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Abstract
In addition to garbage sorting and resource recycling, green design should be a fundamental method for solving environ-
mental problems, and design for disassembly is an important foundation of green design. This study focuses on providing 
quantitative assessment methods for designers’ reference. This study proposes interactive genetic algorithms to solve the 
problem of disassembly sequence planning. First, the disassembly factor is measured by the fuzzy scoring procedure method, 
and then the genetic algorithm is used to select the optimal sequence. With the penalty value provided from the process, a 
reference is provided for the revised design. Finally, examples are discussed to demonstrate that the proposed approach is 
a feasible method.

Keywords  Design for disassembly (DFD) · Block-based genetic algorithms · Interactive genetic algorithms (IGAs) · 
Penalty matrix

1  Introduction

In the general business process, the product design stage 
determines more than 70% of the product manufacturing 
cost, and this stage has a high degree of uncertainty. How-
ever, for new product development today, a more systematic 
approach is needed to ensure that the design output meets 
the needs of customers, production and assembly consid-
erations, product life cycle expectations, and many other 
concerns [1, 2]. In the past, Boothroyd and Dewhurst [3] 
studied the assembly constraints, costs, and other factors 

that must be considered in product design and proposed the 
concept of Design for Assembly (DFA). This idea opened 
up development in this domain and has been recognized by 
follow-up researchers. Therefore, many studies have also 
explored related “Design for X” methods, such as Design 
for Disassembly (DFD) [4], Design for Mass Customiza-
tion [5], Design for Modularity (DFM) [6, 7], and Design 
for Environment (DFE) [8]. Discussions in this area can 
be found in the related literature [9]. Among them, Design 
for Disassembly (DFD) is also a member of the DFX fam-
ily. Usually, DFD will be combined with the topic of green 
design, which is why DFD research is attracting increased 
attention. This study focuses on the issue of disassembly in 
the area of DFD.

The purpose of green design is to ensure that a product 
complies with the requirements of environmental protection 
so as to reduce the impact on the environment. In addition, 
environmental protection, cost, quality and other factors 
must be balanced. An important basic condition of green 
design is easy disassembly of the product. Moreover, the dis-
assembly sequence planning (DSP) method plays an impor-
tant role in the framework of DFD. DSP refers to the pro-
cess of disassembling the product, particularly the sequential 
order of the disassembly of components. In terms of DSP 
classification, disassembly can be divided into total disas-
sembly and selective disassembly [10]. Total disassembly 
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mainly occurs when the target parts are clearly defined. 
Therefore, the focus of total disassembly is to find the opti-
mal order (such as the one with the least cost or maximum 
profit) under various constraints. In contrast, selective disas-
sembly focuses on the search for parts or modules that are 
worthy of disassembly. At the end of a product’s life, the 
recycling manufacturer can execute the relevant recycling 
processes according to a predetermined recycling plan. This 
study focuses on total disassembly.

In the past, some researchers have developed qualitative 
or quantitative methods to evaluate DFD design. Kroll et al. 
[11] have proposed an evaluation method for disassembly 
design; Desai and Mital [12] have further proposed evalu-
ation methods to check whether the disassembly plan is 
destructive disassembly, total disassembly or selective dis-
assembly; Cappelli et al. [13] discuss the generation of the 
optimal disassembly sequence to meet the minimum disas-
sembly time and cost; Favi et al. [14] attempted to establish 
life cycle assessment indicators to further echo the design of 
the life cycle considerations. Most of these past researchers 
focused on constructing DFD assessment methods and indi-
cators, and usually designers need to calculate these evalua-
tion indicators manually. However, the practical application 
of these indicators is a time-consuming task [15]. If an ideal 
method can be developed in the future, it will enable DFD to 
further develop in the direction of design automation.

This study attempts to develop interactive genetic algo-
rithms based on the idea of genetic algorithms (GAs) in 
DFD. In traditional GAs, the encoding of the chromosomes 
is performed before the processing of the algorithm, after 
which the chromosomes are decoded and the fit value of 
each chromosome is calculated, and the mechanism is 
selected according to the value of the fitness function. A 
chromosome with a higher fitness value has a greater chance 
of being selected for the new offspring. After the selection, 
Crossover and Mutation are performed to generate the next 
generation of chromosomes. Such process is repeated until 
the end of the evolution. Because GAs can easily adjust 
the design according to problems and generate ideas, they 
are favored by many researchers. In the past, Kongar and 
Gupta [16] developed the so-called Priority Preservative 
Crossover (PPX) mechanism, and Giudice and Fargione 
[17] considered disassembly time, life cycle cost, and envi-
ronmental impact for the fitness function. Hui et al. [18] 
studied the mechanism of the Disassembly Feasibility Infor-
mation Graph (DFIG) to explore GAs; Go et al. [19] took 
mechanisms similar to those of Kongar and Gupta (2006) 
to develop genetic algorithms for DSP because GAs are fast 
and flexible, learning easily. Kheder et al. [20] also adopted 
the crossover mechanism of PPX and added the idea of 
maintenance in the exploration of the goal formula. Tseng 
et al. [21] proposed novel block-based genetic algorithms to 
escape the regional solution; in that approach, the searching 

