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Abstract
This paper presents the implementation of nonlinear least squares and iterative linear least squares algorithms for exter-
nal kinematic calibration of a hybrid kinematics machine composed of two 3PRR planar parallel kinematics mechanisms 
by utilizing a laser tracker. First the hand-eye and robot-world transformations were obtained by a separable closed-form 
solution and refined by the nonlinear least squares. Subsequently, the geometric parameters of the machine’s mechanisms 
were estimated using the two algorithms. Due to the rank deficiency, we implemented the nonlinear least squares algorithm 
through a subset selection approach in which we performed the estimation in two steps. We iterated the closed-form solution 
of the linear least squares until the solution converges to the actual values. We have shown that the nonlinear least squares 
algorithm successfully refined the hand-eye and robot-world transformations and outperformed the iterative linear squares 
algorithm in the estimation of the geometric parameters of the mechanisms.

Keywords Calibration · Planar parallel mechanism · Hybrid kinematics · Least squares

1 Introduction

The parallel kinematics mechanisms (PKMs) which consist 
of a base, some legs, and a moving platform in a closed-
chain configuration have been proposed and developed to 
achieve more accuracy in the precision manipulation. Fur-
thermore, hybrid kinematics machines (HKMs) have been 
introduced and developed to integrate the advantages of both 
the serial kinematics mechanism (SKM) and PKM. Any of 
the three schemes can compose an HKM: (1) serially con-
necting two or more PKMs, (2) serially connecting a PKM 
with an SKM, or (3) serially combining two or more PKMs, 
or a PKM with an SKM, through a rigid connection. In the 
third scheme, the rigid connection is considered a type of 
serial connection. In some applications such as machining, 
a PKM is typically used together with an SKM or another 
PKM and therefore becomes an HKM. Moreover, more 
attention has been given to the use of lower degree-of-free-
dom (DOF) PKMs due to less complexity in their modeling. 

For a precision manipulation, an accurate pose of the mov-
ing platform is the aim to be achieved during its controlled 
motion. Since the control is commonly performed in the 
joint space, forward kinematics of the mechanism is required 
to transform the active joint positions to the pose of the mov-
ing platform. As the trajectory is commonly planned in the 
task space, inverse kinematics is needed to transform the 
planned trajectory to the joint space in which the control is 
applied. Consequently, the accuracy of the kinematics affects 
positioning accuracy. A kinematic calibration is commonly 
conducted to estimate the kinematic parameters accurately 
and subsequently, a compensation is performed by correct-
ing the software, which is, in this case, the kinematics of 
the machine.

In general, the kinematic calibration can be either an 
external calibration, a constrained calibration, or a self-cal-
ibration [1]. The external and constrained calibration can 
be conducted offline, and the number of calibration poses is 
usually limited. Here the number and the choice of the cali-
bration poses become an issue. The number of the calibra-
tion poses should be adequate, whereas the selection of the 
calibration poses is shown to be vital as it affects the quality 
of the calibration. According to Bai and Theo [2], the opti-
mal number of calibration poses is 10 or more. Moreover, 
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a full pose measurement typically requires less number of 
calibration poses to get an accurate estimation [1].

In a nutshell, the kinematic calibration is performed by 
firstly determining the parameters to be calibrated, followed 
by modeling, measurement (data collection), identification 
(estimation), and compensation (correction) [3, 4]. Various 
algorithms in the identification stage are used to minimize 
the residual error. To mention some of them in the kine-
matic calibration of PKMs and HKMs, Vischer and Clavel 
[5] used the Levenberg–Marquardt algorithm for kinematic 
calibration of a Delta robot. Yang et al. [6] used a linear 
least squares algorithm for kinematic calibration of a spa-
tial 3-DOF PKM. Patel and Ehmann [7] as well as Iurascu 
and Park [8] applied the total least squares algorithm for 
kinematic calibration of PKMs. Yu [9] used nonlinear least 
squares for kinematic calibration of a hexapod. Wang et al. 
[10] used minimal linear combinations of error parameters 
for kinematic calibration of a spatial 3-DOF PKM in a five-
axis HKM milling machine. Wang et al. [11] applied the 
Markov Chain Monte Carlo method for kinematic calibra-
tion of an HKM. Liu et al. [12] proposed the use of the 
genetic algorithm for kinematic calibration of a Stewart plat-
form while Fan et al. [13] proposed it for an HKM polishing 
machine.

While researchers [14, 15] investigate the kinematic 
calibration of five-axis SKMs, this paper discusses the kin-
ematic calibration of a five-axis HKM. This paper uses an 
external kinematic calibration of an HKM machine tool 
utilizing two different identification algorithms, namely a 
nonlinear least squares algorithm and an iterative linear least 
squares algorithm. In particular, a subset selection approach 
is proposed to overcome the rank deficiency in the nonlinear 
least squares algorithm. Furthermore, an iteration is intro-
duced to be used in the linear least squares to achieve a 
solution convergence. This scheme is the first novelty of this 
paper. The implementation of the two algorithms as well as 
a comparison of the estimation accuracy provided by both 
algorithms is presented. This comparative study is another 
contribution of this paper. The HKM machine tool was built 
by conjugating two lower-DOF, planar PKMs having a simi-
lar topology but different geometric parameters. The planar 
state of the PKMs as will be shown results in a configuration 
degeneracy which indicates unidentified parameters in the 
off-plane direction of the mechanism. A physical adjustment 
should be conducted to impose a certain value, typically zero 
for convenience, of the unidentified parameters. The imple-
mentation of the mentioned algorithms to this new topology 
of HKM composed of planar PKMs is another novelty of 
this paper.

Laser tracker, which is capable of providing a full pose 
measurement, was used to conduct the kinematic calibration. 
The laser tracker offers a high accuracy pose measurement 
with easy use, although it is relatively expensive [16]. It was 

mentioned earlier that a minimum of ten calibration poses 
should be used while a full pose measurement can reduce 
the required number of calibration poses. Accordingly, a full 
pose measurement of twelve unique poses is taken in this 
work. The unrepeated coordinate values for each DOF of the 
poses provide the uniqueness of the poses. The geometric 
parameters of the PKMs, which include the length of all the 
legs and the moving platform as well as the position of the 
joints connecting the legs with the moving platform, and the 
actual relative position between the two conjugated PKMs 
are the parameters to be calibrated. The model function to 
be used in the calibration is the forward kinematics of the 
machine’s mechanisms. Finally, the accuracy improvement 
was evaluated after performing the compensation.

This paper is organized into several sections. Section 1 
gives an introduction to the paper and describes its novelty. 
Section 2 provides the kinematics of the individual mecha-
nism and subsequently presents the solution of its forward 
kinematics by using both Euler angles and quaternions rep-
resentations. The quaternions are used to overcome the for-
mulation singularity. Section 3 presents the hand-eye and 
robot-world calibration which should be performed before 
the calibration of the mechanism geometric parameters. Sec-
tion 4 presents the kinematics of the complete mechanism 
with the external measurement device in the setup. Sec-
tion 5 presents the use of nonlinear least squares to refine 
the hand-eye and robot-world calibration and to estimate the 
mechanism geometric parameters. Section 6 presents the use 
of iterative linear least squares to estimate the mechanism 
geometric parameters. In Sect. 7, the estimates of the mecha-
nism geometric parameters obtained by both the nonlinear 
least squares and the iterative linear least squares are used 
for compensation. The accuracy of the position tracking cor-
responding to the estimates obtained by the two algorithms 
is compared. Finally, Sect. 8 concludes the paper.

2  Kinematics of the Individual Mechanism

2.1  Kinematics Equations

The HKM calibrated in this work is used for five-axis 
machining and composed by the third scheme of hybridiza-
tion. A PKM which serves as the workpiece platform (lower 
platform) is conjugated with another PKM as the spindle 
platform (upper platform). Both the lower and upper plat-
forms use planar PKMs because they are easier to design 
than spatial PKMs and more geometrical constraints on 
the DOFs will minimize the error due to joints’ errors. The 
lower and upper platforms use an identical PKM topology 
called the 3PRR, planar PKM as depicted in Fig. 1a and 
optimized to a simpler topology as shown in Fig. 1b. This 
PKM has three DOFs which adequately enable required 
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general motion consisting of translation in X-axis, trans-
lation in Y-axis, and rotation about the Z-axis, where the 
three axes are orthogonal and follow the right-hand rule. 
It consists of a fixed base, three legs, a moving platform, 
and several joints. The joints used in an order starting from 
the fixed base are prismatic (P) joints, revolute (R) joints 
which connect the sliders with the legs, and other revolute 
(R) joints which connect the legs with the moving platform. 
Therefore, the mechanism is called the 3PRR PKM. The 
prismatic joints are actuated, have translation along X-axis, 
and are implemented by using sliders moving along the 
base through guideway. The use of the sliders creates more 
workspace and enables the moving platform to move upward 
and downward as well as to tilt. The actuation is provided 
by linear motors which give more accuracy compared with 
pneumatic/hydraulic pistons and lead screws.

