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Abstract
In this paper, an analytical compliance model for right circle flexure hinge (RCFH) is presented with the stress concentra-
tion in consideration. The stress concentration caused by changes in RCFH’s cross-section usually happens at the weakest 
point. It has been shown to seriously affect RCFH’s compliance calculation. Based on the virtual work theory, superposition 
relationship of the deformation, as well as Castigliano’s second theorem, RCFH’s analytical compliance model considering 
the stress concentration effect is established. The model is calculated as a series of closed-form equations which are related 
with geometric dimensions and employed material. Complicated definite integrals existing in these compliance equations are 
proved to be correctly calculated through comparisons with other literatures. Finally, in order to examine the validity of the 
established model, finite element analysis (FEA) is conducted. The relative errors between the theoretical values obtained 
by the established model and FEA results are found within 20% for a wide range of geometric dimensions.

Keywords  Right circle flexure hinge · Compliance model · Stress concentration · Finite element analysis

1  Introduction

Flexure hinges are frequently designed to transmit the rela-
tive motion between adjacent rigid links through elastic 
deformation [1]. Unlike conventional revolute joints, flex-
ure hinges are free of friction and lubrication, capable of 
smooth motion and infinite resolution, and moreover, almost 
insusceptible to temperature [2]. Thus, flexure hinges are 
commonly used in many applications including micro-posi-
tion platform [3, 4], micro-gripper [5], and micro-electro-
mechanical systems (MEMS) [6]. Among various flexure 
hinges, cycloidal and filleted V-shaped flexure hinge were 
proved to possess higher rotational precision than RCFH 
[7, 8]. However, RCFH has a broader range of applications 
where high positioning accuracy and resolution are required 
[9, 10]. This is mainly due to its convenience and readily 
available machining processes. When RCFH is integrated in 

a mechanism, the static and dynamic characteristics of the 
system mainly depend on RCFH’s behaviors [11]. As one 
of the most important performance indexes, compliance of 
RCFH needs to be accurately modeled to reduce the mod-
eling errors.

Analytical modeling and FEA are the two most com-
monly used approaches in RCFH’s compliance modeling. 
The compliances of RCFH obtained by FEA are always 
more accurate with respect to experimental data [12, 13]. 
However, FEA lacks of physical meaning and cannot con-
struct the analytical relationship between the applied loads 
and resulting deformations. Moreover, the fine meshes 
achieving high precision usually result in massive compu-
tations [14]. In contrast, analytical modeling can provide a 
set of optimized design parameters in less time. Therefore, 
analytical modeling is preferred for the dimension synthesis 
during the design and optimization stage.

Starting with Paros and Weisbord’s seminal work as early 
as 1965 [15], various analytical solutions for RCFH’s com-
pliance have been provided. With some exceptions [16, 17], 
most of them are based on the assumption of small defor-
mation due to RCFH’s relatively low compliance and wide 
applications in small displacement-oriented systems [18]. 
Paros and Weisbord [15] presented both exact and tractable 
simplified closed-form equations for RCFH. The angular and 
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linear compliances for bending and axial loads were devel-
oped based on the theory of mechanics of materials. Wu 
and Zhou [19] utilized the integration of linear differential 
equations and provided a set of more concise closed-form 
equations. Their equations were proved to have the same 
percentage errors as Paros and Weisbord’s exact equations 
(neglecting signs). Lobontiu [1] developed the in-plane and 
out-of-plane compliances of RCFH based on the Castigli-
ano’s second theorem. During modeling RCFH’s torsional 
compliance, the thick-to-width ratio of the cross-section 
was supposed to be equal to or larger than 1 (or equal to or 
less than 1) for the whole notch region [20]. Tseytlin [21] 
adopted the inverse conformal mapping method to predict 
the rotational compliance of RCFH. The predictions were 
likely to be much closer to FEA results and experimental 
data. Afterwards, Yong et al. [22] compared the previously 
reviewed models with FEA results. A guideline for select-
ing the most suitable and accurate compliance equations for 
RCFH was presented. Chen and Howell [23] also summa-
rized preexisting equations for RCFH’s torsional compliance 
and analyzed their computational accuracy. Two new equa-
tions were proposed, which were independent to the rela-
tive magnitude of the cross-sectional thickness and width. 
However, the equation that Chen and Howell adopted for the 
torsional moment of inertia was in terms of the rectangular 
beam with constant cross-section [24], which will result in 
inevitable errors. Xu et al. [25] divided RCFH into a series 
of rectangular section unit beams and developed an analyti-
cal model for RCFH based on the theory of elasticity and 
infinitesimal method. Larger number of unit beams usually 
corresponds to higher accuracy and worse computational 
efficiency.