process is based on the goal formula and the score matrix. 
During a search, the direction is set toward the formula with 
better scores, which will greatly reduce the search range and 
make it easier to find the optimal solution, enhancing the 
efficiency of the entire algorithm and making GAs appli-
cable to complex cases. It has been found that Block-GAs 
can effectively promote the efficiency of GAs. Therefore, 
Block-GAs are used in this study.

To make GAs applicable to the field of design, the devel-
oped system must have an interactive mechanism. Interactive 
Genetic Algorithms (IGAs) comprise one of the branches 
that later derive a number of genetic algorithms. The main 
difference between IGAs and traditional GAs lies in the fact 
that IGAs integrate human thinking. For example, an IGA 
will add user preferences to the design of fitness functions. 
In the past, Takagi [22] systematically proposed related 
methods and the theory of IGAs. Yan et al. [23] replaced the 
user’s scoring method with an evaluation method of Boolean 
operation. Babbar-Sebens and Minsker [24] proposed the 
so-called IGMII IGAs, which can improve the evolutionary 
strategy from expert opinions. Another direction of research 
is how to make users understand and evaluate the genes in 
IGAs more accurately [25]. But the application of IGAs in 
the study of DSP is rarely seen.

One reason for this could be that it is very difficult to 
quantify the plans or attributes of product design. There-
fore, the key to whether the design can initially produce a 
better concept solution for the next stage is the method of 
quantifying the product characteristics as much as possible 
when the product has not yet been clearly formed. To take 
into consideration the high degree of uncertainty and ambi-
guity encountered in the initial solution, this study adopts 
the viewpoint of the Fuzzy set as the basis for fit function 
design. Based on the above discussion, the study combines 
fuzzy semantics with Interactive Genetic Algorithms (IGAs) 
to build the DFD environment.

In this paper, the framework of interactive design is 
described in Sect. 2, and fuzzification penalty design is dis-
cussed in Sect. 3. The operation of Block-GAs is discussed 
in Sect. 4. Section 5 illustrates examples of design, and 
finally, Sect. 6 presents our conclusions.

2 � Construction of Interactive GAs 
for Disassembly Sequence Planning

In DSP planning, the constraints of the priority order should 
be met. The engineering properties of the parts also need 
to be predicted. If the properties of the parts change during 
disassembly, such changes will cause waste and influence 
the evaluation of the disassembly sequence, representing the 
waste of cost by disassembly. Interactive design focuses on 
the adaptability of the fitness function. The designer can 
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achieve the desired disassembly result through the calcula-
tion results by adjusting the fuzzy scores and priority rela-
tion information. The following are the basic ideas underly-
ing this study:

1.	 Fuzzy scores By adjusting fuzzy semantic definitions, 
the user’s ideas and expected results can be brought into 
the algorithm in a more realistic manner, one in which 
the user’s ideas are added to the calculation of the fitness 
value.

2.	 Adjustment of the priority relations When the initial 
priority relation is incorrect, new restrictions need to be 
added, special requirements need to be defined, or a pri-
ority order of special parts may be deleted, then specific 

adjustments can be made. Computation will be manipu-
lated to generate solutions that match the designer’s idea 
and produce a correct result.

Based on the above discussion, the framework of disas-
sembly sequence planning in product design proposed in this 
study is shown in Fig. 1. To meet the needs of the designers, 
it is necessary to satisfy the considerations of interactive and 
fuzzy semantics. The major steps are explained as follows:

Step 1 The user enters the part attributes and the priority 
relations between parts. According to the user-defined 
part attributes, establish a penalty value matrix and a rela-
tion matrix. The user can also freely set the penalty value 

Start

Meet the design
requirements?

(Step 3)

Define fuzzy scores,
part information,
Priority sequential order

(Step 1)

Part priority
sequential order,
Penalty value matrix,
Fuzzy scores (Step 1)

Adjust priority Sequential
order
Adjust fuzzy scores

(Step 4)

Stop evaluation,
generate satisfactory
solutions

(Step 6)

End

N

Y

Block-GAs
(Step 2)

Adjust the disassembly
order

(Step 5)

Designer offers
suggestions (Step 4)

Fig. 1   Interactive GAs for DSP
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matrix to make adjustments. The fuzzy scoring procedure 
is explained in Sect. 3.
Step 2 Carry out Block_GAs (Sect. 4).
Step 3 The user makes decisions based on relevant data 
such as disassembly time, and the output calculation 
results and analysis are given to the user for reference. 
These analyses include the penalty values among parts, 
the proposed improved parts sequence and part attributes.
Step 4 Add the designer’s idea: The designer judges 
whether it meets the design requirements. If it meets the 
requirements, proceed to Step 5. Otherwise, the user can 
redesign or adjust the priority of parts, the penalty value 
matrix, control parameters, etc., and repeat Step 4.
Step 5 Adjust the disassembly sequence order. This is 
explained in Sect. 5.
Step 6 Stop the evaluation and generate satisfactory solu-
tions.