In this proposed mechanism, three legs are required to con-
strain the mechanism fully. Furthermore, two neighboring legs 
are maintained in a crossing configuration to avoid singularity 
as well as maximize the useful workspace and the stiffness of 
the mechanism. Point (x, y) in the moving platform is used to 
evaluate the general motion of the moving platform. Any other 

point in the moving platform can also be used as the moving 
platform is rigid. The selection of point (x, y) is mainly for 
more convenience. Besides, the orientation of the platform is 
defined as the angle made by the platform with respect to the 
fixed base. Upon the dimensional optimization of the mecha-
nism by considering its workspace, stiffness magnitude, and 
stiffness uniformity, the mechanism is simplified to a topology 
with two coincident upper joints as shown in Fig. 1b. As a 
result, xp2 = xp3 = xp. The optimization procedure is discussed 
in [17]. Figure 2 shows the hybrid scheme of the machine. The 
conjugation of the two planar PKMs in perpendicular direc-
tions easily creates the required spatial workspace and provides 
six DOFs.

The tool spindle is oriented horizontally to avoid redun-
dancy between the rotation of the spindle and the rotation of 
the upper mechanism. This results in the proposed five-axis 
machine configuration. The five-axis machine has translational 
DOFs in x, y, and z directions as well as rotational DOFs about 
the Z and Y axes. Moreover, there is a redundancy between 
the two mechanisms in the X translational motion. This redun-
dancy is advantageous as it provides an additional workspace 
in the x-direction. However, this also results in more com-
plexity in determining which mechanism to move when a 
translation in the x-direction is required. In this case, one can 
pre-determine which mechanism is fixed while another mecha-
nism is moved. A more systematic approach is a determination 
using an optimization scheme based on a defined objective 
to be optimized, such as energy consumption (control effort), 
accuracy, or stiffness.

The kinematics equations of the proposed parallel mecha-
nism can be obtained easily by the algebraic approach. Accord-
ing to the geometry of the mechanism shown in Fig. 1, the 
following geometric relations are found for the legs:

(1)L2
1
= (x + xp2 cos � − x1)

2 + (y + xp2 sin �)
2

Fig. 1  Schematic of the a general and b optimized mechanism topol-
ogy (with the Z-axis perpendicular to the paper through the origin)

Fig. 2  The prototype of the hybrid kinematics machine
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In this paper, only the forward kinematics of the mechanism 
is discussed as it is required in the kinematic calibration.

The kinematics of the mechanism has the following 
constraints:

where ymax and xmax are the vertical and horizontal limits 
of the machine volume having the numerical values of 
1200 mm and 1700 mm, respectively. Those constraints 
indicate that the mechanism should always be inside the 
specified machine volume, the sliders should not interfere 
with each other, and two adjacent legs must always be cross-
ing each other.

2.2  Forward Kinematics with Known θ

The complete forward kinematics of the mechanism at hand 
which includes the determination of the angle θ can be seen 
in [17]. In this paper, only the determination of x and y given 
the angle θ is presented for the kinematic calibration pur-
pose. In the case of a known θ, the value of x and y can be 
obtained through a more straightforward derivation. Let us 
rearrange the kinematics Eqs. (1), (2), and (3) in the follow-
ing set of equations:

Collecting x and y in (5)–(7) in the left-hand sides yields:

(2)L2
2
= (x − x2)

2 + (y)2

(3)L2
3
= (x + xp3 cos � − x3)

2 + (y + xp3 sin �)
2

(4)

0 ≤ L1 ≤ ymax

0 ≤ L2 ≤ ymax

0 ≤ L3 ≤ ymax

0 ≤ xp2 ≤ xp3 ≤ xmax

L1 + L2 − xp2 ≤ xmax

L1 + L3 − xp2 + xp3 ≤ xmax

(5)
x2 + y2 + 2xxp2 cos � + 2yxp2 sin �

− 2x1x − 2x1xp2 cos � = L2
1
− x2

1
− x2

p2
= c1

(6)x2 + y2 − 2x2x = L2
2
− x2

2
= c2

(7)
x2 + y2 + 2xxp3 cos � + 2yxp3 sin �

− 2x3x − 2x3xp3 cos � = L2
3
− x2

3
− x2

p3
= c3

(8)
x2 − (2x1 + 2xp2 cos �)x + y2 + (2xp2 sin �)y

= 2x1xp2 cos � + L2
1
− x2

1
− x2

p2
= c4

Furthermore, subtracting (9) from (8) and (10) yields a 
more compact set of equations as follows:

where

Equations (11) and (12) have to be solved simultaneously 
as x and y exist in both of the equations. The solution is 
given by:

2.3  Forward Kinematics Using Quaternion

Observing the solution of the forward kinematics given in 
(13) and (14), we realize that division by zero occurs when 
θ = 0 and therefore b = 0. In this situation, x still can be 
solved by using (13) by converting zero θ to a minimal value 
near (above or under) zero. The effect of the closeness of θ to 
zero can be evaluated by observing the value of the solution, 
i.e. x and y, as well as the corresponding links’ dimension 
if we apply the solution. The latter shows a more obvious 
effect. After scanning some values of θ close to zero, it is 
shown that θ should not be larger than 1 × 10−5. This will 
give an accurate solution to four decimal places. Using a 
closer value of θ to zero increases further the accuracy. 
Table 1 shows the values of the link lengths corresponding 

(9)x2 − (2x2)x + y2 = L2
2
− x2

2
= c2

(10)
x2 − (2x3 + 2xp3 cos �)x + y2 + (2xp3 sin �)y

= 2x3xp3 cos � + L2
3
− x2

3
− x2

p3
= c5

(11)
(−2x1)x + (2xp2 cos �)x + (2x2)x

+ (2xp2 sin �)y = ax + by = c4 − c2 = c

(12)x2 − (2x2)x + y2 = L2
2
− x2

2
= c2

a = −2x1 + 2x2 + 2xp2 cos �

b = 2xp2 sin �

c = c4 − c2

d = −2x3 + 2x2 + 2xp3 cos �

e = 2xp3 sin �

f = c5 − c2

(13)x =

(
f −

ec

b

d −
ea

b

)

(14)y =
c − ax

b
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to different values of θ near zero, given the expected actual 
values of L1= 600 mm, L2 = 600 mm, and L3 = 750 mm.

On the other hand, division by zero in (14) is very sensi-
tive. Even a minimal value of θ replacing an exact zero θ 
leads to a significant error in the solution, i.e. the value of 
y. Therefore, (14) cannot be used to solve for y in the case 
of zero tilting angle of the moving platform. In such a case, 
either one of the following two ways can be used. First, using 
an iterative technique by spanning over possible values of 
y and checking with the inverse kinematics. For any set of 
x, y, and θ, it should be observed if it retrieves a known set 
of x1, x2, and x3. However, the accuracy of this technique is 
affected by the interval of y used in the iteration. Besides, 
this technique is computationally intensive. Second, solving 
the forward kinematics by using quaternion. The reason for 
using the quaternion is because a formulation singularity 
causes this problem due to the use of Euler angle θ. There-
fore, avoiding using the Euler angle by using the quaternion 
will avoid the formulation singularity.

Recall the mechanism at hand defined by some position 
vectors as shown in Fig. 3. The geometric relations in the 
mechanism can also be written using a vectorial approach 
as follows:

(15)

rp = X2 + R2S2

rp = X1 + R1S1 − R4Sp2

rp = X3 + R3S3 − R4Sp3

Using Euler angles, (15) can be expanded to the following:

From (16), we know that we have six equations with nine 
variables, i.e. x, y, θ, α1, α2, α3, x1, x2, and x3. However, three 
variables among the nine variables are known. In other words, 
we have six equations with six unknowns.