The thorough review of RCFH’s analytical compliance 
models has indicated that there are no analytical compliance 
models for RCFH with the stress concentration in considera-
tion. However, the stress concentration has been proved to 
have significant influence on RCFH’s compliance calcula-
tion [22, 26]. In addition, preexisting equations calculating 
torsional compliance for RCFH with any dimensions were 
not available. Thus, this paper presents an analytical compli-
ance model for RCFH, which takes the stress concentration 
into account. The established model is expected to be helpful 
in automating the design of RCFH and better understanding 
its behavior.

The remainder of this paper is organized as follows. In 
Sect. 2, RCFH’s geometric as well as generic compliance 
model are presented firstly. Then, using FEA, the effect of 
stress concentration on RCFH is analyzed. Finally, mod-
eling method with the stress concentration in consideration 
are presented. The in-plane and out-of-plane compliances 
of RCFH are calculated as a series of closed-form equa-
tions related with geometric dimensions and employed 
material in Sect. 3. Comparisons with other literatures 

and FEA are conducted in Sect. 4 to verify the established 
model. Finally, the paper ends with a conclusion in Sect. 5.

2 � Compliance Model

2.1 � Generic Compliance Model

RCFH is usually fabricated by removing two symmet-
ric round cutouts from the rectangular beam. Thus, it is 
composed of two parts, the circle notch region and rigid 
beams. The boundary conditions of RCFH are acceptable 
to be fixed-free, which has been the case with all analyti-
cal approaches to RCFH ever since the work of Paros and 
Weisbord [15]. Figure 1 illustrates a fixed-free generic 
RCFH subjected to three-dimensional loads at its free 
end. The three-dimensional loads are defined as the load-
ing vector {L} =

[
Fx,Fy,Fz,Mx,My,Mz

]T  , including two 
bending moments My , Mz , two shearing forces Fy , Fz , one 
axial force Fx , and one torsional moment Mx . The result-
ing deformations are described as the deformation vector 
{�} =

[
ux, uy, uz, �x, �y, �z

]T  , including three translations 
ux, uy, uz , and three rotations �x, �y, �z . Geometric defini-
tions of RCFH are illustrated in Fig. 1 as well, mainly 
including the cutting radius r , the minimum thickness t  , 
and the depth w . The Cartesian coordinate system is uti-
lized, where the origin is located at the midpoint of the 
free end, and the x -, y - and z-axes are the longitudinal, 
altitudinal and depth directions, respectively.

Due to RCFH’s relatively low compliance and wide 
applications in small displacement-oriented systems, this 
work mainly focuses on RCFH whose deformations are 
small (infinitesimal). Thus, the small deformation theory 
can be applied and the geometrically nonlinear effect 
can be neglected [27]. In addition, the parasitic motion 
is ignored in this work because it could be reduced to be 
negligible with some precautions [28, 29]. Then, the defor-
mation vector {�} , loading vector {L} and the compliance 
matrix [C] of RCFH can be connected by Hooke’s law, 
namely {�} = [C]{L} with

Fig. 1   Boundary conditions, geometric parameters, spatial loads and 
resulting deformations of a generic RCFH
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The subscript pair of any compliance in Eq. (1) corre-
sponds to the deformation at the free end and the particular 
load producing that deformation. According to Maxwell’s 
reciprocity principle, following equations can be yielded

which indicates that [C] is a symmetric square matrix.

2.2 � Influence of Stress Concentration

Due to its high accuracy, FEA is usually regarded as a reli-
able method to estimate RCFH’s behaviors. The stress and 
strain obtained by FEA are always accurate with respect 
to experimental data. Therefore, FEA is conducted here to 
simulate RCFH’s stress and strain. During the numerical 
calculations, geometric parameters of RCFH are given as 
r = 5mm , t = 1mm , and w = 5mm . Details about FEA set-
tings are demonstrated in Sect. 4.2.