3 � Building a Penalty Matrix by fuzzy Scoring 
Procedure

In this study, the stapler example in Fig. 2 is used to illus-
trate how to build a penalty matrix with the fuzzy scoring 
procedure. The stapler is made up of 18 parts. The priority 
of the stapler parts is shown in Fig. 3. The labels in the 
figure are the disassembly priorities, and the circular nodes 

are the parts. The direction of disassembly is set to be the 
six directions in the table. This is based on the professional 
knowledge of the designer. The disassembly information is 
divided into part directions, tools, and liaisons. There are 
6 different disassembly directions: + X, − X, + Y, −Y, + Z, 
and − Z. The information of each part is shown in Table 1. 
In terms of disassembly tools, there are four levels of tools, 
T1, T2, T3, and T4, according to the degree of difficulty. The 
details of the parts information are shown in Table 1. The 
fuzzy items in this study include attribute weights, direction, 
tools, and liaisons.  

3.1 � The Weighted Semantic Variables

In this study, subjective weights are used, from which users 
can subjectively give fuzzy semantics directly. Instead of 
the numerical values of the traditional scores, the weights of 
the fuzzy parts attributes are adopted here. Generally speak-
ing, the proportions of the distribution weights add up to 1. 
This study uses fuzzy weights, with the evaluation criteria 
of fairly important, important, very important, and extremely 
important. The semantic variables are shown in Fig. 4. 
According to the user’s judgment of the importance of the 
attributes, the semantic variables are shown in Table 2.

3.2 � Parts Directions

The direction attribute of a part is expressed in terms of 
changing the angle, which is mainly divided into changes of 
less than 45°, changes of about 90°, and changes of about 
180°. Three kinds of semantic variables of 0 to 1 are used 
as the fuzzy numbers. Take the direction of the stapler as an 
example. Assume P3 → P1 (→: Part P3 takes priority over 
Part P1); P3’s direction is − Y, and P1’s direction is + Y. The Fig. 2   The parts of a stapler
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Fig. 3   The sequential priority of the stapler parts
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direction changes from − Y to + Y, and the change angle is 
about 180°. Accordingly, the fuzzy numbers of (0.5, 0.75, 
0.75) are assigned. The directions of the semantic variables 
are shown in Fig. 5 and Table 3.

3.3 � The Disassembly Tool

The disassembly tool attribute is based on the change of 
tools, with semantics of T1–T4 representing “No change”, 

“Small change”, “Big change” and “Very big change”. The 
semantic variables use 0–1 for the fuzzy numbers, as shown 
in the semantic variables map in Fig. 6. The semantic vari-
ables are shown in Table 4. For the direction attribute of 
the stapler, suppose P2 → P1; P2’s tool is T1 and P1’s tool is 
T3. The tool changes from T1 to T3, the change is big, and 
the fuzzy numbers (0.4, 0.6, 0.8) are given for the direction 
attribute of the stapler’s case.

3.4 � Liaison‑Type Semantic Variables

The attribute of liaisons is mainly used to describe the 
degree of relationship between parts. The semantic variables 
include “With close liaison”, “With moderate liaison” and 
“No liaison”. The fuzzy numbers are set between 0 and 1. 

Table 1   The directions and tool 
information of the stapler parts

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Direction + Y − Y − Y + Y − Y − X + X + Y + X − Y + Y − Y − Y − Y − Y − Y − Y − Z
Tool T3 T1 T2 T3 T4 T3 T3 T3 T3 T3 T1 T1 T1 T2 T4 T2 T2 T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

The weight of semantics for importance

Fairly important Important

Very important Extremely important

Fig. 4   The weight of semantics for importance

Table 2   The semantic variables

Semantic variable Fuzzy number

Fairly important (0, 0.2, 0.4)
Important (0.2, 0.4, 0.6)
Very important (0.4, 0.6, 0.8)
Extremely important (0.6, 0.8, 1)

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

The semantics for part direction in the stapler 
case

Change smaller than 45degrees Change about 90 degrees

Change about 180 degrees

Fig. 5   The semantics for part direction in the stapler case

Table 3   The semantic variables for the direction in the stapler case

Semantic variable Fuzzy numbers

Change smaller than 45° (0.25, 0.25, 0.5)
Change about 90° (0.25, 0.5, 0.75)
Change about 180° (0.5, 0.75, 0.75)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