A quaternion can be written as:

where i, j, and k are the unit vectors in x, y, and z directions, 
respectively.

A rotation in a three-dimensional space can be repre-
sented by a rotation matrix R in terms of quaternions as 
follows:

The rotation of the legs and the moving platform of the 
mechanism, which is about the Z-axis, can be written in the 
quaternion notation in terms of the Euler angles α1, α2, α3, 
and θ as follows:

Substituting any of (19)–(20) into (18) as they have a 
similar form to get the corresponding rotation matrix, the 
rotation about the Z-axis can be written in a rotation matrix 
in terms of the quaternions as follows:

(16)

x = x2 + L2 cos �2

y = L2 sin �2

x = x1 + L1 cos �1 − xp2 cos �

y = L1 sin �1 − xp2 sin �

x = x3 + L3 cos �3 − xp3 cos �

y = L3 sin �3 − xp3 sin �

(17)q = q0 + q1 î + q2 ĵ + q3k̂ =
[
q0 q1 q2 q3

]T

(18)

R =

⎡⎢⎢⎣

1 − 2
�
q2
2
+ q2

3

�
2
�
q1q2 + q0q3

�
2
�
q0q2 − q1q3

�
2
�
q1q2 + q0q3

�
1 − 2

�
q2
1
+ q2

3

�
2
�
q2q3 − q0q1

�
2
�
q1q3 − q0q2

�
2
�
q0q1 − q2q3

�
1 − 2

�
q2
1
+ q2

2

�
⎤⎥⎥⎦

(19)q
�
�i

�
=

⎡⎢⎢⎢⎣

q0(�i)

q1(�i)

q2(�i)

q3(�i)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

cos
�
�i∕2

�
0

0

sin
�
�i∕2

�

⎤⎥⎥⎥⎦
; i = 1, 2, 3

(20)q(�) =

⎡⎢⎢⎢⎣

q0(�)

q1(�)

q2(�)

q3(�)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

cos (�∕2)

0

0

sin (�∕2)

⎤⎥⎥⎥⎦

(21)R =

⎡⎢⎢⎣

1 − 2q2
3
−2q0q3 0

2q0q3 1 − 2q2
3
0

0 0 1

⎤⎥⎥⎦

Table 1  The link lengths corresponding to values of θ near zero when 
solving for x

θ = 1 × 10−3 θ = 1 × 10−4 θ = 1 × 10−5

L1 (mm) 600.0025 600.0003 600.0000
L2 (mm) 600.0000 600.0000 600.0000
L3 (mm) 750.0040 750.0004 750.0000

Fig. 3  The position vectors defined in the mechanism
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Now we can express the geometric relations (16) by utilizing 
the rotation matrices in terms of the quaternions (21):

Furthermore, we can write the unit norm constraints of the 
quaternions as follows:

Since in this case:

then we can rewrite (28)–(29) as follows:

To this point, we can see that we have ten equations with thirteen 
variables, i.e. x, y, q0(α1), q3(α1), q0(α2), q3(α2), q0(α3), q3(α3), q0(θ), 
q3(θ), x1, x2, and x3. However, three variables among the 13 variables 
are known. In other words, we have ten equations with ten unknowns.

For ease, x can be computed using (13). When θ is zero, 
we can replace it with a small value near zero to accurately 
compute x. Once θ and x are obtained, we can use any pair 
of (22)–(23), (24)–(25), or (26) – (27). Using (22)–(23) is 
easier since we do not involve q3(θ) for which we need to 
convert θ to get q3(θ). From (22), we have:

Substituting (33) into (31), we obtain the following:

(22)x = x2 + L2(1 − 2q3(�2)
2)

(23)y = 2L2q0(�2)q3(�2)

(24)x = x1 + L1(1 − 2q3(�1)
2) − xp2(1 − 2q3(�)

2)

(25)y = 2L1q0(�1)q3(�1) − 2xp2q0(�)q3(�)

(26)x = x3 + L3(1 − 2q3(�3)
2) − xp3(1 − 2q3(�)

2)

(27)y = 2L3q0(�3)q3(�3) − 2xp3q0(�)q3(�)

(28)q0(�i)
2 + q1(�i)

2 + q2(�i)
2 + q3(�i)

2 = 1; i = 1, 2, 3

(29)q0(�)
2 + q1(�)

2 + q2(�)
2 + q3(�)

2 = 1

(30)
q1(�1) = q2(�1) = q1(�2) = q2(�2)

= q1(�3) = q2(�3) = q1(�) = q2(�) = 0

(31)q0(�i)
2 + q3(�i)

2 = 1; i = 1, 2, 3

(32)q0(�)
2 + q3(�)

2 = 1

(33)q3(�2) =

√(
1

2
−

x − x2

2L2

)

(34)
q0(�2) =

√(
1

2
+

x − x2

2L2

)

Now we can get y in terms of the knowns by substituting 
(34) into (23):

It is worth mentioning that (35) applies for all values of θ, 
not only for θ equal or close to zero. Therefore, it is more 
practical to use (35) instead of (14) to compute y for all 
cases.

3  Hand‑Eye and Robot‑World Calibration

The kinematic calibration presented in this paper utilized a Leica 
absolute laser tracker in combination with a T-Mac TMC30-F 
reflector to measure the platform poses. The laser tracker head is 
automatically controlled to track the pose of the reflector rigidly 
attached on the platform. Therefore, the laser tracker measures 
the pose of the reflector instead of the platform. The use of a 
similar laser tracker for the external kinematic calibration of a 
serial kinematics mechanism can be found in [18]. The laser 
tracker in combination with the reflector used in this work is 
capable of measuring all rigid body DOFs which include both 
position and orientation, i.e. three translational DOFs and three 
rotational DOFs. Figure 4 shows the local frame of the reflector. 
As shown in the figure, the origin of the reflector frame takes 
place at the center of the reflector prism whereas the three axes 
of the reflector frame are aligned with the geometry of the reflec-
tor. The accuracy of the laser tracker is ± 15 μm for the position 
and 0.01 degree for the rotation.

Since the laser tracker is an external device, the reflec-
tor pose is provided with respect to the measurement frame 
fixed to the laser tracker frame. Figure 5 depicts the trans-
formations among the machine base frame  FB, the platform 
frame  FP, the measurement frame  FM, and the reflector frame 

(35)y =

√(
L2
2
−
(
x − x2

)2)

Fig. 4  The T-Mac TMC30-F reflector and its local frame
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 Fr. T1 is the transformation from the machine base frame 
to the platform. This is given by the forward kinematics of 
the mechanism. T2 is the transformation from the measure-
ment frame to the reflector frame. X1 is the transformation 
from the reflector frame to the platform, whereas X2 is the 
transformation from the measurement frame to the machine 
base frame. The platform or end-effector is commonly called 
a hand whereas the reflector is called an eye. A calibration 
to estimate the transformation X1 is accordingly called the 
hand-eye calibration. The measurement frame is also com-
monly called the world frame and consequently a calibration 
to estimate the transformation X2 is usually called the robot-
world calibration. Since the laser tracker at hand is capable 
of providing the six-DOF pose of the reflector, T2 is wholly 
known. Unfortunately, X1 and X2 are unknown. As a result, 
they should be estimated before calibrating the mechanism.

To solve for X1 and X2, at least three different poses of the 
mechanism should be measured and T1 should be available. 
In this case, T1 is obtained based on the nominal values of 
the mechanism geometry. Hence, the estimation of X1 and X2 
assumes that the nominal values of the mechanism geometry 
are good enough. These nominal values are to be calibrated 
later based on the obtained X1 and X2. The estimation of X1 
and X2 can be classified into two broad categories: separable 
(sequential) and simultaneous techniques. The former tech-
niques include [19–23] whereas the latter techniques include 
[24–31]. In the former techniques, X1 is first obtained and 
subsequently, X2 is computed based on the obtained X1. This 
approach is more straightforward but gives a less precise 
solution. On the other hand, the latter techniques estimate 
both X1 and X2 simultaneously. In this work, the former 
approach is applied only to obtain the initial values for the 
next algorithm proposed to refine the solution.

Let T1, T2, X1, and X2 be homogeneous transformation 
matrices which contain both rotation and translation com-
ponents. The estimation of X1 can be derived based on the 
following relation among the transformation matrices:

For a pair of mechanism poses as illustrated in Fig. 6, we 
have the following:

It can be observed from Fig. 6 that X1 and X2 are constant, 
whereas T1 and T2 change with the mechanism pose.