It can be observed from Fig. 2 that the iso-strain and iso-
stress plane are not perpendicular to the x-axis either paral-
lel to each other when RCFH is subjected to a unit axial 
load Fx . This is not consistent with theoretical assumptions 
and mainly because of the stress concentration happening at 
RCFH’s weakest point.

In order to obtain a clear view, FEA results as well as 
theoretical deformations along a selected path are compared 
in Fig. 3. The path origins from the center of the fixed end 
and ends at the center of the free end, as depicted in Fig. 3a. 

(1)[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cux−Fx
0 0 0 0 0

0 Cuy−Fy
0 0 0 Cuy−Mz

0 0 Cuz−Fz
0 Cuz−My

0

0 0 0 C�x−Mx
0 0

0 0 C�y−Fz
0 C�y−My

0

0 C�z−Fy
0 0 0 C�z−Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)Cuz−My
= C�y−Fz

, Cuy−Mz
= C�z−Fy

According to the results plotted in Fig. 3b and c, it is clear 
that RCFH’s deformations obtained by FEA are slightly 
larger than the theoretical values either for a unit axial force 
or a bending moment. This phenomenon indicates that the 
stress concentration has significant influence on RCFH’s 
compliance calculation. Therefore, more attentions must be 
directed towards the stress concentration effect within RCFH 
as well as RCFH-based mechanisms designs to reduce mod-
eling errors.

2.3 � Modeling Method

From the qualitative analyses above and Saint–Venant’s 
principle, it is noted that the stress concentration only affects 
the region near the circle notch. For the sake of generality, 
RCFH with two relatively long beam connections is consid-
ered in this work, which can be regarded as a flexure serial 
chain that is formed with five flexure members, as depicted 
in Fig. 4.

(a)

(b)

Fig. 2   FEA results of RCFH’s stress and strain distributions; a Iso-
strain plane, b iso-stress plane

(a)

(b)

(c)

Fig. 3   Comparisons between FEA results and theoretical values; a 
definition of the selected path, b deformations for a unit axial force, c 
deformations for a unit bending moment

Fig. 4   RCFH with two relatively long beam connections
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It is expected that the stress concentration only affects 
the second and forth segments and has little effect on the 
first and fifth segments. Compared to RCFH illustrated in 
Fig. 1, the configuration of Fig. 4 adds another three design 
parameters, the length of beam connections near to the circle 
notch l1 , and the length of beam connections far away from 
the circle notch on both sides l2 , l3 . Based on the virtual 
work theory and the superposition relationship of the defor-
mation, the overall compliance matrix of RCFH [C] can be 
expressed as

where 
[
Ji
]
 means the transformation matrix, 

[
Ci

]
 stands for 

the compliance matrix of the segment i , 
[
Cs

]
 represents for 

the additional compliance caused by the stress concentra-
tion. The transformation matrix comes in the following form

where 
[
Ri

]
 , 
[
Si
]
 are 4 × 4, 2 × 2 unit square matrix, respec-

tively. Ni is the mapping coefficient and there are

where l is the total length of the specimen and equal to 
2l1 + l2 + l3 + 2r . According to the results of Li et al. [26], [
Cs

]
 can be equivalent to the compliance of a rectangular 

beam that locates at the same position with the circle notch. 
The length, width and height of the rectangular beam are 
2r , 2r + t , and w , respectively. Then, Eq. (3) can be refor-
mulated as

where 
[
Cr

]
 , 
[
C3

]
 are the compliance matrices of the rectangu-

lar beam over the whole RCFH and the circle notch region, 
respectively. Without loss of generality, two new variables 
h1 and h2 are introduced to substitute for l1 + l2 and l1 + l3 , 
respectively, which will make Eq. (6) universal to RCFH 
with short beam connections.

3 � Analytical Compliance Model

According to the analysis in Sect. 2.3, the main require-
ment for RCFH’s compliance model is to solve the com-
pliance matrixes of the rectangular beam over the whole 

(3)[C] =

5∑
i=1

[
Ji
]
⋅

[
Ci

]
+
[
Cs

]

(4)
[
Ji
]
=

[ [
Ri

]
04×2

02×4 Ni ⋅

[
Si
]
]

(5)

⎧⎪⎪⎨⎪⎪⎩

N1 = l1∕l

N2 =
�
l1 + l2

�
∕l

N3 =
�
l1 + l2 + 2r

�
∕l

N4 =
�
2l1 + l2 + 2r

�
∕l

N5 = 1

(6)[C] =
[
Cr

]
+
[
J3
]
⋅

[
C3

]

RCFH and the circle notch region. In this section, both of 
them are analytically calculated.

