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Abstract
Precision contour tracking is one of the most important factors used to determine product quality in a machining tool. An 
interval type-2 fuzzy proportional–integral (PI) sliding mode control (IT2FPISMC) system is proposed herein to control the 
mover position of the two-axis motion stage with optical encoder sensors for trajectory feedback. A type-2 fuzzy method that 
can handle rule uncertainties is developed to approach the unknown nonlinear systems. The PI term is used to approximate 
the discontinuous control signal and mitigate the chattering phenomenon in the presence of unmodeled system dynamics 
and external disturbances. The adaptive control laws are derived based on the Lyapunov theorem, such that the closed-loop 
stability is guaranteed, and the output tracking errors of the system asymptotically converge to zero. A non-uniform rational 
B-spline interpolator with high accuracy is adopted in the biaxial linear stage. Moreover, typical circular, bowknot, heart, 
and star reference contours are tested. The results on the average tracking error and the tracking error standard deviation 
are experimented and compared to illustrate the performance of our proposed method. The tracking performance obtained 
from the IT2FPISMC method is better than that of the conventional method. Furthermore, the proposed method can achieve 
robustness for tracking different reference contours in industrial applications.

Keywords Adaptive fuzzy proportional–integral sliding mode control (FPISMC) · Interval type-2 fuzzy logic system 
(IT2FLS) · Permanent magnet synchronous motor (PMSM) · Optical encoder sensor · Precision motion control · Trajectory 
control

1 Introduction

The high-accuracy performance of the XY stage in a 
machine tool, which is the main requirement to achieve 
high-quality products, has attracted increasing attention for 
wide applications, including in semiconductors, and in sci-
entific, electromechanical, and biomedical equipment manu-
facturing [1–5]. The ball screw system, which is popularly 
used in the two-axis motion stage, applies a ball knot on the 
screw, and is much efficient at converting rotary motion to 
linear motion. A precision ground ball screw can improve 

accuracy, but is costlier than a lead screw and, will still wear 
over time, resulting in reduced accuracy and repeatability. 
Therefore, the effects of nonlinear friction, coupled inter-
ference, and unmodeled dynamics always exist in motion 
control, and can significantly affect the tracking performance 
of the controlled system. Reducing the effect of nonlinear 
uncertainty and disturbance is always a challenging problem 
in controller design. Accordingly, many advanced control 
schemes were developed to compensate for these difficulties 
and obtain a precise positioning.

In recent years, several methods were applied for motion 
control to obtain high-speed and high-accuracy machin-
ing quality. These methods include the cross-coupled [2], 
neural network [3], fuzzy [4], fuzzy wavelet neural net-
work [5], and sliding mode control methods [1, 6, 7]. Wu 
et al. [2] proposed an integral design control method for 
a biaxial system using cross-coupled control (CCC). Their 
method used the contour algebraic equation and its par-
tial derivatives to represent the contour error model. The 
contour control effort distribution was decided at a desired 
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point. The CCC stability condition was derived based on 
the contour error transfer function that could improve the 
contour following accuracy. A recurrent neural network 
controller [3] was developed for the two-axis computer 
numerical machine driven by two permanent magnet syn-
chronous motors (PMSMs). The adaptive learning method 
was derived, and the system tracked various contours with 
robust control performance. A self-organizing recurrent 
fuzzy wavelet neural network controller [5] incorporating a 
mixed H2∕H∞ approach was applied in the XY table system. 
The control algorithm was developed in dSPACE DS1104 
board to control an XY table actuated by two permanent 
magnet linear synchronous motors. This control architecture 
had good performance, and was more suitable for control-
ling an XY table when uncertainties occurred. Thus, the 
effects of the nonlinear friction and disturbance uncertainty 
occurring in the position system are the main obstacles in 
achieving a high-accuracy performance. In addition, using 
the interpolator algorithm [8–11] is important in generating 
the parametric curves [8] and obtaining a better trajectory 
planning in motion control. Yau [10] developed the non-
uniform rational B-spline (NURBS) parameters and inter-
polation algorithm using the FPGA architecture in a motion 
controller. The Cox–de Boor algorithm was implemented, 
and the experimental results using the XY stage verified the 
good computation performance and tracking capability. The 
integration of the NURBS interpolator and controller design 
is a very critical issue to be utilized for contour planning in 
the motion control design.

Intelligent fuzzy algorithms [12–19] combined with slid-
ing mode control (SMC)-based methods [1, 17–23] achieve 
an excellent performance by designing suitable adaptation 
rules rather than requiring expert experience. Two types of 
fuzzy system were first introduced by Zadeh [8], namely 
type-1 fuzzy logic system (T1FLS) and type-2 fuzzy logic 
system (T2FLS). T2FLS [12–19] was constructed using 
three-dimensional membership functions and footprint of 
uncertainty (FOU). The main advantage of T2FLS is that it 
can handle a system that involves uncertainties and nonlinear 
dynamical characteristics [16]. Wu [17] and Navarro [18] 
made a comparison between a T1PI fuzzy logic controller 
(FLC) and T2PI FLC, showing that the T2 PI FLC can cope 
with uncertainty and achieve a higher accuracy.

SMC [1, 20–23] had been widely used to provide emi-
nent features, such as ease of implementation, and is the most 
promising robust control method that asymptotically con-
verges to the sliding surface. However, the chattering prob-
lem is the main shortcoming of the basic SMC. The adaptive 
fuzzy sliding mode controller [21] was proposed to alleviate 
the chattering in the nonlinear systems. The adaptive propor-
tional–integral (PI) controller was used to obtain the smooth 
control input. Type-2 fuzzy neural network SMC methods 
[22, 23] were presented for SISO nonlinear systems. They 

can have a smoother response and a better performance com-
pared with T1 FLC structure when slow and fast disturbances 
are experienced. However, only numerical examples [20–23] 
were realized and provided to validate the proposed methods 
and results. The genetic algorithm [24] was developed to opti-
mize the membership functions of type-2 fuzzy controller, 
including standard deviation, mean and amplitude of lower 
MF. The integral squared error (ISE) is utilized to obtain the 
optimized MFs. A nonlinear quasi-PID scheme [25] was pre-
sented for transportation control of double-pendulum cranes. 
The proposed controller could work well in the presence of 
unodeled dynamics, actuating constraints, and large swing 
angles. A neural network-based adaptive control method [26] 
is developed to provide effective control of both actuated and 
unactuated state variables base on the original nonlinear ship-
mounted crane dynamics without any linearizing operations. 
The experimental results are conducted to verify the practica-
bility and robustness of the proposed approach.