The semantics for part tool in the stapler 
case

No change Small change

Big change Very big change

Fig. 6   The semantics for part tool in the stapler case

Table 4   The semantic variables for the tool in the stapler case

Semantic variable Fuzzy numbers

No change (0.2, 0.2, 0.4)
Small change (0.2, 0.4, 0.6)
Big change (0.4, 0.6, 0.8)
Very big change (0.6, 0.8, 0.8)
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The semantic variables are shown in Fig. 7. For the stapler 
case, the semantic variables and their liaisons are shown in 
Table 5. The liaison graph of the stapler parts is shown in 
Fig. 8, where N indicates that there is no liaison between two 
parts, C indicates a liaison between two parts, and I indicates 
a close liaison between two parts. Designers can examine the 
relationships between parts from the liaison graph.

3.5 � Calculate the Penalty Value

At this stage, integral operations are performed 
based on the fuzzy numbers and fuzzy weights 
of the fuzzy semantics determined. Assume that 
the  overal l  order  is  P3 →  P14 →  P1 →  P2 →  P4 
 → P18 → P16 → P10 → P11 → P17 → P15 → P13 → P12 → P5 → 
P8 → P6 → P7 → P9. Take the part relation P1 → P2 for exam-
ple. The change in direction is judged as about 180°, with 
the corresponding fuzzy numbers (0.5, 0.5, 0.75); the change 
of tool is a big change, with the fuzzy numbers (0.4, 0.6, 
0.8); and the liaison belongs to only some liaison, with fuzzy 
numbers (0.25, 0.5, 0.75). From the judgment of relative 
importance, the direction attribute is considered extremely 
important; the tool attribute, very important; the liaison 
type, very important. From the user’s definition of impor-
tance, the corresponding semantic fuzzy numbers are (0.6, 
0.8, 1) for extremely important and (0.4, 0.6, 0.8) for very 
important. The weights are then integrated with the engi-
neering attributes as Formula (1). According to Formula (1), 

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

The semantic variables for liaisons in the 
stapler case

With close liaison With moderate liaison No liaison

Fig. 7   The semantic variables for liaisons in the stapler case

Table 5   Definitions of liaisons 
in stapler case

Liaison type Definition Description Illustration Fuzzy numbers

No liaison No contact (N) No contact between two parts (0.5, 0.75, 0.75)

With moderate liaison Contact (C) Only alignment but no contact 
between two parts

(0.25, 0.5, 0.75)

With close liaison Insert (I) Alignment between two parts (0.25, 0.25, 0.5)

Fig. 8   The liaison graph in the 
stapler case 3 2 1
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the fuzzy numbers of the P1 → P2 relation can be calculated 
as P1,3 = (0.61, 1.36, 2.14).

where Fuzzy Pj,seq, the integrated fuzzy number for design 
attributes; W, the weights; D, the direction attribute; T, the 
tool attribute; L, the liaison attribute; (l, m, r), correspond-
ing fuzzy numbers; j, number of current part; seq, number 
in current sequential order.

The main purpose of the defuzzification procedure is 
to convert the fuzzy numbers into explicit values after the 
fuzzy operation. In this study, these converted explicit val-
ues serve as the penalty values added when the parts are 
disassembled. As proposed by Bevillacqua and Petroni 
[26], the center-of-gravity method is used for the defuzzi-
fication procedure. The advantage is that a distinct value 
can be obtained without complicated operations. As 
shown in Formula (2), the P1 → P2 relation is calculated as 
P1,3 = 0.61 + 1.36 * 2 + 2.14)/4 = 1.3675).

where seq, number in the current sequential order; Pj,seq, the 
explicit value between the current part and the next part.

Through the standardization process, the distinct values 
from defuzzification are transformed into a value of 0–1. The 

(1)

FuzzyPj,seq =
((

WDl ∗ Dj,l +WTl ∗ Tj,l +WLl ∗ Lj,l
)

,

(

WDm ∗ Dj,m +WTm ∗ Tj,m +WLm ∗ Lj,m
)

,

(

WDr ∗ Dj,r +WTr ∗ Tj,r +WLr ∗ Lj,r
))

(2)Pj,seq =
lj,seq + 2mj,seq + rj,seq

4

standardization can be processed from Formulas (3) and (4): 
Min(P) = 0.665, Max(P) = 0.96. According to the output of 
Formula (2), the relation P1 → P3 can be calculated as P1,3 = 
(1.3675–0.665)/0.96 = 0.7318. Table 6 lists the total penalty 
values between each two parts.

where P, the penalty value between each two parts; Max(P), 
the maximum value in the penalty matrix; Min(P), the mini-
mum value in the penalty matrix.

