysis.

The meshing of circular spline and flexspline teeth can 
be equivalent to the contact of two instantaneous cylinders 
[38].

The maximum contact stress of two contact cylinders is

where E* is the composite material coefficient, ρ* is the com-
posite curvature radius and

where μ1 and μ2 are Poisson ratios of the two cylinder mate-
rials, E1 and E2 are the elastic moduli of the two cylinder 
materials and

where ρ1 and ρ2 are the curvature radii associated with the 
two cylinders.

The normal load that corresponds to the equivalent elastic 
cylinders P is

(14)�H =

√
PE∗

��∗
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1
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1
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+
1−�2

2
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where αt is the pressure angle for the end pitch circle, αt
’ is 

the end engaging angle, K is the load coefficient, Ft is the 
tangential force, b is the tooth width, β is the helix angle and 
T is the transfer torque:

The curvature radii for the equivalent contact cylinders at 
the meshing point are:

where u is the gear ratio and β is the helix angle of the base 
circle.

Substituting the above equations into Eq. (14), we can get 
the equation for maximum contact stress:

We carried out a simulation of single tooth pairs (Fig. 9). 
The simulation process is as follows: (1) The circular spline 
and flexspline models of single tooth are established accord-
ing to the involute profile; (2) In the FEM model, their 
material properties are taken according to Tab. 4. And the 
contacting zone of two gears is refined. The outer wall of 
circular spline is fixed, and the torque is applied through the 
inner wall of flexspline. (3) In the simulation process, the 
torque applied on the flexspline increases from 5 to 50 N m. 
Finally, the contact stress is extracted. The simulation results 
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Fig. 8  Von-Mises stress in flexspline

Refine 
Contacting 

zone

Circular spline

Flexspline

torque

Extract contact stress

Fig. 9  Meshing simulation of single tooth pair
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are compared with the calculated values using Hertz contact 
theory.

A comparison between theoretical calculation and simu-
lation is shown in Fig. 10.

We can see that the maximum error between simulation 
and theory-based results is less than 10%, which means the 
model is quite accurate.

4  Results and Discussion

Subsequently, we focused on the circular spline and applied 
a torque of 10 N m.

The stress at the root of flexspline suggests the presence 
of partial load (Fig. 11). We then extracted the stress for 
the root of the ten meshing teeth in the meshing area. The 
simulation results are shown as Fig. 12.

The results in Fig. 12 indicate that the stress value of 
1th–4th teeth decreases, but that of 4th–10th teeth increases 
with the meshing process. The 4th tooth is the position with 
the smallest stress, which is due to the large meshing con-
tact area and without the stress concentration. The value of 
stress fluctuates at the 9th and 10th teeth, which indicates 
that there exists the meshing impact at this position.

To study the effect of the structural parameters of flex-
spline on the partial axial load, we also conducted single-
factor control simulations.

The circular spline and flexspline is engaged together by 
multiple tooth. The meshing state of gears mainly includes 
engaging-in, engaging and engaging-out. The partial load 
coefficient is considered in this paper, mainly since the 
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Fig. 10  The comparison between theoretical calculation and simula-
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Fig. 11  Von-Mises stress of flexspline with circular spline and torque

Fig. 12  Stress for the root of the 
ten meshing teeth in the mesh-
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stress of the different teeth with different engaging state 
while transferring the torque. The concept of partial axial 
load index is used to characterize the inhomogeneity of a 
load distribution on the mesh tooth surfaces. Taking σa as 
the average stress for a single tooth surface and σs as the 
standard deviation for the stress of the sampling points on 
the tooth surface, the bias load index P is defined as:

where i is the order of different teeth in the meshing area, 
and j is the stress extraction point for the tooth root.

In order to study the partial axial load index of different 
flexspline materials, the material 35CrMnSiA is taken as 
the control group. The detailed steps are as follows:

Step 1: The control group (Material 35CrMnSiA) is firstly 
studied. In the simulation model (Fig. 7), we take materi-
als of the flexspline, circular spline and wave generator 
as 35CrMnSiA, 42CrMo and 45#, respectively. Their 
material properties are listed in Tab.4, including tensile 
modulus, poisson ratio, shear modulus, and density.
Step 2: The simulation analysis is performed based on 
definitions of the torque and boundary conditions. Then, 
the stress for the root of each meshing tooth in the mesh-
ing area is extracted.

(22)
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m

m�
i=1

�si

�ai
=

1
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m�
i=1

�
1

n

n∑
j=1

�
�i,j − �ai

�2

�ai

Step 3: The partial axial load index of the material is 
obtained through substituting the extracted stress value 
into Eq. (22).
Step 4: The material of flexspline is replaced by 
18Cr2Ni4WA (Level 1), 40Cr (Level 2) and QBe1.7 
(Level 3) respectively. Then the partial axial load index 
under different materials can be obtained by repeating 
steps 1–3. The material settings for flexspline are shown 
in Table 5.