This research proposes an interval type-2 fuzzy PI slid-
ing mode controller (IT2FPISMC) for precision trajectory 
tracking using optical encoder sensors in the XY stage. The 
scheme aims to apply the type-2 fuzzy method to approach the 
unknown nonlinear functions and use the PI control to allevi-
ate the chattering phenomenon. The PI control scheme is pre-
sented to effectively attenuate the chattering and approximate 
the discontinuous control signal. The projection algorithm is 
also employed for the adaptive law to ensure the boundaries 
of the parameters. The Lyapunov and Barbalat lemmas are 
applied to guarantee the convergence of the controlled system. 
With the use of the NURBS interpolator algorithm, the biaxial 
motion stage is experimented using four standard contours 
to enhance the robustness of the controlled system. The four 
standard contours are (1) circle, (2) bowknot, (3) heart, and 
(4) star. The experimental results are conducted and compared 
to show the trajectory tracking capabilities.

This paper is divided into five sections. Section 2 elab-
orates the architecture of the controlled system and the 
dynamic model of the XY stage. Section 3 describes the 
proposed IT2FPISMC method. Section 4 exhibits the experi-
mental results. Section 5 summarizes the conclusions of this 
study.

2  Control System Modeling

Figure 1a shows the experimental XY-type platform for our 
motion control application. This research implemented the 
adaptive interval type-2 fuzzy-based control system using a 
Pentium computer. We install the digital/analog converter 
card and an encoder card in the computer. The controlled 
plant is actuated by two servomotor drives, and the rated 
output power, torque, speed, and current of the PMSM motor 
are 400 W, 1.3 Nm, 3000 rpm, and 2.3 A, respectively. The 



799International Journal of Precision Engineering and Manufacturing (2020) 21:797–818 

1 3

XY motion stage has a 2 mm screw pitch, 260 mm of x-axis 
travel, and 350 mm of y-axis travel. Mercury II 5000 series 
optical encoder sensors were installed to provide the high 
precision requirement in the position feedback loop. The 
system was implemented using the AC servo drive Mels-
ervo-J2S-Super series manufactured by Mitsubishi. The 
drive system can provide three operation modes: position 
control, speed control, and torque control. Given that it con-
sidered system parameter uncertainty and external distur-
bances, including friction force, cross-coupling, and load 
effect, the XY stage equipment was a second-order nonlinear 
system in practical applications. The single-axis stage sys-
tem is illustrated in Fig. 1b. The associated mathematical 
model can be represented as follows:

where x is the stage displacement of the x- or y-axes; � is the 
state vector; f(�) is the nonlinear function of state variables; 
g(�) is the control gain; u(t) is the input control voltage; d(t) 
is the lumped system uncertainty and coupled interference, 
which is bounded; |d(t)| < DU ; and DU is assumed to be a 
given positive constant. The system in Eq. (1) is assumed 
to be controllable, and g(�) ≠ 0 is required for vector � in 
certain controllability regions. Without loss of generality, 
0 < g(�) < ∞ is assumed. The control objective is to design 

(1)ẍ = f (�) + g(�)u(t) + d(t)

(2)y = x

a control law u(t) , such that state x can track a desired refer-
ence trajectory xd in the presence of the model uncertainty 
and external disturbance. The state vector of the system 
� ∈ R2 can be written as follows:

The ideal position signal is assumed to be xd , and the 
tracking error is defined as e = x − xd . The error vector is 
e = [e, ė]T , and the sliding surface can be defined as:

with � =
[
k1, 1

]T , where the vector � is the coefficient vec-
tor of the Hurwitz polynomial h(λ) = λ + k1 . The control 
strategy is selected to obtain the error vector on the sliding 
surface s(�) = 0 for all t ≥ 0 and achieve this condition. The 
continuous differentiable Lyapunov function V is defined 
as follows:

The differential operator is used, and can be expressed as 
follows:

(3)� = [x, ẋ]T =
[
x1, x2

]T

(4)s(�) = k1e + ė = �T�

(5)V =
1

2
s2(�)

(6)
V̇ = s ⋅ ṡ = s ⋅

(
k1ė + ë

)
= s ⋅

(
k1ė − ẍd + ẍ

)
= s ⋅

(
k1ė − ẍd + f (�) + g(�)u + d

)
≤ −η|s|

Fig. 1  a Experimental setup 
of the two-axis PMSM driven 
motion stage, b single-axis 
linear motion stage

(a)

(b)
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where η is a positive constant. If f(�) and g(�) are known in 
advance, then the ideal sliding control law u is defined as 
follows:

w i t h  u
eq
=

1

g(�)

[
−f(�) − k1e + ẍd

]
 ,  usw =

1

g(�)
up  , 

up = ηΔsgn(s) , ηΔ = D + η , sgn(s) =

⎧
⎪⎨⎪⎩

1 s > 0

0 s = 0

−1 s < 0

 , where u
eq

 

is the equivalent control input, and usw is the switching con-
trol input. Functions f(�) and g(�) are usually unknown in 

(7)
u = u

eq
− usw =

1

g(�)

[
−f (�) − k1e + ẍd − 𝜂Δsgn(s)

]

=
1

g(�)

[
−f (�) − k1e + ẍd − up

]

the actual system. Therefore, applying the control law in 
Eq.  (7) to the XY motion system is difficult. Thus, the 
switching control usw can lead to the chattering phenomenon, 
which is undesired in conventional SMC control. Accord-
ingly, the interval type-2 FLS approximation controller and 
the adaptive PI controller are constructed to solve these dif-
ficulties by introducing the fuzzy switching controller.