4 � Block‑Based Genetic Algorithms

In this study, the Penalty Function is used as the design of 
the fitness function. The less the attribute changes, the lower 
the penalty value. The value of the fitness function is used to 
judge the pros and cons of the disassembly sequence. Con-
sidering the interactive characteristic, the formula needs to 
make the calculation of the fitness value feature the advan-
tages of editing, adjustment and expansion. Its calculation 
method is shown in Formula (5). This study aims to reduce 
the number of disassembly directions and tool changes in 
the disassembly activities, since unnecessary directions 
and tool changes would cause an inefficient disassembly 

(3)Pj,seq = Pj,seq −Min(P)

(4)Pj,seq =
Pj,seq

max(P)

Table 6   The penalty value matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.00 0.73 0.44 0.31 0.75 0.48 0.48 0.31 0.48 0.63 0.56 0.88 0.88 0.75 0.75 0.75 0.75 0.17
2 0.73 0.00 0.13 0.56 0.69 0.73 0.73 0.88 0.73 0.56 0.63 0.31 0.31 0.44 0.69 0.44 0.44 0.73
3 0.44 0.13 0.00 0.75 0.56 0.61 0.61 0.75 0.61 0.44 0.75 0.44 0.44 0.31 0.56 0.31 0.31 0.61
4 0.31 0.56 0.75 0.00 0.44 0.48 0.48 0.31 0.48 0.63 0.56 0.88 0.88 0.75 0.75 0.75 0.75 0.17
5 0.75 0.69 0.56 0.44 0.00 0.46 0.61 0.75 0.61 0.44 1.00 0.69 0.69 0.56 0.31 0.56 0.56 0.61
6 0.48 0.73 0.61 0.48 0.46 0.00 0.63 0.17 0.48 0.48 0.73 0.73 0.73 0.61 0.61 0.61 0.61 0.48
7 0.48 0.73 0.61 0.48 0.61 0.63 0.00 0.34 0.00 0.48 0.73 0.73 0.73 0.61 0.61 0.61 0.61 0.48
8 0.31 0.88 0.75 0.31 0.75 0.17 0.34 0.00 0.17 0.63 0.56 0.73 0.88 0.75 0.75 0.75 0.75 0.17
9 0.48 0.73 0.61 0.48 0.61 0.48 0.00 0.17 0.00 0.48 0.73 0.73 0.73 0.61 0.61 0.61 0.61 0.48
10 0.63 0.56 0.44 0.63 0.44 0.48 0.48 0.63 0.48 0.00 0.56 0.56 0.56 0.44 0.44 0.44 0.44 0.48
11 0.56 0.63 0.75 0.56 1.00 0.73 0.73 0.56 0.73 0.56 0.00 0.31 0.63 0.75 1.00 0.75 0.75 0.73
12 0.88 0.31 0.44 0.88 0.69 0.73 0.73 0.73 0.73 0.56 0.31 0.00 0.00 0.44 0.69 0.44 0.44 0.42
13 0.88 0.31 0.44 0.88 0.69 0.73 0.73 0.88 0.73 0.56 0.63 0.00 0.00 0.13 0.69 0.44 0.44 0.73
14 0.75 0.44 0.31 0.75 0.56 0.61 0.61 0.75 0.61 0.44 0.75 0.44 0.13 0.00 0.56 0.31 0.31 0.61
15 0.75 0.69 0.56 0.75 0.31 0.61 0.61 0.75 0.61 0.44 1.00 0.69 0.69 0.56 0.00 0.25 0.25 0.46
16 0.75 0.44 0.31 0.75 0.56 0.61 0.61 0.75 0.61 0.44 0.75 0.44 0.44 0.31 0.25 0.00 0.31 0.61
17 0.75 0.44 0.31 0.75 0.56 0.61 0.61 0.75 0.61 0.44 0.75 0.44 0.44 0.31 0.25 0.31 0.00 0.61
18 0.17 0.73 0.61 0.17 0.61 0.48 0.48 0.17 0.48 0.48 0.73 0.42 0.73 0.61 0.46 0.61 0.61 0.00
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process. This view is similar to the research of Li et al. [27]. 
In this study, the direction and tool change are integrated in 
the objective formula so as to find a disassembly sequence 
with lower numbers of changes in direction and tools on 
the same product. Consequently, a disassembly sequence 
with fewer changes is relatively more efficient than one with 
more changes in the disassembly procedure. According to 
studies related to Methods of Time Measurement (MTM), 
this goal can reduce the disassembly time [11, 28]. From 
the search for a disassembly sequence with fewer changes, 
a more efficient disassembly sequence can be obtained, as 
shown in Eq. (5).

where MS, the fitness value; j, number of the current part; 
seq, number in the current sequential order; Pj,seq, the 

(5)MS =

n−2
∑

seq=0

Pj,seq, ∀j, j = 0,… , n − 1

explicit value between the current part and the next part; n, 
total number of parts.