Upon manipulating (37a) and (37b), we have:

where

Notice that A and B are homogeneous transformation 
matrices. RA and RB are rotation matrices whereas tA and 
tB are position vectors. Equation (38), commonly known as 
AX = XB problem, is the hand-eye calibration problem.

A separable closed-form hand-eye calibration following 
[19] is employed here. Instead of describing the hand-eye 
calibration procedure in a derivation format, the proce-
dure is described briefly here in a sequential manner as the 
following:

Step 1 Find the transformation T1 of two different poses. 
This is obtained by the forward kinematics of the mecha-
nism using the nominal values of the mechanism geom-
etry, namely L1, L2, L3, xp2, and xp3.

(36)T2X1 = X2T1

(37a)T21X1 = X2T11

(37b)T22X1 = X2T12

(38)AX1 = X1B

(39)A = T−1
22
T21 =

[
RA tA
0 1

]

(40)B = T−1
12
T11 =

[
RB tB
0 1

]

Fig. 5  Transformations T1, T2, X1, and X2 Fig. 6  Transformations in a pair of mechanism poses
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Step 2 Find the transformation T2 of the two poses. This 
is given directly by the measurement of the full pose of 
the reflector by using the laser tracker. In this work, the 
measurement of the reflector orientation is provided in 
quaternions.
Step 3 Compute the matrices A and B for the two poses 
by using (39) and (40).
Step 4 Convert the rotation matrices RA and RB into an 
axis-angle representation defined by a rotation angle α 
and a rotation axis (n1, n2, n3).
Step 5 Define P̄A and P̄B as follows:

Step 6 Define υ and S as follows:

Step 7 We have the following linear system:

With only a pair of poses, this linear system is singular. 
Therefore, at least two pairs of poses, i.e. three different poses, 
are required. Perform Step 1 to Step 7 for all n poses and 
accordingly stack (45) from all pairs of poses to compose the 
following overdetermined system:

Solve for ̄̄PX1
 by using linear least squares:

(41)P̄A = 2 sin

�
𝛼
(A)

2

�⎡
⎢⎢⎣

n
(A)

1

n
(A)

2

n
(A)

3

⎤
⎥⎥⎦
; 0 ≤ 𝛼

(A)
≤ 𝜋

(42)P̄B = 2 sin

�
𝛼
(B)

2

�⎡⎢⎢⎣

n
(B)

1

n
(B)

2

n
(B)

3

⎤⎥⎥⎦
; 0 ≤ 𝛼

(B)
≤ 𝜋

(43)𝜐 =

⎡⎢⎢⎣

𝜐x

𝜐y

𝜐z

⎤⎥⎥⎦
= P̄A + P̄B

(44)S = skew(�) =

⎡⎢⎢⎣

0 −�z �y

�z 0 −�x
−�y �x 0

⎤⎥⎥⎦

(45)S ̄̄PX1
= P̄A − P̄B

(46)
⌢

S ̄̄PX1
=

⎡
⎢⎢⎢⎣

S1
S2
⋮

Sn

⎤
⎥⎥⎥⎦
̄̄PX1

= b =

⎡
⎢⎢⎢⎣

�
P̄A − P̄B

�
1�

P̄A − P̄B

�
2

⋮�
P̄A − P̄B

�
n

⎤⎥⎥⎥⎦

(47)̄̄PX1
=

(
⌢

S

T
⌢

S

)−1
⌢

S

T

b

Step 8 Compute P̄X1
 as follows:

Step 9 Convert P̄X1
 to the rotation matrix of the transfor-

mation X1, namely RX1
:

where I is an identity matrix whereas skew
(
P̄X1

)
 is a 

skew-symmetric matrix defined in a similar fashion to 
(44). To this point, we solve for the rotation matrix of the 
transformation X1.
Step 10: Define a linear system involving the translation 
vector of the transformation X1, namely tX1, as follows:

Solve the linear system (50) by using linear least squares:

Equations (50) and (51) hold in general for three-dimen-
sional Euclidean space. Since the mechanism at hand is 
planar, the dimensions of (50) and (51) should be reduced 
to a two-dimensional Euclidean space. Having the mecha-
nism on the XY plane, the elements corresponding to the 
Z-axis in (50) and (51) should be suppressed. If it is not sup-
pressed and accordingly x, y, and z elements of tX1 are all to 
be solved, the system will be rank deficient. This indicates a 
configuration degeneracy. Physically, this means that there 
is no reference in the z-direction to which the z element of 
tX1 should be defined. As a result, an infinite number of pos-
sible values of z exist.

Equations (49) and (51) completely define the transforma-
tion matrix X1:

where, in the case of planar mechanism working on the XY 
plane:

(48)
P̄X1

=
2 ̄̄PX1√

1 +
‖‖‖
̄̄PX1

‖‖‖
2

(49)R
X
1

=

⎛⎜⎜⎜⎝
1 −

���P̄X
1

���
2

2

⎞⎟⎟⎟⎠
I +

1

2

�
P̄
X
1

P̄
T

X
1

+

�
4 −

���P̄X
1

���
2

skew
�
P̄
X
1

��

(50)GtX1
=
(
RB − I

)
tX1

= d = RX1
tA − tB

(51)tX1
=
(
GTG

)−1
GTd

(52)X1 =

[
RX1

tX1

0 1

]

(53)tX1
=

⎡⎢⎢⎣

tX1(x)

tX1(y)

0

⎤⎥⎥⎦
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Equation (53) also implies that the zero coordinate of the 
Z-axis is aligned with the reflector.

After the hand-eye transformation X1 has been estimated, 
the robot-world transformation X2 can be easily estimated by 
rearranging (36):

Using n different mechanism poses in the measurement, 
we accordingly have n different T1 and T2. As a result, 
there will be n different X2. To obtain a single X2, which is 
expected to be constant, we average the elements of T1 and 
T2 in an element-wise manner to get an averaged, constant 
X2.

It is worth mentioning that the selected poses should be 
completely different from each other in all coordinates in 
order to get the best estimates. In this case, the x, y, and θ 
values should be completely different among the poses. In 
this work, twelve experimental measurement data was care-
fully taken in which the x, y, and θ values of the poses are 
entirely different.

4  Kinematics of the Combined Mechanism 
with the External Measurement Device

The pose measurement is always provided with respect to 
the measurement frame. Since the kinematic calibration 
uses an external pose-measurement device, an extended 
kinematic model should be established to include the hand-
eye and robot-world transformations as described earlier. A 
homogeneous transformation is very convenient to be used 

(54)X2 = T2X1T
−1
1

to represent this kinematics. Figure 7 shows all the homoge-
neous transformation matrices in the combined mechanism. 
For convenience, a similar matrix notation is used for the 
upper mechanism. The asterisk superscripts indicate trans-
formation matrices belonging to the upper mechanism.

The transformation among the laser tracker, the reflec-
tor, and the lower mechanism has been described earlier 
in (36). Similarly, the homogeneous transformation of the 
laser tracker, the reflector, and the upper mechanism can 
be written as:

Alternatively, the following homogeneous transforma-
tion can also be used:

where X0 denotes the homogeneous transformation from the 
machine base frame to the base frame of the upper mecha-
nism. Using (56), we have:

Another way to express the kinematics involving the 
laser tracker and the reflector is by using vector notation. 
Figure 8 shows the position vectors in the combined mech-
anism. The superscript indicates the frame in which a posi-
tion vector r is expressed, whereas the subscript indicates 
a point defined by the position vector. The subscripts and 
superscripts M, B, O, P, and r respectively represent the 
measurement frame, machine base frame, base frame of 

(55)T∗
2
X∗
1
= X∗

2
T∗
1

(56)T∗
2
X∗
1
= X2X0T

∗
1

(57)T∗
2
= X2X0T

∗
1

(
X∗
1

)−1

(58)T∗
1
=
(
X2X0

)−1
T∗
2
X∗
1

Fig. 7  Homogeneous transformations in the combined mechanism 
with a laser tracker and reflectors, namely T1, T2, X1, X2 (for the lower 
mechanism), T∗

1
,T

∗
2
,X

∗
1
,X

∗
2
 (for the upper mechanism), and  X0 which 

connects both mechanisms

Fig. 8  Position vectors in the combined mechanism with a laser 
tracker and reflectors, where the subscripts indicate the points of 
interest whereas the superscripts indicate the reference frames
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the upper mechanism, platform frame, and reflector frame. 
For example, a notation rM

B
 denotes the position vector of 

the machine base frame origin B with respect to the meas-
urement frame M.