3  Proposed Adaptive IT2FPISMC Method

3.1  Interval Type‑2 Fuzzy Logic System

Figure 2a illustrates a block diagram of the type-2 fuzzy sys-
tem, including a fuzzifier, a rule base, an inference engine, 

Fig. 2  Structure of fuzzy logic system a type 2 fuzzy system structure, b the singleton fuzzification with a minimum t-norm operation
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a type reducer, and a defuzzifier. These functions can be 
designed and described as follows:

(a) Fuzzification The IT2FLS inference method was uti-
lized to approximate f(�) and g(�) . Both state vari-
able sets ( x1 , x2 ) from Eq. (3) were used as the input 
parameters in the fuzzy system for trajectory control. 
These sets were used to transform the input vector 
� =

[
x1, x2

]T
∈ X1 × X2 ≡ � into the interval type-2 

fuzzy set X̃n

i
 defined in � . The number of inputs is 

two. The Gaussian primary membership functions are 
expressed herein as follows:

where u(∙) and u(∙) denote the grade of the upper and 
lower membership functions, respectively. β is the 
standard deviation of the lower and upper membership 
functions; m is the mean value; and a is the FOU width 
coefficient defined between the upper and lower mem-
bership functions.

(b) Rule base The fuzzy rules represent the relationship 
between the input as the antecedent and the output as 
the consequent type-2 fuzzy set. N rules are assumed 
to exist in the T2FLS. The nth type-2 fuzzy rule can be 
expressed as follows:

  Rule n: IF x1 is X̃n

1
 AND x2 is Xn

2
,

where X̃n

1
 and X̃n

2
 are the type-2 fuzzy sets of the IF 

part, and Ỹn is the consequent T2 fuzzy set replaced by 
Ỹ

n
=
[
ȳn, yn

]
 . ȳn and yn are the upper and lower values 

of the type-1 fuzzy system, respectively.
(c) Inference engine The type-2 fuzzy inference engine can 

combine rules and establish a mapping from the input 
type-2 fuzzy sets to the output type-2 fuzzy sets. The 
firing strength of the nth rule can be represented as fol-
lows:

(8)uX̃n
i
(xi) = exp

[
−

(
xi − m

β

)2
]

i = 1, 2

(9)u
X̃n
i

(xi) = a ⋅ exp

[
−

(
xi − m

β

)2
]

i = 1, 2

(10)THEN y is Ỹ
n

n = 1, 2,…N

(11)
Fn(�) =

[
f̄ n(�) f n(�)

]
=
[
f̄ n f n

]
n = 1, 2,…N

(12)f̄ n(�) = uX̃n
1
(x1) × uX̃n

2
(x2)

(13)f n(�) = u
X̃n
1

(x1) × u
X̃n
2

(x2)

where f̄n(�) and fn(�) are the nth upper and lower mem-
bership functions, respectively. The fuzzification with a 
minimum t-norm was applied here (Fig. 2b).

(d) Output processing Various type of reductions were 
proposed in the literature [12–14], including centroid, 
center of set, height, and modified height. The center of 
sets (COS)-type reduction was used herein to compute 
the fuzzy output. The output can be expressed as fol-
lows:

where yr is the right endpoint, and yl is the left end-
point, which is derived from the consequent centroid 
set 

[
yn
l
yn
r

]
 and the firing strength fn ∈ Fn(�) =

[
f̄
n
fn
]
 , 

respectively. yr and yl are given as follows using the 
singleton fuzzier, product inference engine, and COS 
type reducer:

with �n
r
= f n

r
∕
�∑N

i=1
f n
r

�
 , �n

l
= f n

l
∕
�∑N

n=1
f n
l

�
 , where 

�
r
=
[
y1
r
,… , yN

r

]T and �
l
=
[
y1
l
,… , yN

l

]T are the right 
and left endpoint vectors, respectively; and �r and �l are 
the regressive vectors. We briefly describe the compu-
tation procedures for the rightmost point yr . Without 
losing generality, we assume that yn

r
 is arranged in an 

ascending order (i.e., y1
r
≤ y2

r
≤ ⋯ ≤ yN

r
).

Step 1. Calculate yr in Eq. (15) by initially setting 
fn
r
= (f̄

n
+ fn)∕2 for n = 1, 2,… , N . Here f̄n and fn are 

precomputed using Eqs. (12) and (13), respectively. 
Let y′

r
 = yr.

Step 2. Find R  (  1 ≤ R ≤ N − 1 ) ,  such that 
yR
r
≤ y

�

r
≤ yR+1

r
.

Step 3. Compute yr in Eq. (15) with fn
r
= fn for n ≤ R 

and fn
r
= f̄

n for n > R , then let y′′
r
 = yr.

Step 4. If y′
r
≠ y′′

r
 , then go to step 5. If y′

r
≠ y′′

r
 , then set 

yr = y��
r
 and go to step 6.

Step 5. Set y�
r
= y��

r
 , and return to step 2.

Step 6. End.

  The number R can be obtained from two separate 
sides from the abovementioned algorithm, such that 
one side is the lower firing strengths fn’s, and another 

(14)

Ycos(�) = ∫y1
⋯∫yN ∫f 1

⋯∫f N
1∕

∑N

n=1
f nyn

∑N

n=1
f n

= [yl, yr]

(15)yr =

∑N

n=1
f n
r
yn
r∑N

n=1
f n
r

=

N�
n=1

yn
r
�n
r
= �T

r
�
r

(16)yl =

∑N

n=1
f n
l
yn
l∑N

n=1
f n
l

=

N�
n=1

yn
l
�n
l
= �T

l
�
l
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side is the upper firing strengths f̄n’s. yr can then be 
rewritten as follows:

with qn
r
= fn∕Dr , q̄nr = f̄

n
∕Dr , Dr =

R∑
n=1

fn +
N∑

n=R+1

f̄
n , 

�
r
=

[
�
r

�̄
r

]
 , �r =

[
�

r

�̄r

]
.

  The process to compute yl is similar to that used 
to compute yr . In step 2, we must determine L 
( 1 ≤ L ≤ M − 1 ), such that yL

l
≤ y

�

l
≤ yL+1

l
 . In step 3, 

let fn
l
= f̄ n for n ≤ L , and fn

l
= fn for n > L . The output 

variable ylcan then be expressed as follows:

with qn
l
= fn∕Dl , q̄nl = f̄

n
∕Dr , Dl =

L∑
n=1

f̄
n
+

N∑
n=L+1

fn , 

�
l
=

[
�̄
l

�
l

]
 , �r =

[
�

r

�̄r

]
.