Figure 9 shows the procedure of Block-based genetic 
algorithms, which is characterized by introducing the pen-
alty value matrix in the crossover method (Step 4) and the 
mutation method (Step 5). This offers the direction for 
searching, thereby improving the quality of the algorithm’s 
solution.

The steps for the Block-based genetic algorithms are 
described below:

Step 1 Process non-binary chromosome encoding: gener-
ate the feasible initial parent chromosomes with numbers 
of parameters according to the user-defined part attributes 
and the part priority matrix.
Step 2 Calculate the fitness value of each chromosome as 
a basis for the chromosome evaluation.

Fig. 9   The block-based GAs

Define part engineering 
attributes and generate initial 
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(Step 5)
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Y
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Part priority 
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Penalty 
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(Step 1)
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Step 3 According to the fitness value, duplicate the chro-
mosomes equal to the parent number by the roulette 
method for the next generation.
Step 4 Perform the crossover method based on the blocks. 
The details will be described later.
Step 5 Perform the block-based mutation method.
Step 6 Determine whether the evolution should be termi-
nated. In this study, the maximum generation number is 
set as the termination condition. If the termination con-
dition is satisfied, proceed to Step 7; otherwise, proceed 
to Step 2.
Step 7 Stop the algorithm and generate the optimal or 
close-to-optimal solution to the disassembly sequence 
order.

Figure 10 illustrates the procedure for the Block-based 
crossover mechanism, the steps of which are listed below:

Step 4.1 Select two chromosomes as Parent1:  
P 3 →  P 14 →  P 18 →  P 16 →  P 17 →  P 2 →  P 1 →  P 4 →  
P 1 0   →   P 1 1   →   P 1 3   →   P 1 5   →   P 5   →   P 8  
→  P 7  →  P 6  →  P 9  →  P 1 2  a n d  P a r e n t 2 :  
P17 →  P18 →  P16 →  P14 →  P3 →  P10 →  P11 →  P15 →  
P13 → P12 → P2 → P1 → P4 → P5 → P8 → P7 → P6 → P9 for  
crossover, as shown in Fig. 11a.

Start

Select two
chromosomes to
crossover

(Step 4.1)

Generate the size of
reserved block

(Step 4.2)

Divide the block into
several ranges

(Step 4.3)

Calculate the fitness
values of all blocks

(Step 4.4)

Select the best block
for reservation

(Step 4.5)

Duplicate the
chromosomes in
parent generation to
child generation

(Step 4.6)

Replace the positions
in child generation
with the chromosomes
in reserved block

(Step 4.7)

Delete the repeated
genetic codes in
offspring

(Step 4.8)

Insert the missing
genetic codes to the
child chromosomes

(Step 4.9)

End
Penalty
value
matrix

Part priority
relation
matrix

Fig. 10   The procedure for the crossover mechanism

Step 4.2 Randomly generate a block whose size is 
0–100% of the total block. The total block size is 18, and 
assume that the size of the block generated is 88.88%; 
then the block size is 18*88.88% = 16.
Step 4.3 Divide the block size of 16 into 3 blocks, as 
shown in Fig. 11b.
Step 4.4 Calculate the fitness values for all blocks. This 
is shown in Table 7. 
Step 4.5 Choose the best block. In this case, the low-
est fitness value is 7.8464, indicating that the block 
P3 → P14 → P18 → P16 → P17 → P2 → P1 → P4 → P10 →  
P11 → P13 → P15 → P5 → P8 → P7 → P6 should be reserved.
S t e p  4 . 6  T h e  c h r o m o s o m e  P a r e n t 2  i s  
P 1 7  →  P 1 8  →  P 1 6  →  P 1 4  →  P 3  →  P 1 0  →  P 1 1  →  
P15 → P13 → P12 → P2 → P1 → P4 → P5 → P8 → P7 →  
P 6 →  P 9,  and  t hen  dup l i ca t e  Pa ren t 2 fo r  
O f fs p r i n g 1.  T h e  ch ro m o s o m e  Pa r e n t 1 i s  
P3 → P14 → P18 → P16 → P17 → P2 → P1 → P4 → P10 →  
P11 → P13 → P15 → P5 → P8 → P7 → P6 → P9 → P12, and  
duplicate Parent1 for Offspring2.
Step 4.7 Insert the reserved block in Parent1 to the  
corresponding positions of Offspring1; Offspring1 is  
P3 → P14 → P18 → P16 → P17 → P2 → P1 → P4 → P10 →  
P11 → P13 → P15 → P5 → P8 → P7 → P6 → P6 → P9, as  
shown in Fig. 11c.
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Fig. 11   The conceptual diagram 
of the crossover mechanism

Parent2
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P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12

(b)