The additional subscripts L and U indicate the lower 
and upper mechanism, respectively. The transformation 
between frames may involve a rotation matrix R which 
represents the rotational transformation between two 
frames. Similarly, a notation RM

B
 , as an example, denotes 

the rotation matrix from the machine base frame B to the 
measurement frame M.

For more clarity, mainly when dealing with rotational 
transformation, Fig. 9 shows only the orientation of all the 
frames. The drawn axes indicate the positive directions of the 
axes. The orientation of the axes shown in this figure follows 
the right-hand rule in which the cross product between the X 
and Y axes gives the direction of the Z-axis. For more con-
venience, the base frame of the upper mechanism is oriented 
such that its X and Y axes create the planar workspace of the 
upper mechanism. Accordingly, the positive Z-axis is pointing 
downward. Using such an orientation, the inverse and forward 
kinematics of both the lower and upper mechanisms can be 
written on the XY plane.

Since the mechanisms are planar, by referring to Fig. 6, 
their rotation about their base frames can be represented by an 
elementary rotation matrix about the Z-axis, i.e.:

(59)RB
P,L

= Rz

(
�L

)

where Rz is an elementary rotation matrix about Z-axis 
whereas θL and θU are the rotation angles of the lower and 
upper mechanisms, respectively.

The reflectors are attached to the platforms, as shown in 
Fig. 6, such that:

where I and Rx are an identity matrix and an elementary rota-
tion matrix about the X-axis, respectively. This means that 
the lower reflector frame is aligned with the lower platform 
frame whereas the upper reflector frame is also aligned but 
rotated about the X-axis by –π/2 rad. This arrangement can 
be made with the aid of measurement devices such as digital 
calipers, digital depth gage, and precision square.

The position of the reflector mounted on the lower platform 
can be expressed in the measurement frame as follows:

where RM
B

 denotes the rotation matrix from the machine base 
frame to the measurement frame whereas RB

r,L
 denotes the 

rotation matrix from the reflector frame to the machine base 
frame.

Since the reflector frame is aligned with the platform 
frame, i.e. the orientation transformation between them is 
represented by an identity rotation matrix RP,L

r,L
 , the rotation 

of the reflector frame in the measurement frame is given by:

As a result, we have:

Substituting (65) into (63), we obtain:

Simplifying (66) yields:

Both the position of the reflector rM
r,L

 and the orientation of 
the reflector RM

r,L
 , expressed in the measurement frame, are 

measured by using the laser tracker. The rotation matrix RM
B

 
and the position vector rM

B
 can be estimated by using the 

robot-world calibration, whereas the position vector rP,L
r,L

 can 
be estimated by using the hand-eye calibration.

(60)RO
P,U

= Rz

(
�U

)

(61)R
P,L

r,L
= I

(62)R
P,U

r,U
= Rx

(
−
�

2

)

(63)rM
r,L

= rM
B
+ RM

B
rB
r,L

= rM
B
+ RM

B

(
rB
P,L

+ RB
P,L

r
P,L

r,L

)

(64)RM
r,L

= RM
P,L

= RM
B
RB
P,L

R
P,L

r,L
= RM

B
RB
P,L

(65)RB
P,L

=
(
RM
B

)−1
RM
r,L

(66)rM
r,L

= rM
B
+ RM

B

(
rB
P,L

+
(
RM
B

)−1
RM
r,L
r
P,L

r,L

)

(67)rM
r,L

= rM
B
+ RM

B
rB
P,L

+ RM
r,L
r
P,L

r,L

Fig. 9  Orientation of the frames (drawn axes indicate positive direc-
tions) namely the measurement frame M, the lower machine base 
frame B, the upper machine base frame O, the lower platform frame 
P,L, the upper platform frame P,U, the lower reflector frame r,L, and 
the upper reflector frame r,U
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The position of the platform end-effector in the base 
frame rB

P,L
 is given by the forward kinematics, i.e.:

where f1 and f2 are the forward kinematics equations and 
PL contains all the geometric parameters of the lower 
mechanism.

For convenience, the Z-axis of the machine base frame is 
assumed to be aligned with the Z-axis of the reflector frame. 
In other words, the z coordinate of the reflector frame origin 
with respect to the machine base frame is zero:

Similarly, the position of the reflector mounted on the 
upper platform can be expressed in the measurement frame 
as follows:

The rotation of the reflector frame in the measurement 
frame, which is measured by using the laser tracker, can be 
written as:

Solving for RO
P,U

 from (71) yields:

Because we have (62), then:

Substituting (73) into (70), we obtain:

In fact, both the position of the reflector rM
r,U

 and the ori-
entation of the reflector RM

r,U
 , expressed in the measurement 

frame, are measured by using the laser tracker. The rota-
tion matrix RM

O
 and the position vector rM

O
 can be estimated 

by using the robot-world calibration, whereas the position 
vector rP,U

r,U
 can be estimated by using the hand-eye calibra-

tion. The position of the platform end-effector in the base 

(68)rB
P,L

=

⎡
⎢⎢⎣

xL
yL
zL

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

f1(x1, x2, x3,PL)

f2(x1, x2, x3,PL)

0

⎤
⎥⎥⎦

(69)r
P,L

r,L
=

⎡
⎢⎢⎣

xr,L
yr,L
zr,L

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

xr,L
yr,L
0

⎤
⎥⎥⎦

(70)rM
r,U

= rM
O
+ RM

O
rO
r,U

= rM
O
+ RM

O

(
rO
P,U

+ RO
P,U

r
P,U

r,U

)

(71)RM
r,U

= RM
O
RO
P,U

R
P,U

r,U

(72)RO
P,U

=
(
RM
O

)−1
RM
r,U

(
R
P,U

r,U

)−1

(73)RO
P,U

=
(
RM
O

)−1
RM
r,U

(
Rx

(
−
�

2

))−1

(74)

rM
r,U

= rM
O
+ RM

O
rO
r,U

= rM
O
+ RM

O

(
rO
P,U

+

((
RM
O

)−1
RM
r,U

(
Rx

(
−
�

2

))−1
)
r
P,U

r,U

)

frame of the upper mechanism rO
P,U

 is given by the forward 
kinematics, i.e.:

where f1 and f2 are the forward kinematics equations and 
PU contains all the geometric parameters of the upper 
mechanism.

The transformation from the machine base frame B to 
the base frame of the upper mechanism O can be obtained 
from the following relations:

From (76) and (77), we obtain:

Figure 10 shows the laser tracker fixed sitting beside 
the prototype machine. Figure 11 depicts the reflector 
mounted on the lower and upper platforms. Since only 
one reflector is available, the reflector was first mounted on 
the lower platform and subsequently mounted on the upper 
platform, or vice versa. In each setup, the estimation of 
the hand-eye transformation, robot-world transformation, 
and the geometric parameters of the lower mechanism 
was conducted. As mentioned earlier, the reflector should 

(75)rO
P,U

=

⎡
⎢⎢⎣

xU
yU
zU

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

f1(x4, x5, x6,PU)

f2(x4, x5, x6,PU)

0

⎤
⎥⎥⎦

(76)RM
O
= RM

B
RB
O

(77)rM
O
= rM

B
+ RM

B
rB
O

(78)RB
O
=
(
RM
B

)−1
RM
O

(79)rB
O
=
(
RM
B

)−1(
rM
O
− rM

B

)

Fig. 10  The laser tracker with a reflector installed on the machine
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be installed to satisfy (61) and (62). To verify this align-
ment, one should observe the estimated rotation matrix 
of the reflector frame with respect to the platform frame, 
namely RX1,L

= R
P,L

r,L
 and RX1,U

= R
P,U

r,U
 . After the estimation 

was conducted for both the mechanisms, the transforma-
tion from the machine base frame B to the base frame of 
the upper mechanism O can be estimated.