3.1 � Compliance Matrix of the Rectangular Beam

The rectangular beam with constant cross-section has been 
overwhelmingly investigated. Meanwhile, the established 
compliance models have been proved to be precise for 
most practical applications. Therefore, the compliance 
matrix of the rectangular beam over the whole RCFH can 
be directly given as

where s is an intermediate variable and equal to 2r + t . E and 
G are the Young’s modulus and the shear modulus, respec-
tively. � is the shear coefficient and commonly equal to 6/5 
for a rectangular cross-section. It is the torsional moment of 
inertia. For a rectangular cross-section with the length of h 
and width of b , It can be expressed as �hb3 , where � is the 
torsional shape coefficient. The representative correspond-
ing values of the length–width ratio k and � are available in 
Table 1.

However, it is worth mentioning that these discrete val-
ues are often inadequate for engineering design. In order 
to satisfy the practical applications, approximate con-
tinuous equations for the torsional shape coefficient were 

(7)
�
Cr

�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

Ews
0 0 0 0 0

0
�l

Gws
+

4l3

Ews3
0 0 0

6l2

Ews3

0 0
�l

Gws
+

4l3

Ew3s
0 −

6l2

Ew3s
0

0 0 0
l

GIt
0 0

0 0 −
6l2

Ew3s
0

12l

Ew3s
0

0
6l2

Ews3
0 0 0

12l

Ews3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 1   Representative 
corresponding values of k and �

k �

1.0 0.141
1.2 0.166
1.5 0.196
2.0 0.229
2.5 0.249
3.0 0.263
4.0 0.281
6.0 0.299
8.0 0.307
10.0 0.313
50.0 0.329
∞ 1/3
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in demand, which has been provided by Hearn [24] and 
Young [30]. Their equations are given as

where �H indicates Hearn’s equation and �Y indicates 
Young’s equation. In order to know which equation is more 
accurate, �H , �Y , as well as representative corresponding 
values of � are compared together in Fig. 5. It is apparent 
that �Y is more consistent with those discrete values listed 
in Table 1. Therefore, �Y is adopted here, and two cases for 
calculating It are summarized in Table 2.

3.2 � Compliance Matrix of the Circle Notch Region

In order to derive closed-form compliance equations for 
the circle notch region, the Castigliano’s second theorem is 
adopted and written as

where Δ is the deformation due to the applied load, U is the 
strain energy stored, and P is the applied load. The strain 
energy is determined by the applied loads and expressed as

(8)�H =
k2

3.5k2 + 3.5
, �Y =

1

3
−

0.21

k

(
1 −

1

12k4

)

(9)Δ =
�U

�P

(10)

U =

h
1
+2r

∫
h
1

F2

x

2EA
+

�F2

y

2GA
+

�F2

z

2GA
+

M2

x

2GJx

+

(
My + xFz

)2
2EIy

+

(
Mz + xFy

)2
2EIz

dx

where Iy , Iz are cross-sectional moments of the area in the 
y and z direction and equal to w3tx∕12 and wt3

x
∕12 , respec-

tively. A is the cross-sectional area. Jx is the torsional 
moment of inertia for the infinitesimal strip dx at position x . 
The variational thickness tx can be expressed as

Then, the linear and angular compliances except for tor-
sional compliance can be easily derived. Concrete expres-
sions of these compliances and fi ( i = 1–4) involved are 
expressed as follows:

(11)tx = t + 2

[
r −

√
2r
(
x − h1

)
−
(
x − h1

)2]

(12)
�
C3

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ew
f1 0 0 0 0 0

0
�

Gw
f1 +

12

Ew
f2 0 0 0

12(r+h1)
Ew

f4

0 0
�

Gw
f1 +

12

Ew3
f3 0 −

12(r+h1)
Ew3

f1 0

0 0 0
1

G

h1+2r∫
h1

1

Jx
dx 0 0

0 0 −
12(r+h1)