Offspring1 P3P14P18 P16P17 P2 P1 P4P10 P11 P13P15 P5 P8 P7 P6 P9P12

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12Parent1

Offspring1 P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P6 P9

(c)

Offspring1 P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P6 P9

Lost P12

(d)

Offspring1 P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9

P12

(e)

Table 7   Fitness values for 
blocks in Parent1

Bold indicates block interval

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Fitness value

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12 7.85
P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12 8.02
P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12 8.14
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Step 4.8 Search for the repeated genetic codes 
in Offspring1, and find that P6 is repeated and 
P12 is missing. Remove the repeated P6; Off-
spr ing1 is then P3 →  P14 →  P18 →  P16 →  P17 → 
P2 → P1 → P4 → P10 → P11 → P13 → P15 → P5 → P8 →  
P7 → P6 → P9, as shown in Fig. 11d.
Step 4.9 Search the range for inserting P12 into  
Offspring1, and find the ranges from P15 to P9 and 
from P13 to P18. Calculate the penalty values for 
feasible insertion positions, as shown in Table  8. 
The lowest value is found in P14, and the output  
Offspring1 is P3 → P14 → P18 → P16 → P17 → P2 → P1 →  
P4 → P10 → P11 → P13 → P15 → P5 → P12 → P8 → P7 →  
P6 → P9, as shown in Fig. 11e.

For the block-based mutation mechanism, the detailed 
procedure is illustrated in Fig. 12 and described below:

Step 5.1 Process the mutation mechanism in the selected 
chromosomes.
Step 5.2 Randomly generate the mutation amount (1 to 
number of total parts); the amount of mutations equals 
the number of mutated genes. It is assumed to be 10 
in this case.
Step 5.3 Randomly select a gene for the mutation 
point and remove it from the chromosome, as shown 
in Fig. 13a.
Step 5.4 Insert the mutation point to the most suitable 
position in the gene (Step 4.8 to Step 4.9), as shown 
in Fig. 13b.
Step 5.5 Repeat Step 5.2 to Step 5.4 ten times (the 
amount of mutations is 10) and complete the mutation 
mechanism.

To verify the performance of the block-based genetic 
algorithms, this study compared it with the GA of Kongar 
and Gupta [16] and the Ant Colony Optimization (ACO) 
of Dorigo and Gambardella [29]. The solution effect is 
tested with a stapler example. The results are shown in 
Table 9. From the convergence graph in Fig. 14, it can be 
found that the solution quality of the block-based genetic 
algorithm is better than those of the other two methods. 
In terms of the execution time, the block-based genetic 
algorithm is similar to Ant Colony Optimization but bet-
ter than Kongar and Gupta’s GAs.

5 � Sample Tests

5.1 � Fine‑Tuning Design

The fine-tuning design is herein defined as displacement  
of the part position. After the order is generated, the user  
can select the part to be adjusted. If the disassembly order  
is P18 → P4 → P5 → P10 → P3 → P2 → P11 → P1 → P8 → P6 →  
P7 → P9 → P16 → P17 → P14 → P15 → P13 → P12, the pen-
alty value is 5.9152 from the fuzzy score calculation in  
this disassembly sequence order (Fig. 15a). If we want to  
move part P15, then P15 is input as the part to be moved, 
and all the movable results are confirmed after checking  
the priority sequential orders (Fig. 3). After calculation  
of the Block-based GAs, the result is shown in Fig. 15b.  
It can be found that sequential order No. 1 has the lowest  
penalty value of 5.7578, so it can be selected. Now  
P18 → P4 → P5 → P10 → P3 → P2 → P11 → P1 → P8 → P6 →  
P7 → P9 → P16 → P17 → P15 → P14 → P13 → P12 is the new 

Table 8   The penalty values for 
insertion positions in Offspring1

Position number P13 P14 P15 P16 P17 P18

Penalty value 9.39 9 9.45 9.17 9.31 9.06



674	 International Journal of Precision Engineering and Manufacturing (2020) 21:663–679

1 3

sequential order for disassembly, as shown in Fig. 15c. 
The designer can adjust the position of the disassembly 
sequence of a single part until it meets the requirements. In 
analyzing the overall sequential orders, it is suggested that 
different attributes be changed to reduce the penalty value.

The related disassembly information for all possible 
results of the new design is summarized in Table 10. If the 

designers focus on P18 → P4 (disassemble P18 before P4), sug-
gestions can be offered for the adjustment of part attributes. 
According to Table 10, it can be found that some part rela-
tions, those where there exist continuous changes of direc-
tion and tool in the part relationship, may cause increases in 
penalty value. Obviously, reducing such changes can reduce 
the penalty value, and it can be simulated to improve the 

Start
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(Step 5.1)

Randomly generate 
mutation amount for 
mutated genes 
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Randomly select a 
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Part priority
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N
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Fig. 12   The procedure for block-based mutation
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outcome. The simulated results for these part attributes are 
shown in Table 11 and Table 12. The designer can evalu-
ate whether the changed attributes are feasible and able to 
reduce the penalty value by adjusting the original attributes 
of the parts.