(e) Defuzzifier The type reduction output is fed into the 
fuzzy defuzzification. The crisp output is calculated 
using the average value of the two endpoints, and can 
be written as follows:

(17)

yr =

∑R

n=1
f nyn

r
+
∑N

R+1
f̄ nyn

r∑R

n=1
f n +

∑N

n=R+1
f̄ n

=

R�
n=1

qn
r
yn
r

+

N�
n=R+1

q̄n
r
yn
r
=

�
�T
r
�̄T
r

���
r

�̄r

�
= �T

r
�r

(18)

yl =

∑L

n=1
f̄ nyn

l
+
∑N

L+1
f nyn

l∑L

n=1
f̄ n +

∑N

n=L+1
f n

=

L�
n=1

q̄n
l
yn
l

+

N�
n=L+1

qn
l
yn
l
=

�
�̄T
l
�T
l

���
l

�̄l

�
= �T

l
�l

(19)y(�) =
yl + yr

2
=

1

2
(�T

l
�l + �T

r
�r)

3.2  Proposed IT2FPISMC Method

The sliding mode controller in Eq. (7) can be realized when 
functions f(�) and g(�) are known in advance. The functions 
f(�) and g(�) cannot be exactly obtained in practical systems. 
Based on the universal approximation, the fuzzy systems 
f̂(�||θf ) and ĝ(�|||θg ) are designed to approach functions f(�) 
and g(�) , respectively. The adaptive PI controller combined 
with IT2FSMC was investigated herein to alleviate the chat-
tering phenomenon and enhance the steady-state response. 
Figure 3 shows the architecture of the proposed IT2FPISMC 
for a single-axis motion system. The error state s(�) in 
Eq. (4) lies in the pre-specific boundary layer ( |s| < φ , φ is 
the thickness of the boundary layer); hence, the discontinu-
ous switch term in Eq. (7) can be substituted by the continu-
ous PI scheme. The PI controller is presented as follows:

where ûp is the PI controller output; and θP and θI are the 
proportional (P) and integral (I) gains, respectively.

This can be rewritten as the following vector form:

where �p = [θp, θI]
T ∈ �2 is an adjustable parameter vector, 

and �(s) = [s(�), ∫ s(�)dt]T ∈ �2 is the regression vector. 
The control input ûp is kept at a saturation value because 
the error state is bigger than the boundary layer ( |s| ≥ φ ). 
Accordingly, the PI control input ûp can be expressed as 
follows:

(20)ûp = 𝜃P ⋅ s(�) + θI ⋅ ∫ s(�)dt

(21)ûp(s
|||�p ) = �T

p
�(s)

(22)ûp(s|�p) =
{

�T
p
�(s) |s| < φ

ηΔsgn(s) |s| ≥ φ

Fig. 3  The structure of the proposed IT2FPISMC motion control stage system
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The adaptive control law is expressed as follows:

w i t h  f̂(�||�f ) = f̂l+f̂r

2
=

�T
fl
�l+�

T
fr
�r

2
= �T

f
�f  , 

ĝ(�
|||�g ) =

ĝl+ĝr

2
=

�T
gl
�l+�

T
gr
�r

2
= �T

g
�g , ûp(s|�p) = �T

p
�(s).

The chattering of the sliding surface can be eliminated 
using a PI controller. This PI controller can be applied to 
substitute for the switching control when |s| < φ ; otherwise, 
the control input was maintained at the saturation value 
when |s| ≥ φ . Thus, ûp(�

|||θp ) = ηΔsgn(s) if |s| ≥ φ happens. 
The adaptation control law can be designed and selected as 
follows:

where γ1 > 0 , γ2 > 0 , γ3 > 0 , γ4 > 0, and γ5 > 0 are the 
adaptation rates. The abovementioned control law can be 
modified by the projection algorithm to ensure that the adap-
tive parameters are bounded [21, 23]. Parameters, Mfl , Mfr , 
Mgl , Mgr , and Mp are the prespecified boundaries of the esti-
mated vectors of �fl , �fr , �gl , �gr , and �p , respectively. Equa-
tions (24) and (25) can be modified as follows:

w i t h  Pfl(γ1s�fl) = γ1s�fl − γ1s
�fl�

T
fl
�fl

|�fl|2  , 

Pfr(γ2s�fr) = γ2s�fr − γ2s
�fr�

T
fr
�fr

|�fr|2  , where Mfl and Mfr are the 

parameter boundaries of the estimated parameters θfl and θfr , 

(23)u =
1

ĝ(�
|||�g )

[
−f̂

(
�
|||�f

)
− k1e + ẍ

d
− ûp(s|�p)

]

(24)�̇fl = γ1s�fl(�)

(25)�̇fr = γ2s�fr(�)

(26)�̇gl = γ3s�gl(�)u(t)

(27)�̇gr = γ4s�gr(�)u(t)

(28)�̇p = γ5s�(s)

(29)

�̇fl =

⎧⎪⎨⎪⎩

γ1s�fl

�����fl
��� < Mfl

�
or

�����fl
��� = Mfl and s�T

fl
�fl ≤ 0

�

Pfl

�
γ1s�fl

� �����fl
��� ≥ Mfl and s�T

fl
�fl > 0

�

(30)

�̇fr =

⎧⎪⎨⎪⎩

γ2s�fr

�����fr
��� < Mfr

�
or

�����fr
��� = Mfr and s�T

fr
�fr ≤ 0

�

Pfr

�
𝛾2s�fr

� �����fr
��� ≥ Mfr and s�T

fr
�fr > 0

�

respectively. Equations (26) and (27) can then be modified 
as follows:

w i t h  Pgl(γ3s�glu) = �3s�glu − γ3s
�gl�

T
gl
�glu

|�gl|2  , 

Pgr(γ4s�gru) = γ4s�gru − γ4s
�gr�

T
gr
�gru

|�gr|2  , where Mgl and Mgr are 

the parameter boundaries of the estimated parameters θgl and 
θgr , respectively. Equation (28) can then be modified as:

with Pp(�5s�) = �5s� − �5s
�p�

T
p
�

|�p|2  , where  Mp denotes the 

parameter boundaries of the estimated parameters θp.