5  Estimation Using Nonlinear Least Squares

5.1  Nonlinear least squares algorithm

In this section, Gaussian least squares differential correction 
(GLSDC) algorithm [32–34] (also called the Gauss–Newton 
nonlinear least squares) is applied for the refinement of the 
hand-eye calibration as well as the calibration of the mecha-
nism geometric parameters. Using this algorithm, the nonlin-
earity of the system is taken into consideration.

Let P and Y be the parameters to be estimated and the model 
function, respectively, then the measured function values are 
given with a noise υ as follows:

The noise υ is typically Gaussian with zero mean and a 
standard deviation is given by the uncertainty of the measure-
ment device.

The model function Y for the lower mechanism is given 
by (67), i.e.:

whereas the model function Y for the upper mechanism is 
given by (74), i.e.:

The residual error is given by:

Notice that the tilde (~) mark on a parameter indicates a 
measured parameter whereas a hat mark indicates an esti-
mated parameter. Given m measurements, the measured 
function values Ỹ  , the estimated function values Ŷ  , and 
accordingly the residual errors e should be stacked in a sin-
gle vector.

For the calibration of the lower mechanism, the residual 
error is defined as:

The measured position vector r̃M
r,L

 is provided by the laser 
tracker, whereas the estimated position vector r̂M

r,L
 is evalu-

ated by using (67) or (81). Similarly, the residual error for 
the calibration of the upper platform is defined as:

While the laser tracker provides the measured position vec-
tor r̃M

r,U
 , the estimated position vector r̂M

r,U
 is evaluated by 

using (74) or (82).
Besides the position vectors r̃M

r,L
 and r̃M

r,U
 , the other param-

eters given by measurements are the orientation matrices RM
r,L

 
and RM

r,U
 , as well as the active joint positions which contrib-

ute to the forward kinematics solution of both mechanisms.
The estimation is conducted to find the estimates of the 

parameters P̂ which minimizes the following cost function:

and accordingly minimizes the residual error in (83)–(85). 
The cost function F in (86) indicates the norm or the square 
of the residual error. The matrix W denotes the weight matrix 

(80)Ỹ = Y(P) + v

(81)Y = rM
r,L

= rM
B
+ RM

B
rB
P,L

+ RM
r,L
r
P,L

r,L

(82)

Y = rM
r,U

= rM
O
+ RM

O
rO
r,U

= rM
O
+ RM

O

(
rO
P,U

+

((
RM
O

)−1
RM
r,U

(
Rx

(
−
�

2

))−1
)
r
P,U

r,U

)

(83)e = ΔY = Ỹ − Ŷ(P̂)

(84)e = Ỹ − Ŷ(P̂) = r̃M
r,L

− r̂M
r,L

(85)e = Ỹ − Ŷ(P̂) = r̃M
r,U

− r̂M
r,U

(86)F = ‖e‖2 = 1

2
eTWe

Fig. 11  The reflector mounted a on the upper platform and b on the 
lower platform
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which is, in this work, chosen to be an identity matrix. Using 
GLSDC, the parameter estimates are computed iteratively 
as follows:

where

and the subscript k indicates the k-th iteration.
A modification to (88) called the Levenberg–Marquardt 

algorithm (also called the damped least squares) had been 
proposed to speed up the convergence in the case of initial 
values far from the “true” values. Since the initial val-
ues assigned in this work are considered close enough to 
the “true” values, the GLSDC is sufficient to give a fast 
convergence.

The Jacobian matrix H is obtained by differentiating the 
model function with respect to the estimated parameters:

where Yx, Yy, and Yz denote the x, y, and z components of the 
model function Y.

Given m measurements, the Jacobian matrix H should 
be stacked as follows:

The squared system Jacobian matrix in each iteration is 
the inverted part in (88), i.e.:

The matrix J should have a full rank in order to give 
a trusted solution. This full rank indicates that all the 
parameters are independent and therefore fully identified. 
In other words, a rank deficiency by n indicates that n 
parameters are dependent and therefore unidentified. The 
determination of the unidentified parameters can be done 
mathematically or through knowledge on the parameter 
dependency of the physical system. In a system with a 
rank deficiency, the dependent parameters should be elimi-
nated until a full-rank system is obtained. In such a case, 
the nominal parameter values can be used. The dependent 
parameters can be estimated in the next step employing 
the estimates of the independent parameters having been 
obtained previously. This is commonly called the subset 

(87)X̂k+1 = X̂k + Δx

(88)Δx =
(
HT

k
WHk

)−1
HT

k
Wek

(89)H =
�Y

�P
=
[
Hx Hy Hz

]T
=
[

�Yx

�P

�Yy

�P

�Yz

�P

]T

(90)Hx =

⎡⎢⎢⎢⎣

�Yx1

�P

⋮
�Yxm

�P

⎤⎥⎥⎥⎦
; Hy =

⎡⎢⎢⎢⎣

�Yy1

�P

⋮
�Yym

�P

⎤⎥⎥⎥⎦
; Hz =

⎡⎢⎢⎢⎣

�Yz1

�P

⋮
�Yzm

�P

⎤⎥⎥⎥⎦

(91)H3mx5 =
[
Hx Hy Hz

]T

(92)J = HT
k
WHk

selection which results in a sequential estimation, i.e. the 
estimation is conducted in several steps. This approach 
assumes that the nominal parameter values should be 
good enough. Figure 12 shows how the subset selection 
is implemented in the GLSDC algorithm. As shown in 
the flowchart, if J does not have a full rank N then only M 
parameters are firstly estimated where M < N is the rank of 
J. This, as will be discussed soon, includes the following 
sequential estimation stages:

Stage 1 Estimation of the hand-eye and robot-world trans-
formation parameters to refine the closed-form solution 
obtained previously.
Stage 2 Estimation of the geometric parameters of the 
lower mechanism. This consists of two steps.
Stage 3 Estimation of the position of the base frame of 
the upper mechanism,rB

O
.

Stage 4 Estimation of the geometric parameters of the 
upper mechanism. Similar to the case of the lower plat-
form, this consists of two steps.

The iterations in the GLSDC keeps running until the 
norm of ∆F is less than a specified threshold. This is the 
stopping criteria of the GLSDC algorithms. In this work, 
the norm (∆F) of 1.0 × 10−10 is used.

5.2  Refinement of the Hand‑Eye and Robot‑World 
Calibration

After the procedure described in Sect.  1 has been per-
formed to obtain the rough estimates of the hand-eye and 

Fig. 12  Flowchart of the subset selection in the implementation of 
GLSDC
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robot-world transformations, a refinement is conducted by 
using the obtained estimates as initial values in an itera-
tive estimation using GLSDC. For the lower mechanism, 
since the orientation of the reflector frame is aligned with 
that of the platform frame, the remaining parameters which 
should be estimated to establish the hand-eye and robot-
world transformations are the position and orientation of the 
machine base frame with respect to the measurement frame, 
namely rM

B
 and RM

B
 , as well as the position of the reflector 

with respect to the lower platform frame, namely rP,L
r,L

 . As 
the rotation matrix RM

B
 is defined in terms of quaternions, 

namely q0, q1, q2, and q3, the position vector rM
B

 is defined 
by the components xB, yB, and zB, and the position vector 
r
P,L

r,L
 is defined by the components xr and yr while zr= 0, the 

parameters to be estimated are:

Similarly for the upper mechanism, since the orientation 
of the reflector frame is aligned with that of the platform 
frame with a rotation of –π/2 about X-axis, the remaining 
parameters which should be estimated to establish the hand-
eye and robot-world transformations are the position and 
orientation of the machine base frame with respect to the 
measurement frame, namely rM

O
 and RM

O
 , as well as the posi-

tion of the reflector with respect to the lower platform frame, 
namely rP,U

r,U
 . As the rotation matrix RM

O
 is defined in terms 

of quaternions, namely q0, q1, q2, and q3, the position vec-
tor rM

O
 is defined by the components xO, yO, and zO, and the 

position vector rP,U
r,U

 is defined by the components xr and zr 
while yr= 0, the parameters to be estimated are:

The evaluation of the squared system Jacobian matrix J 
for both the lower and upper mechanisms shows that its rank 
is 9 (full rank) and therefore all the parameters in (93) and 
(94) can be estimated in a single step for each mechanism. 

(93)P =
[
q0 q1 q2 q3 xB yB zB xr yr

]T

(94)P =
[
q0 q1 q2 q3 xO yO zO xr zr

]T

Tables 2 and 3 show both the estimates obtained using 
the closed-form solution as described in Sect. 1 and those 
obtained through the refinement using the GLSDC, for the 
lower and upper mechanisms, respectively.