The result for the partial axial load index are shown in 
Fig. 13.

Because there is little difference with regard to material 
properties of different steels, the corresponding partial load 
effect shows almost no difference. However, the special 
properties of QBe1.7 produce an increase of partial axial 
load.

Then, we compared the effect of the structural parameters 
of the flexspline body on the partial load.

1. Wall thickness of flexspline tf
  The values of the contrast parameters are shown in 

Table 6.
  The result of partial axial load index is shown in 

Fig. 14.
2. Length of flexspline (cup body) l1
  The values of the contrast parameters are shown in 

Table 7.

Table 5  Material settings for flexspline

Level Material (China 
steel grades)

Property Input value

Level 1 18Cr2Ni4WA Tensile modulus 202 GPa
Shear modulus 79.5 GPa
Poisson ratio 0.270
Density 7850 kg/m3

Level 2 40Cr Tensile modulus 211 GPa
Shear modulus 82.6 GPa
Poisson ratio 0.277
Density 7850 kg/m3

Level 3 QBe1.7 Tensile modulus 115 GPa
Shear modulus 44.2 GPa
Poisson ratio 0.3
Density 8260 kg/m3

Control 35CrMnSiA Tensile modulus 206 GPa
Shear modulus 80.2 GPa
Poisson ratio 0.284
Tensile modulus 206 GPa

Fig. 13  Partial axial load index for different flexspline materials

Table 6  Values of the contrast parameters-wall thickness of flexspline 
(mm)

Level 1 Level 2 Level 3 Level 4 Control group

0.2 0.25 0.35 0.4 0.3
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  The result for the partial axial load index is shown in 
Fig. 15.

3. Teeth width lg
  The values of the contrast parameters are shown in 

Table 8.

  The result of the partial axial load index is shown in 
Fig. 16.

4. Chamfering of flexspline front end teeth θ1
  The values of the contrast parameters are shown in 

Table 9.

Fig. 14  Partial axial load index for different wall thicknesses of flex-
spline

Table 7  The values of the contrast parameters-lengths of flexspline 
(mm)

Level 1 Level 2 Level 3 Level 4 Control group

20 23 29 32 26

Fig. 15  Partial axial load index for different lengths of flexspline

Table 8  Value of the contrast parameters teeth width (mm)

Level 1 Level 2 Level 3 Level 4 Control group

6 8 12 14 10

Fig. 16  Partial axial load index for different teeth widths of flexspline

Table 9  The values for contrast parameter chamfering of the flex-
spline front end teeth (°)

Level 1 Level 2 Level 3 Level 4 Control group

15 30 60 75 45

Fig. 17  Partial axial load index for different chamfering of the flex-
spline front end teeth

Table 10  Values for contrast parameters chamfering of the flexspline 
back end teeth (°)

Level 1 Level 2 Level 3 Level 4 Control group

15 30 60 75 45
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  The results for the partial axial load index are shown 
in Fig. 17.

5. Chamfering of flexspline back end teeth θ2
  The values of the contrast parameters are shown in 

Table 10.
  The results for the partial axial load index are shown 

in Fig. 18.

Based on the above results, we can draw the following 
conclusion:

1. Very thick or very thin walls of flexspline tf cause a 
deterioration of the partial axial load.

2. The increase of the length of flexspline l1, the teeth 
width lg, the chamfering of flexspline front end teeth θ1 
and the chamfering of flexspline back end teeth θ2 help 
reduce partial load. Especially the increase in cham-
fering of the flexspline back end teeth θ2 significantly 
reduces the partial axial load. For increasing length of 
flexspline l1 and tooth width lg, the improvement of par-
tial axial load tends to be small.

By summarizing the above research, the final material 
and design parameters are shown in Table 11, considering 
the partial axial load index.

5  Conclusion

This study focuses on a harmonic drive with a double-circu-
lar-arc tooth profile. A coordinate transformation was carried 
out based on the kinematics and the tooth profile of the cir-
cular spline was derived. We established a simulation model 
based on the motion relationship for a harmonic transmis-
sion. The distribution inhomogeneity of load distribution on 
the surfaces of gear tooth by the concept of partial axial load 
index. The effect of different factors on partial axial load was 
analyzed. The analysis suggests that, to reduce the partial 
axial load of flexspline, it is necessary to select the correct 
material and wall thickness for flexspline. The teeth width 
and the chamfering of flexspline teeth help reduce the partial 
axial load and increase the length of flexspline.
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