3.3  Stability Analysis

Theorem 1 The nonlinear system is considered in the form 
of Eqs. (1) and (2). If the control law (23) can be used in the 
system, the functions f̂(�) , ĝ(�) , and ûp are approximated by 
Eqs. (19) and (22), and the parameter vectors of �fl , �fr , �gl , 
�gr , and �p are adjusted by adaptive laws (24)–(28), respec-
tively. The signals of the closed-loop control system are 
bounded, and the trajectory errors asymptotically converge 
to zero.

Proof The optimal parameter vectors can be defined as 
follows:

where Ωf , Ωg , and Ωp are the constant set values for �f , 
�g , and �p , respectively. The stability of the design control 
must be guaranteed by the assumption of the parameter 

(31)

�̇gl =

⎧
⎪⎨⎪⎩

γ3s�glu
�����gl

��� < Mgl

�
or

�����gl
��� = Mgl and s�T

gl
�glu ≤ 0

�

Pgl

�
γ3s�glu

� �����gl
��� ≥ Mgl and s�T

gl
�glu > 0

�

(32)

�̇gr =

⎧⎪⎨⎪⎩

γ4s�gru
�����gr

��� < Mgr

�
or

�����gr
��� = Mgr and s�T

gr
�gru ≤ 0

�

Pgr

�
𝛾4s�gru

� �����gr
��� ≥ Mgr and s�T

gr
�gru > 0

�

(33)

�̇p =

⎧⎪⎨⎪⎩

𝛾5s�(s)
�����p

��� < Mp

�
or

�����p
��� = Mp and s�T

p
�(s) ≥ 0

�

Pp

�
𝛾5s�(s)

� �����p
��� ≥ Mp and s�T

p
�(s) < 0

�

(34)�∗
f
= arg min

�f∈𝛺f

[
sup
�∈Rn

||||f̂
(
�
|||�f

)
− f (�)

||||
]

(35)�∗
g
= arg min

�g∈𝛺g

[
sup
�∈Rn

||||ĝ
(
�
|||�g

)
− g(�)

||||
]

(36)�∗
p
= arg min

�p∈𝛺p

[
sup
�∈R2

|||ûp(s|�p) − usw
|||
]
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boundaries expressed in Eq. (29)–(33). The parameters can 
be defined as follows:

with Mf =
Mfl+Mfr

2
 , Mg =

Mgl+Mgr

2
 , where Mf  , Mg , and Mp are 

positive constants. The time derivative of the sliding surface 
error function s(�) is expressed as follows:

(37)�f = {�f ∈ �n||�� | ≤ Mf }

(38)𝛺g = {�g ∈ �n|0 < ε ≤ |||�g
||| ≤ Mg}

(39)�p = {�p ∈ �2||�p| ≤ Mp}

with ω = [f(�) − f̂(x|�∗
f
)] + [g(�) − ĝ(x|�∗

g
)]u , �f = �∗

f
− �f , 

�fl = �∗
fl
− �fl , �fr = �∗

fr
− �fr�g = �∗

g
− �g , �gl = �∗

gl
− �gl , 

�gr = �∗
gr
− �gr , and �p = �∗

p
− �p , where ω is the minimum 

approximation error. The Lyapunov candidate function can 
be defined as follows:

where �n is a positive constant value ( n = 1, 2, 3, 4, 5 ). The 
time derivative of function V can be expressed as follows:

(40)

ṡ = k1ė + f (�) + g(�)u + d − ẍ
d

= f (�) − f̂
(
�
|||�f

)
+ g(�)u − ĝ

(
�
|||�g

)
u + d − ûp(s|�p)

= f̂
(
�
|||�

∗
f

)
− f̂

(
�
|||�f

)
+
[
ĝ
(
�
|||�

∗
g

)
u − ĝ

(
�
|||�g

)]
u +

[
ûp(s|�∗p) − ûp(s|�p)

]
+ ω − ûp(s|�∗p)

=
(
�∗T
f
�f − �T

f
�f

)
+
(
�∗T
g
�g − �T

g
�g

)
u +

(
�∗T
p
� − �T

p
�
)
+ d − ûp(s|�∗p) + ω

= �T
f
�f + �T

g
�gu + �T

g
� + d − ûp(s|�∗p) + ω

=
1

2

(
�T
fl
�fl + �T

fr
�fr

)
+

1

2

(
�T
gl
�gl + �T

gr
�gr

)
u + �T

p
� + d − ûp(s|�∗p) + ω

(41)
V =

1

2

(
s2 +

1

2�
1

�T
fl
�fl +

1

2�
2

�T
fr
�fr +

1

2�
3

�T
gl
�gl

+
1

2�
4

�T
gr
�gr +

1

�
5

�T
p
�p

)

with �̇fl = −�̇fl ,  �̇fr = −�̇fr  ,  �̇gl = −�̇gl ,  �̇gr = −�̇gr  , 
�̇p = −�̇p.

By substituting the adaptive laws of Eqs. (24)–(28) into 
Eq. (42), the equation can be derived as follows:

Based on the universal approximation theorem, the mini-
mum approximation error ω becomes a very small value, and 
can result in V̇ ≤ 0 . One can state [21] that all the feedback 
system signals ( s , �fl , �fr , �gl , �gr , and �p ) were bounded. 
The sliding surface error s(�) = �T� , and � was bounded if 
e(0) was bounded. This finding implied that the reference 
trajectory xd(t) was bounded, and state x(t) was bounded 
accordingly. We need to prove limt→∞ |s| = 0 to imply that 
limt→∞ |e(t)| = 0 and establish an asymptotic convergence. 
Suppose we chose variable ηd > 0 , then Eq. (43) is given 
as follows:

with ηd = (ηΔ + |ω|).