As a partial benchmark, the available nominal value of yr 
is 185 mm. Since the reflector is mounted well on the lower 
platform, the deviation from the nominal value should not 
be too large. The estimated value of yr = 186.087565 mm 
is considered acceptable. This indicates that the refinement 
works well.

After the hand-eye and robot-world transformations for 
both the lower and upper mechanisms have been performed, 
the transformation from the machine base frame B to the 
base frame of the upper mechanism O can be easily com-
puted by using (78) and (79). The obtained rotation matrix 
is:

whereas the position vector from B to O is:

This shows that the origin of the X-axis of the base frame 
of the upper mechanism O is shifted by − 2.084870 mm 
from that of the machine base frame B. In the design, xB

O
 is 

expected to be zero. However, the estimated value shows that 
it is not zero. This occurs because there may be an error in 
the manufacturing of the machine base structure.

(95)RB
O
=

⎡⎢⎢⎣

1.001862 −0.001390 −0.001831

−0.001834 −0.002087 −1.001861

0.001386 1.001862 −0.002090

⎤⎥⎥⎦

(96)rB
O
=

⎡⎢⎢⎣

xB
O

yB
O

zB
O

⎤⎥⎥⎦
=

⎡⎢⎢⎣

−2.084870

898.462981

−637.302275

⎤⎥⎥⎦
Table 2  The estimated hand-eye and robot-world transformation 
parameters for the lower mechanism

Parameter Closed-form solution GLSDC solution

q0 0.698220 0.704535
q1 0.710261 0.708877
q2 − 0.001228 0.004105
q3 0.003017 0.000943
xB (mm) − 520.639720 − 866.594463
yB (mm) 2175.139684 2169.653698
zB (mm) − 861.763839 − 1170.828004
xr (mm) 141.733177 143.192701
yr (mm) 182.660182 186.087565

Table 3  The estimated hand-eye and robot-world transformation 
parameters for the upper mechanism

Parameter Closed-form solution GLSDC solution

q0 1.041334 − 0.004111
q1 0.147820 1.000361
q2 − 0.130918 0.002880
q3 0.033675 − 0.003159
xB (mm) − 710.871725 − 869.180182
yB (mm) 1788.690134 2800.708342
zB (mm) − 526.167776 − 269.454137
xr (mm) − 99.726060 − 109.462822
yr (mm) 229.062687 175.912422
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5.3  Estimation of the Mechanism Geometric 
Parameters

For each mechanism, there are five geometric parameters 
to be estimated, namely l1, l2, l3, xp2 and xp3. In the case of 
xp2= xp3= xp, which is the case of the prototype machine, 
there are four geometric parameters to be estimated, i.e. l1, 
l2, l3,and xp. Therefore, the parameters to be estimated are:

The observation shows that the squared system Jacobian 
matrix J gives only a rank of 4 in the case of five parameters 
to be estimated, i.e. when xp2≠ xp3, and a rank of 3 in the case 
of four parameters to be estimated, i.e. when xp2= xp3= xp. 
This is because one of all the geometric parameters to be 
estimated is dependent on the other four parameters. In other 
words, all the geometric parameters but one are known then 
the one parameter remaining can be calculated by using the 
closed-form geometric relation of the mechanism.

Another approach is to estimate all the geometric param-
eters in two steps. In the first step, L2, L3, xp2, and xp3 are 
estimated. In this step, the nominal value of L1 is used in 
the estimation iterations. In the second step, the remaining 
parameter, i.e. L1, is estimated. Although the nominal value 
of L1 is used in the first step, L1 is subsequently estimated in 
the second step. Using twelve unique calibration poses for 
each of the lower and upper mechanisms, the estimates of the 
geometric parameters of the lower and upper mechanisms 
along with their nominal values are shown in Tables 4 and 
5. The errors are defined as the difference between the esti-
mates and the nominal values. It can be observed in Tables 4 
and 5 that the estimate of L1 is similar to its nominal value. 

(97)P =
[
L1 L2 L3 xp

]T

This is because the nominal value of L1 is used in the first 
step and subsequently it is estimated after the other parame-
ters have been estimated. In other words, the nominal values 
of L1 are retrieved in this two-step estimation.

6  Estimation of the Geometric Parameters 
Using Iterative Linear Least Squares

In this section, a linear error model is used for the kinematic 
calibration. Accordingly, the closed-form linear least squares 
estimation can be employed. From the kinematic relations 
given in (1)–(3), a small perturbation can be introduced to all 
the parameters which include the geometric parameters P, the 
active joint positions q, and the platform pose X. This small 
perturbation which represents a small error is a first-order 
approximation. Following (1)–(3), the perturbed kinematics 
can be written by differentiating the kinematics with respect 
to all parameters:

In a matrix form, (98)–(100) can be written compactly as:

where

(98)

L1�l1 = (x + xp2 cos(�) − x1)

(�x + �xp2 cos(�) − xp2 sin(�)�� − �x1)

+ (y + xp2 sin(�))(�y + �xp2 sin(�) + xp2 cos(�)��)

(99)L2�l2 = (x − x2)(�x − �x2) + y�y

(100)

L3�l3 = (x + xp3 cos(�) − x3)

(�x + �xp3 cos(�) − xp3 sin(�)�� − �x3)

+ (y + xp3 sin(�))(�y + �xp3 sin(�) + xp3 cos(�)��)

(101)Jx�X + Jq�q = Jp�P

(102)

Jx =

⎡⎢⎢⎣

X̂1 y + xp2 sin(𝜃) X̂1xp2(cos(𝜃) − sin(𝜃))

(x − x2) y 0

X̂3 y + xp3 sin(𝜃) X̂3xp3(cos(𝜃) − sin(𝜃))

⎤⎥⎥⎦

(103)Jq =

⎡⎢⎢⎣

−X̂1 0 0

0 x2 − x 0

0 0 −X̂3

⎤⎥⎥⎦

(104)

Jp =

⎡⎢⎢⎣

L1 0 0 −X̂1(cos 𝜃 + sin 𝜃) 0

0 L2 0 0 0

0 0 L3 0 −X̂3(cos 𝜃 + sin 𝜃)

⎤⎥⎥⎦

Table 4  The estimates of geometric parameters of the lower mecha-
nism (xp2 = xp3 = xp)

Parameter Estimate Nominal value Error

L1 (mm) 486.000000 486.000000 0.000000
L2 (mm) 500.985068 500.000000 0.985068
L3 (mm) 506.857577 507.000000 − 0.142423
xp (mm) 285.866049 285.000000 0.866049

Table 5  The estimates of geometric parameters of the upper mecha-
nism (xp2 = xp3 = xp)

Parameter Estimate Nominal value Error

L1 (mm) 600.000000 600 0.000000
L2 (mm) 475.001025 475 0.001025
L3 (mm) 604.000966 604 0.000966
xp (mm) 280.001333 280 0.001333



1010 International Journal of Precision Engineering and Manufacturing (2020) 21:995–1015

1 3

Let all the terms in the left-hand side be called A, i.e.:

and B = Jp , then we can rewrite (101) as:

Having m measurements, we can stack (110) into the 
following overdetermined system:

where

The estimation of �P is aimed at minimizing the fol-
lowing cost function:

As the problem is an overdetermined system, a closed-
form solution for δp is given by the following linear least 
squares:

Since (115) denotes the errors in the geometric param-
eters, the estimated geometric parameters are given by:

where P̂ and P denote the estimated and nominal values of 
the geometric parameters, respectively.

Assuming that the measurement is given with respect 
to the machine base frame, the following is the sequential 
procedure to implement the linear least squares estimation 
based on the abovementioned linear error model:

Step 1 Assign the poses to be visited, X.