Ew3
f1 0

12

Ew3
f1 0

0
12(r+h1)

Ew
f4 0 0 0

12

Ew
f4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 5   Descriptions of representative values of � , as well as continu-
ous equations �H and �Y

Table 2   Two cases for calculating I
t

Conditions I
t

2r + t > w w3(2r + t)
[
1

3
− 0.21

w

2r+t

(
1 −

w4

12(2r+t)4

)]

2r + t < w (2r + t)3w
[
1

3
− 0.21

2r+t

w

(
1 −

(2r+t)4

12w4

)]
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According to Sect. 3.1, �Y is considered to be more accu-
rate than �H , therefore, there should be

However, the high-order term existing in �Y makes 
Eq. (17) difficult to integral. In terms of that, a more sim-
plified equation �L = 0.333 − 0.21∕k proposed by Lobontiu 
et al. [20] is adopted. The Root Mean Square Error (RMSE) 
of �Y , �L and �H are calculated, which are 0.006, 0.0063 and 
0.015, respectively. This indicates that �L is more suitable 
for applications where high computational accuracy and 
efficiency need to be achieved simultaneously. Then, three 
cases for calculating C3,�x−Mx

 are listed in Table 3 where �L 
is adopted.

(13)f1 = −
�

2
+

2(2r + t)√
t(4r + t)

arctan

�
4r + t

t

(14)
f2 =

96r3
(
h1 + r

)2
+ 32r2

(
2h2

1
+ 4rh1 + 3r2

)
t + 8r

(
2h2

1
+ 4rh1 + (11 + 4�)r2

)
t2 + 32(1 + �)r2t3

8t2(2r + t)(4r + t)2

+
2(2 + 5�)rt4 + �t5

8t2(2r + t)(4r + t)2
+

4(2r + t)
(
24r2

(
h1 + r

)2
+ 8r3t − 14r2t2 − 8rt3 − t4

)
arctan

√
4r+t

t

8t5∕2(4r + t)5∕2

(15)f3 = −
1

2
�h2

1
− �rh1 −

1

4
(−4 + �)r2 +

1

2
(1 + �)rt +

1

8
�t2 +

4(2r + t)
�
4
�
h1 + r

�2
− 4rt − t2

�
arctan

�
4r+t

t

8
√
t(4r + t)

(16)
f4 =

2r

�
t(4r + t)

�
6r2 + 4rt + t2

�
+ 6r(2r + t)2

√
t(4r + t)arctan

�
4r+t

t

�

t3(2r + t)(4r + t)3

(17)Jx =

{
𝛽Yw

3tx tx ≥ w

𝛽Ywt
3
x

tx < w

4 � Comparisons and FEA Validation

4.1 � Comparisons

It should be pointed out that there are many definite integrals 
in the compliance equations of the circle notch region. In 
order to verify these mathematic relationships, comparisons 
are conducted between the model established in Sect. 3.2 
(donated by Tuo) and other preexisting ones, mainly includ-
ing Paros and Weisbord’s (both full and simplified, donated 
by Paros (full) and Paros (Simp.), respectively), Wu and 
Zhou’s (donated by Wu), Lobontiu’s (donated by Lo.), 
Tseytlin’s, as well as Chen’s. For all comparisons, Tita-
nium alloy (Tc4) is chosen as the linearly elastic material. 
The properties of Tc4 are: Young’s modulus E = 110GPa , 
Poisson’s ratio � = 0.34 , shear modulus G = 43GPa , and 
density � = 4500 kg∕m3 . The width w and thickness t of all 
compared right circle flexure hinges (RCFHs) are chosen as 
10 mm and 1 mm, respectively. The results are depicted in 
Fig. 6, where r varies from 0.5 to 10.

From Fig. 6, following points can be easily drawn:

•	 Results of Wu and Tuo are identical when consider-
ing the shear effect. Due to its high accuracy and wide 
applications, Wu’s model is usually regarded as a reliable 
solution for RCFH’s compliance. Thus, the mathematic 
relationships in Sect. 3.2 can be considered correct. How-
ever, the equation calculating RCFH’s torsional compli-
ance was not mentioned in Wu’s work.