(42)

V̇ = sṡ +
1

2𝛾
1

�T
fl
�̇fl +

1

2𝛾
2

�T
fr
�̇fr +

1

2𝛾
3

�T
gl
�̇gl +

1

2𝛾
4

�T
gr
�̇gr +

1

𝛾
5

�T
p
�̇p

= s
(
1

2

(
�T
fl
�fl + �T

fr
�fr

)
+

1

2

(
�T
gl
�gl + �T

gr
�gr

)
u + �T

p
� + d − ûp(s|�∗p) + ω

)

+
1

2𝛾
1

�T
fl
�̇fl +

1

2𝛾
2

�T
fr
�̇fr +

1

2𝛾
3

�T
gl
�̇gl

+
1

2𝛾
4

�T
gr
�̇gr +

1

𝛾
5

�T
p
�̇p =

1

2𝛾
1

�T
fl

(
�̇fl + 𝛾

1
s�fl

)

+
1

2𝛾
2

�T
fr

(
�̇fr + 𝛾

2
s�fr

)
+

1

2𝛾
3

�T
gl

(
�̇gl

+ 𝛾
3
s�glu

)
+

1

2𝛾
4

�T
gr

(
�̇gr + 𝛾

4
s�gru

)

+
1

𝛾
5

�T
p

(
�̇p + 𝛾

5
s�

)
+ sd − sûp(s|�∗p) + sω

≤ 1

2𝛾
1

�T
fl

(
�̇fl + 𝛾

1
s�fl

)
+

1

2𝛾
2

�T
fr

(
�̇fr + 𝛾

2
s�fr

)

+
1

2𝛾
3

�T
gl

(
�̇gl + 𝛾

3
s�glu

)
+

1

2𝛾
4

�T
gr

(
�̇gr + 𝛾

4
s�gru

)

+
1

𝛾
5

�T
p

(
�̇p + γ

5
s�

)
+ sd − s

(
ηΔ + D

)
sgn(s) + sω

(43)
V̇ ≤ sd − s

(
ηΔ + D

)
sgn(s) + sω

= sd − |s|(ηΔ + D
)
+ sω

≤ −|s|ηΔ + sω ≤ 0

(44)V̇ ≤ −|ω||s| − ηΔ|s| ≤ −𝜂d|s|
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Integrating the above equation with respect to time, it 
yields:

V(0) is bounded, and V(t) is non-increasing and bounded. 
Hence, we find that the sliding surface error s(�) is bounded, 
implying that s ∈ L∞ [21]. With the use of Barbalat’s lemma 
[1], s(�) will converge to zero as t → ∞ . This lemma also 
implies that limt→∞ |e(t)| = 0 . Thus, the designed system is sta-
ble, and the error will asymptotically converge to zero. There-
fore, the stability of our developed IT2FPISMC is guaranteed.

4  Experimental Results

4.1  Contour Planning

Contour planning plays an important role in the control of 
a precise XY table. The mathematical NURBS method was 
used herein to generate the curve trajectory. The general 
form of the NURBS curve interpolator can be expressed as 
follows:

where { Vi } denotes the control points; { wi } denotes the 
weights of { Vi }; { wiVi } denotes the weighted control 
points; { A(p) } is the weighted B-spline; { w(p) } is the 
weighting function; kd is the degree of the NURBS curve; 
and (I + 1) is the number of control point. { Ni,kd

(p) } is the kth
d

-degree B-spline basis function, and { Ri,kd
(p) } is the rational 

B-spline basis function. The kth
d

-degree B-spline basis func-
tion can be expressed as follows:

(45)

t

�
0

|s(�)|d� ≤ 1

�d
[V(0) − V(t)]

(46)C(p) =

I�
i=0

Ri,kd
(p)Vi =

∑I

i=0
Ni,kd

(p)wiVi∑I

i=0
Ni,kd

(p)wi

=
A(p)

w(p)

(47)Ri,k(u) =
Ni,kd

(p)wi∑I

i=0
Ni,kd

(p)wi

(48)Ni,0(p) =

{
1 for p1 ≤ p ≤ pi+1
0 otherwise

(49)

Ni,kd
(p) =

(
p − pi

)
(
pi+kd−1 − pi

)Ni,kd−1
(p)

+

(
pi+kd − p

)
(
pi+kd − pi+1

)Ni+1,kd−1
(p)

i = 0, 1, 2,… , I

where � =
{
p0, p1,… , pI+kd

}
 represents the knot vector.

Four contour shapes were applied for this proposed adap-
tive IT2FPISMC control system, namely circular, bowknot, 
heart, and star curves. To generate these contours, the degree 
of the NURBS curve kd , control points � , knot vectors � , 
and weights of the NURBS curve � are expressed as follows:

1. Circular contour: The parameters of the NURBS curve 
are set as follows:

2. Bowknot contour: The parameters of the NURBS curve 
are set as follows:

3. Heart contour: The parameters of the NURBS curve are 
set as follows:

4. Star contour: The parameters of the NURBS curve are 
set as follows:

(50)kd = 2

(51)

� = [V0,V1,V2,V3,V4,V5,V6] = [(2.5, 0), (2.5, 2.5), (−2.5, 2.5), (−2.5, 0),

(−2.5,−2.5), (2.5,−2.5), (2.5, 0)] (unit ∶ cm, cm)

(52)

� = [P
0
,P

1
,P

2
,P

3
,P

4
,P

5
,P

6
,P

7
,P

8
,P

9
]

= [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]

(53)
� =

[
w0,w1,w2,w3,w4,w5,w6

]
= [1, 0.5, 0.5, 1, 0.5, 0.5, 1]

(54)kd = 2

(55)

� = [V0,V1,V2,V3,V4,V5,V6] = [(0, 0), (−1.5,−1.5),

(−1.5, 1.5), (0, 0), (1.5,−1.5), (1.5, 1.5), (0, 0)]

(unit ∶ cm, cm)

(56)

� = [P
0
,P

1
,P

2
,P

3
,P

4
,P

5
,P

6
,P

7
,P

8
,P

9
]

= [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]

(57)
� =

[
w0,w1,w2,w3,w4,w5,w6

]
= [1, 2.5, 2.5, 1, 2.5, 2.5, 1]

(58)kd = 2

(59)

� = [V0,V1,V2,V3,V4,V5,V6] = [(0, 0), (−3, 2), (−2, 5),

(0, 3.6), (2, 5), (3, 1), (0, 0)] (unit: cm, cm)

(60)

� = [P
0
,P

1
,P

2
,P

3
,P

4
,P

5
,P

6
,P

7
,P

8
,P

9
]

= [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]

(61)
� =

[
w0,w1,w2,w3,w4,w5,w6

]
= [1, 1, 1, 1, 1, 1, 1]
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Figure 4a–d depict the desired contours of the circle, 
bowknot, heart, and star, respectively, based on the 
abovementioned parameter setting.