5.2 � Redesign

According to the results of the research method and the 
part attribute analysis, the user can adjust the penalty value 
through the output part information. If the result does not 
meet the design requirements, the following three-part out-
put information can be observed: (1) P15, P16 and P17 are 
consistent in direction (− Y) and liaison (close liaison) (see 
Table 1 and Fig. 7). (2) From the disassembly sequence 
order, it is found that these three parts, P15, P16, and P17, will 
be disassembled one after another; in other words, they will 
be removed in order. (3) According to the stapler diagram of 
Fig. 3 and the priority sequence diagram of Fig. 2, P15, P16, 
and P17 are located in the same area. Given these propos-
als and the check for priority in the disassembly sequence 
order (Fig. 3), these three parts can be combined with P12, 
as shown in Fig. 16, to form a one-piece component, as 
shown in Fig. 15d. Such a design has the following three 
advantages: (1) it reduces the complexity in the priority 
sequence diagram; (2) it reduces the number of changes of 
part attributes and the waste caused by disassembly as well 

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P9 P12

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6 P12 P9

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6P12 P9

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6P12 P9

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6P12 P9

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6P12 P9

Penalty Function

9.45

9

9.39

9.17

9.31

9.06

P3 P14 P18 P16 P17 P2 P1 P4 P10 P11 P13 P15 P5 P8 P7 P6P12 P9

The Mutation Point

(a)

(b)

Fig. 13   The conceptual diagram of the mutation mechanism

Table 9   Test results

The number of tests is 10

Method Second/time Average score Optimal score

Block-based GAs 3.1765 5.9631 5.7578
Kongar and Gupta’s 

GAs
0.4982 8.2631 7.9505

Ant colony optimiza-
tion

0.3126 7.5669 7.3125

Fig. 14   The convergence graph
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Table 10   Analysis of the results for all disassembly sequence orders

The total score equals the sum of columns 2, 3, and 4; they are the 
same as the penalty value matrix in Table 7

1. Part relation 2. Direction 3. Tool 4. Liaison Total score

P18 → P4 0.17 0 0 0.17
P4 → P5 0.31 0.13 0 0.44
P5 → P10 0 0.13 0.31 0.44
P10 → P3 0 0.13 0.31 0.44
P3 → P2 0 0.13 0 0.13
P2 → P11 0.31 0 0.31 0.63
P11 → P1 0 0.25 0.31 0.56
P1 → P8 0 0 0.31 0.31
P8 → P6 0.17 0 0 0.17
P6 → P7 0.31 0 0.31 0.63
P7 → P9 0 0 0 0
P9 → P16 0.17 0.13 0.31 0.61
P16 → P17 0 0 0.31 0.31
P17 → P15 0 0.25 0 0.25
P15 → P14 0 0.25 0.31 0.56
P14 → P13 0 0.13 0 0.13
P13 → P12 0 0 0 0

Table 11   Suggestions for the part direction in disassembly

Part Direction Suggestion Reduced 
penalty 
value

P4 + Y − Y 0.31
P6 − X + X, + Y 0.31

Table 12   Suggestions for the tools in disassembly

Part Direction Suggestion Reduced 
penalty 
value

P5 T4 T3 0.25
P15 T4 T2 0.5

Fig. 15   Tuning mechanism for the disassembly sequence order
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as the penalty value; (3) it reduces the number of parts. The 
addition of the decrement design concept not only complies 
with the goal of green design but also mitigates the impact 
on the environment.

6 � Conclusions

In this study, an interactive genetic algorithm is proposed 
and successfully applied to disassembly planning design. 
The fuzzy penalty scores are first offered for designers’ refer-
ence, and then Block-based GAs are used to solve the disas-
sembly sequence order. Using the quantitative fuzzy penalty 
scores, designers can evaluate the quality of the design.

This study makes the following contributions: (1) accord-
ing to their demands, designers can define fuzzy scores and 
part information and verify the solution by adjusting the 
disassembly sequence order; (2) the goal of solution quality 
and an interactive approach are integrated in the algorithm, 
enhancing the value of the quantitative evaluation; (3) design 
for disassembly (DFD) will help to transmit environmen-
tal awareness back to the source of product design. Based 
on green design considerations, if a certain part should be 
removed, all of the disassembly routes should be assessed 
to achieve the purpose of resource recycling.

In future research, the implementation of green design 
still needs further efforts. Other quantitative assessment fac-
tors, such as the economic valuation of parts or the recycling 
of different parts (or subassemblies), as in reuse and remanu-
facturing, can be taken into consideration in the near future.
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