•	 Torsional compliance calculated by Tuo’s model has 
the same trend with Chen’s results. However, the differ-

Table 3   Three cases for calculating C
3,�

x
−M

x

p
1
= h

1
+ r −

√
(w−t)(4r+t−w)

2
 , p

2
= h

1
+ r +

√
(w−t)(4r+t−w)

2

Conditions C
3,�

x
−M

x

2r + t < w 1

G

h
1
+2r∫
h
1

1

wt3
x
∕3−0.21t4

x

dx

t < w ≤ 2r + t 1

Gw3

p
1∫

h
1

1

tx∕3−0.21w
dx

+
1

G

p
2∫

p
1

1

wt3
x
∕3−0.21t4

x

dx

+
1

Gw3

h
1
+2r∫
p
2

1

tx∕3−0.21w
dx

w < t
1

Gw3

h
1
+2r∫
h
1

1

tx∕3−0.21w
dx
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ence tends to be obvious as r increases. This is mainly 
because RCFH was regarded as a rectangular beam 
with the cross-sectional length of w and width of t .

•	 Models of Lobontiu and Tuo were derived using the 
same method (Castigliano’s second theorem). Thus, 
they should have the same results. However, results 
of the linear and angular compliances for Fz are still 
very different. Given that Lobontiu’s equations were 
relatively simple and the specific derivation progress 
was not provided, it is reasonable to guess that some 
approximations might have been made in his derivation.

4.2 � FEA Validation

FEA is utilized as a benchmark in this section to examine the 
established model. FEA is conducted in ANSYS Workbench, 
where 3D static structure analysis method is adopted. Due to 

the relatively simple construction of RCFH, Design Modeler 
integrated in Workbench is used to model the geometry. In 
order to improve the computational accuracy, multi-zone 
sweep instead of a “smart” mesh is utilized. The material is 
chosen as Tc4, whose properties have been listed before. In 
each static analysis, the boundary conditions are chosen as: 
one end is fixed for all degrees of freedom, and the three-
dimensional loads are applied at the midpoint of the opposite 
end. In addition, the loads are supposed to be ramped unit 
loads for the purpose of reducing the amount of calculation. 
The numerical simulations are carried out based on RCFHs 
with the width of 10 mm and thickness of 1 mm. Moreover, 
two new dimensionless variables h1∕r and h2∕r are utilized 
to quantify the relative magnitude between h1 , h2 , and r , 
respectively.

The percentage relative error between FEA results and 
analytical model’s predictions is defined as CA−CFEA

CFEA

× 100% , 
where CA and CFEA donate for the analytical model’s predic-
tions and FEA results, respectively. The complete set of the 
results is plotted in Figs. 7, 8, and 9, where the cutting radius 
are 1, 3, and 5 mm respectively. In each case, h1∕r and h2∕r 
vary from 1 to 6.

It is noted that the percentage relative errors decrease 
with the increasing ratio of r∕t . In addition, it is apparent 
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that the results between FEA and established model are in 
good agreement with the maximum deviation being less 
than 20%. This indicates the established model is accurate 
enough and can be used to predict RCFH’s compliance dur-
ing the design and optimization stage.

5 � Conclusions

An analytical compliance model for RCFH has been pre-
sented in this paper, which takes the stress concentration 
effect into account. The stress concentration caused by 
changes in RCFH’s cross-section is analyzed using FEA 
method. Relevant results show that the stress concentration 
will result in additional deformations and bring calculation 
errors on RCFH’s compliance. To overcome compliance 
calculation errors, the stress concentration effect has been 
quantified during modeling RCFH’s compliance. A series 
of closed-form equations related with geometric param-
eters and employed material are derived on the basis of 
the virtual work theory, superposition relationship of the 
deformation, as well as Castigliano’s second theorem. 
Comparisons with other literatures, including Paros and 

Weisbord’s, Wu and Zhou’s, Lobontiu’s, Tseytlin’s, as 
well as Chen’s, indicate the correctness of complicated 
definite integrals existing in these closed-form equations. 
FEA results and analytical predictions are found in good 
agreement, with maximum errors of less than 20% for a 
wide range of geometric dimensions. The developed model 
can be utilized as guidelines for RCFH as well as RCFH-
based mechanism design. In addition, in order to further 
verify the established model, the related experiments will 
be conducted in our follow-up works.
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