4.2  Parameter Setting and Performance 
Measurement

The experiments were conducted to fulfill the performances 
of the adaptive IT2FPISMC control. The contour error is 
the difference between the desired contour and the real con-
tour. The average tracking error (ATE) Em can be defined 
as follows:

(62)kd = 2

(63)

� = [V0,V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12]

= [(0, 6), (−0.5, 6), (−1.5, 4), (−4, 4), (−2, 2), (−2.5, 0), (0, 1.5),

(2.5, 0), (2, 2), (4, 4)(1.5, 4), (0.5, 6), (0, 6)] (unit ∶ cm, cm)

(64)

� = [P
0
,P

1
,P

2
,P

3
,P

4
,P

5
,P

6
,P

7
,P

8
,P

9
,P

10
,P

11
,P

12
,P

13
,P

14
]

= [0, 0, 0, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 1, 1, 1]

(65)

� =

[
w0,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12

]

= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

with E(k) =
√

e2
x
(k) + e2

y
(k) , where e

x
(k) is the tracking 

error in the x-axis; e
y
(k) is the tracking error in the y-axis; 

and K is the total number of contour points. The tracking 
error standard deviation (TESD), ESTD , can be written as 
follows:

The ATE is used to compare the tracking trajectory perfor-
mance, whereas the TESD is used to measure the oscilla-
tion of the contour tracking. Three types of control algo-
rithms are compared herein: (a) the conventional PID control 
method, (b) the conventional IT2FSMC method with sign 
function, and (c) the proposed IT2FPISMC method. The 
membership functions for the fuzzy controllers f̂(�) and ĝ(�) 
are designed as follows:

(66)Em =

K∑
k=1

E(k)

n

(67)ESTD =

�∑K

k=1
(E(k) − Em)

2

K

Fig. 4  The designed NURBS 
curves, a circular contour, b 
bowknot contour, c heart con-
tour, and d star contour
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with a =

{
0.8 i = 1

0.5 i = 2
 , where x1 and x2 are the position and 

the velocity variables, respectively. The initial state was 
selected as �(0) = [x1(0), x2(0)]

T = [1, 0]T . We set all initial 
values of �fl(0) , �fr(0) , �gl(0) , and �gr(0) to be 0.1 and �p(0) 
to be [0.02, 0.04]T . The 25 adjusted variables existed in these 
regressive vectors. The sampling frequency of our 
IT2FPISMC system was 1 kHz for the position loop.

4.3  Experimentation

The proposed control algorithms in the experiments were 
realized and implemented. A platform with 1 kHz sample 
frequency was applied for the encoder interface and control 
algorithm execution. The system read the position infor-
mation of the XY stage from the optical encoder sensors. 
The tracking errors and their derivatives were then com-
puted. The control commands according to our proposed 
IT2FPISMC algorithm were calculated and sent to the servo 
drive by two DAC interfaces. Table 1 shows the parameter 
settings used for the x- and y-axes in the following experi-
ments. These parameters were determined by empirical rules 
to achieve a better transient and steady-state response in the 

u
X̃
n

1

(x
i
) = exp[−((x

i
+ 𝜋∕12)∕(𝜋∕18))2],

u
X̃
n

1

(x
i
) = a ⋅ exp[−((x

i
+ 𝜋∕12)∕(𝜋∕24))2]

u
X̃
n

2

(x
i
) = exp[−((x

i
+ 𝜋∕6)∕(𝜋∕18))2],

u
X̃
n

2

(x
i
) = a ⋅ exp[−((x

i
+ 𝜋∕6)∕(𝜋∕24))2]

u
X̃
n

3

(x
i
) = exp[−((x

i
)∕(𝜋∕18))2],

u
X̃
n

3

(x
i
) = a ⋅ exp[−((x

i
)∕(𝜋∕24))2],

u
X̃
n

4

(x
i
) = exp[−((x

i
− 𝜋∕6)∕(𝜋∕18))2],

u
X̃
n

4

(x
i
) = a ⋅ exp[−((x

i
− 𝜋∕6)∕(𝜋∕24))2]

u
X̃
n

5

(x
i
) = exp[−((x

i
− 𝜋∕12)∕(𝜋∕18))2],

u
X̃
n

5

(x
i
) = a ⋅ exp[−((x

i
− 𝜋∕12)∕(𝜋∕24))2],

experimentation condition considering the stability require-
ment. The tracking performances are illustrated as follows:

1. Circular contour It shows the experimental results of the 
proposed IT2FPISMC controller for the circle contour 
in Fig. 5. The total control point was seven. Figure 4a 
presents the reference trajectory. Figure 5a, b illustrate 
the x- and y-axis direction responses, respectively. Fig-
ure 5c, d depict the x- and y-axis tracking errors. The 
stage position of each axis can precisely track the desired 
command. Figure 5e illustrates the tracking responses of 
the motion trajectory of the two-dimensional circular 
contour. Figure 6a–e show the experimental results of 
the conventional IT2FSMC method with sign function. 
The displacement errors can be effectively reduced and 
lie within 30 µm as the proposed control method was 
being developed. The ATE of our proposed scheme was 
22.346 µm, and the TESD was 4.632 µm.

2. Bowknot contour We selected seven control points in the 
bowknot contour. Figure 4b shows the corresponding 
tracking trajectory. Figure 7a–e present the experiment 
results of the XY stage system for the IT2FPISMC struc-
ture, including tracking responses, associated tracking 
errors, and bowknot trajectory. These results indicated 
that both axes exhibited small error responses, and the 
tracking performances can be guaranteed. The tracking 
contours were close to the reference paths, and the dis-
placement errors were significantly reduced in the track-
ing process. Figure 8a–e show the experimental results 
of the conventional IT2FSMC method with sign func-
tion for bowknot trajectory. The ATE was 15.956 µm, 
and the associated TESD for the bowknot curve was 
12.132 µm. Our proposed scheme had a favorable accu-
racy, and the maximum position error can be controlled 
within 50 µm.

3. Heart contour The total control point in the heart con-
tour was seven. Figure 4c shows the associated trajec-
tory. The tracking performances, tracking errors, and 

Table 1  Experimental 
parameters

Controller methods Parameters setting

The PID method Kp = 200, Ki = 20, Kd = 10
The conventional IT2FSMC method (sgn)
 X-axis γ1x = 0.06 , γ2x = 0.06 , γ3x = 0.08 , γ4x = 0.08 , k1 = 50 , ηΔ = 1

 Y-axis γ1y = 0.06 , γ2y = 0.06 , γ3y = 0.08 , γ4y = 0.08 , k1 = 50 , ηΔ = 1

The proposed IT2FPISMC method
 X-axis γ1x = 0.06 , γ2x = 0.06 , γ3x = 0.08 , γ4x = 0.08 , 

γ5x = 0.04 , k1 = 50 , ηΔ = 1 , φ = 0.5 , 
Mfl = Mfr = Mgl = Mgr = Mp = 10

 Y-axis γ1y = 0.06 , γ2y = 0.06 , γ3y = 0.08 , γ4y = 0.08 , 
γ5y = 0.04 , k1 = 50 , ηΔ = 1 , φ = 0.5 , 
Mfl = Mfr = Mgl = Mgr = Mp = 10
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Fig. 5  Experimental results obtained using IT2FPISMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e circular trajectory
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Fig. 6  Experimental results obtained using IT2FSMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e circular trajectory
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Fig. 7  Experimental results obtained using IT2FPISMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e bowknot curve trajectory
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Fig. 8  Experimental results obtained using IT2FSMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e bowknot curve trajectory
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Fig. 9  Experimental results obtained using IT2FPISMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e heart curve trajectory
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tracking trajectory for the x- and y-axes are demon-
strated in Fig. 9a–e, respectively. The performances of 
the transient and steady responses illustrated the robust-
ness of the proposed structure under parameter uncer-
tainties and external disturbances. Figure 10a–e show 
the experimental results of the conventional IT2FSMC 
method with sign function for heart contour. The ATE of 
our proposed scheme was 21.539 µm, while the TESD 
for the heart contour was 7.846 µm.

4. Star trajectory We designed the total control point as 
13. Figure 4d shows the reference outline. Figure 11a–e 
show the tracking responses of the position displace-
ment, tracking error, and motion trajectory in the star 
contour, respectively. The proposed adaptive structure 
can handle the model uncertainty and alleviate the chat-
tering phenomenon. Figure 12a–e show the experimental 
results of the conventional IT2FSMC method with sign 
function for star trajectory. The ATE of our proposed 
method was 15.350 µm, and the TESD was 6.085 µm. 
The proposed controller can guarantee the asymptotic 
stability and exhibit a better tracking capability.

Table 2 shows both the tracking errors of our IT2FPISMC 
method and those of the traditional PID and IT2FSMC meth-
ods. The proposed IT2FPISMC method demonstrated more 
accurate performances, showing a 21.33% improvement in 
the ATE and a 34.64% improvement in the TESD compared 
with the conventional IT2FSMC method. These results 
conclude that the proposed IT2FPISMC system achieved 
the lowest ATE and TESD tracking errors. Our proposed 
structure was robust with respect to unmodeled dynamics 
and external disturbances for different reference contours. 
In summary, the IT2FPISMC approach achieves the desired 
tracking performances while ensuring the robustness of the 
precision system (Figs. 5, 7, 9, 11).

5  Conclusion

The development of an IT2FPISMC control system for 
tracking the various contours was successfully demonstrated 
in this research. A type-2 fuzzy control structure that can 
handle the rules and parameter uncertainties was designed 
to approximate the unknown nonlinear function in the indus-
trial XY-driven motion stage. Moreover, the fuzzy PI sliding 
mode control was more robust against external disturbances 
and alleviated the chattering condition. The adjustable 
parameter vectors of the adaptive type-2 fuzzy controller 
can be adaptively tuned by the output feedback control law, 
and asymptotic stability was guaranteed based on the Lya-
punov synthesis approach. The real-time NURBS interpo-
lation was realized. Accordingly, four contour trajectories, 
namely circular contour, bowknot contour, heart contour, 
and star contour, were experimented to illustrate the effec-
tiveness of the proposed system. The experimental results 
were obtained, showing that the indirect control IT2FPISMC 
method can deal with chattering and significantly alleviate 
the contour errors. On average, it can achieve 21.33% and 
34.64% improvement of the ATE and the TESD, respec-
tively, compared with the conventional IT2FSMC strategy. 
From the performance indices of the experimental results, 
the proposed scheme can achieve good control performance 
and superior robustness for the two-axis trajectory control 
with regard to model uncertainties and external disturbances. 
Therefore, our developed strategy can be easily realized and 
implemented for positioning systems.
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Table 2  Experimental results of 
contour tracking errors

Trajectory contour The PID method The conventional IT2FSMC 
method (sgn)

The proposed 
IT2FPISMC 
method

Average tracking error Em ( μm)
 Circular curve 69.046 29.980 22.346
 Bowknot curve 78.456 19.045 15.956
 Heart curve 79.607 29.147 21.539
 Star curve 53.704 17.407 15.350
 Average 70.203 23.894 18.797

Tracking error standard deviation ESTD ( μm)
 Circular curve 27.296 7.183 4.632
 Bowknot curve 56.989 18.069 12.132
 Heart curve 44.262 12.604 7.846
 Star curve 46.112 9.100 6.085
 Average 43.665 11.739 7.673
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Fig. 10  Experimental results obtained using IT2FSMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e heart curve trajectory
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Fig. 11  Experimental results obtained using IT2FPISMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, 
c X-axis position tracking error, d Y-axis position tracking error, and e star curve trajectory



816 International Journal of Precision Engineering and Manufacturing (2020) 21:797–818

1 3

Fig. 12  Experimental results obtained using IT2FSMC to control the two-axis stage. a X-axis direction response, b Y-axis direction response, c 
X-axis position tracking error, d Y-axis position tracking error, and e star curve trajectory
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