(105)X̂1 = x + xp2 cos(𝜃) − x1

(106)X̂3 = x + xp3 cos(𝜃) − x3

(107)�X =
[
�x �y ��

]T

(108)�q =
[
�x1 �x2 �x3

]T

(109)�P =
[
�L1 �L2 �L3 �xp2 �xp3

]T

(110)A = Jx�X + Jq�q

(111)A = B�P

(112)Ā = B̄𝛿P

(113)Ā =

⎡⎢⎢⎢⎣

A1

A2

⋮

Am

⎤⎥⎥⎥⎦
; B̄ =

⎡⎢⎢⎢⎣

B1

B2

⋮

Bm

⎤⎥⎥⎥⎦

(114)F = ‖‖B̄𝛿p − Ā‖‖2 = 1

2

(
B̄𝛿p − Ā

)2

(115)𝛿P =
(
B̄T B̄

)
B̄T Ā

(116)P̂ = P + 𝛿P

Step 2 Measure the poses, Xmeasured.
Step 3 Calculate δX = Xmeasured − X.
Step 4 Perform the inverse kinematics to obtain the 
active joint positions q = f(X,P).
Step 5 Measure the active joint positions, qmeasured.
Step 6 Calculate δq = qmeasured – q.
Step 7  Calculate  A(X, �X, q, �q,P) = Jx�X + Jq�q 
[Eq. (110)].
Step 8 Compose the vector B(X,q,P).
Step 9 Repeat Step 1 to Step 8 for m measurements. 
Compose Ā and B̄ as in (113).
Step 10 Check the rank of B̄T B̄.
Step 11 If B̄T B̄ has full rank, then compute the linear 
least squares solution (115). Otherwise, eliminate the 
dependent parameters either mathematically, such as 
through SVD, or based on knowledge on the physical 
system.

In real practice, the measured poses Xmeasured is often 
given by an external measurement device such as a camera 
or a laser tracker as in this work. As a result, Xmeasured is 
given with respect to a measurement frame which is not 
aligned with the machine base frame. Accordingly, the 
assigned poses X should be defined with respect to the 
measurement frame. The values of X with respect to the 
measurement frame can be derived from (67) or (81) for 
the lower mechanism and from (74) or (82) for the upper 
mechanism.

From (67) or (81), we obtain:

In a similar fashion, from (74) or (81) we have:

The sequential procedure to implement the linear least 
squares estimation based on the linear model when an exter-
nal pose measurement device is used can be summarized as 
follows:

Step 1 Estimate the hand-eye and robot-world transfor-
mations.
Step 2 Assign X with respect to the machine base frame 
 FB for the lower mechanism and with respect to the base 
frame of the upper mechanism FO for the upper mecha-
nism.
Step 3 Measure the reflector position with respect to the 
measurement frame, namely rM

r,L
 for the lower mechanism 

and rM
r,U

 for the upper mechanism.
Step 4 Calculate Xmeasured by utilizing (117) for the lower 
mechanism and (118) for the upper mechanism.

(117)XL = rB
P,L

=
(
RM
B

)−1(
rM
r,L

− rM
B
− RM

r,L
r
P,L

r,L

)

(118)

XU = rO
P,U

=
(
RM
O

)−1(
rM
r,U

− rM
O
− RM

r,U

(
Rx

(
−
�

2

))−1

r
P,U

r,U

)
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Step 5 Perform Step 3 to Step 11 as described for the pose 
measurement in the machine base frame.

Using the same measurement data as used in the GLSDC, 
the resulting overdetermined linear system (112) with all 
the geometric parameters to be estimated has a full-ranked 
B̄T B̄ . Therefore, the estimation can be performed straight-
forwardly in a single step. However, the estimates given by 
a single run of the algorithm are not satisfying. They are 
inconsistent and not guaranteed to be the optimum solution. 
Some coordinates may have an error less than that of the 
uncalibrated one, but some other coordinates may have an 
even more significant error than that of the uncalibrated one. 
This implies that the estimation algorithm fails to minimize 
the cost function, i.e. the residual errors.

To overcome this problem, the linear least squares 
algorithm as described above needs to be iterated until a 
minimum norm of the residual errors ε is achieved. Since 
this iterative linear least squares algorithm requires higher 
computational cost compared to the iterative nonlinear 
least squares, one can also stop the algorithm after a certain 
amount of time or a certain number of iterations and evaluate 
the obtained estimates. The flowchart of the iterative linear 

least squares is depicted in Fig. 13. It can be seen in the flow-
chart that the estimated parameter values are updated and 
subsequently supplied to the new linear system which will be 
solved iteratively until the stopping criteria as discussed is 
achieved. Furthermore, the norm of the residual is evaluated 
between any two consecutive iterations. If the norm of the 
residual is increasing, the new parameter values should be 
subtracted by the parameter errors. Otherwise, they should 
be summed. Using twelve unique calibration poses for each 
of the lower and upper mechanisms, the iterative linear least 
squares (124) provides the estimated geometric parameters 
of the lower and upper mechanisms as shown in Tables 6 and 
7, respectively. In a similar manner with the two-step estima-
tion using the nonlinear least squares, the errors are defined 
as the difference between the estimated and nominal values.

To this point, it still cannot be judged whether the esti-
mates of the geometric parameters obtained by using the 
nonlinear least squares or those obtained by the iterative 
linear squares are more accurate as the true values of the 
geometric parameters are unknown. To evaluate and com-
pare the accuracy of the estimates obtained by using both 
the algorithms, the pose errors will be evaluated in the next 
section upon the compensation of the kinematic parameters.

7  Compensation

After the estimation of the geometric parameters has been 
done, compensation should be conducted to improve the 
accuracy of the machine. This is performed by replacing 
the nominal geometric parameter values in the kinematics 
by the estimated ones. Since two estimation techniques have 
been implemented, the estimates from both the techniques 

Fig. 13  Flowchart of the iterative linear least squares

Table 6  Estimated geometric parameters of the lower mechanism 
obtained by using iterative linear least squares

Parameter Estimated value Nominal value Error �P

L1 (mm) 485.994173 486 − 0.005827
L2 (mm) 500.009894 500 0.009894
L3 (mm) 507.009070 507 0.009070
xp (mm) 285.000000 285 0.000000

Table 7  Estimated geometric parameters of the upper mechanism 
obtained by using iterative linear least squares

Parameter Estimated value Nominal value Error �P

L1 (mm) 599.995369 600 − 0.004631
L2 (mm) 474.992761 475 − 0.007239
L3 (mm) 603.988235 604 − 0.011765
xp (mm) 280.000000 280 0.000000
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were used for the compensation. To evaluate the accuracy 
of the mechanism pose, pose errors are defined for all coor-
dinates of the pose, i.e. x, y, and θ at the twelve different 
poses. Figure 14 shows a comparison between the pose 
errors of the uncalibrated and calibrated lower mechanism 
at the twelve different poses. For conciseness, the pose errors 
of the uncalibrated and calibrated upper mechanism are not 
shown in this paper as their behavior is similar to those of 
the lower mechanism. The pose errors are presented for each 
coordinate of the pose, i.e. x, y, and θ. It can be seen that the 
both the iterative nonlinear least squares (NLS, i.e. GLSDC) 
and the iterative linear least squares (LLS) algorithms suc-
cessfully suppress the pose errors to values very close to 
zero. Some of the plots in this figure cannot show clearly 
the difference between the pose errors corresponding to both 
the algorithms as the error curves look coincident although 
they have a small difference. It is shown that the average 
position accuracy before the calibration is around 0.9 mm 
whereas the average orientation accuracy is less than 0.2 

degree. The calibration using GLSDC provides an average 
accuracy of less than 0.004 mm for the position and less 
than 0.0002 degrees for the orientation, whereas the iterative 
linear least squares algorithm provides an average accuracy 
of less than 0.01 mm for the position and a similar aver-
age accuracy in the orientation to the GLSDC. In general, 
both the calibration algorithms can improve the position 
accuracy by around 0.2 mm. To illustrate more clearly, the 
plots of the pose errors of the lower mechanism correspond-
ing to only the calibrated parameters at the twelve different 
poses are shown in Fig. 15. The plots show clearly that the 
GLSDC performs better in the position accuracy than the 
iterative linear least squares. However, both algorithms do 
not perform differently in the orientation accuracy. It can be 
seen in these plots that the iterative nonlinear least squares 
algorithm outperforms the iterative linear least squares in 
the pose error suppression. In addition to that, the former 
algorithm also outperforms the latter in the computational 
cost as the former converges faster than the latter.

Fig. 14  Pose errors of a x coordinates, b y coordinates, and c angles 
θ of the lower mechanism at twelve data points (poses) before calibra-
tion and after calibration using NLS and iterative LLS

Fig. 15  Pose errors of a x coordinates, b y coordinates, and c angles 
θ of the lower mechanism at twelve data points (poses) after calibra-
tion using NLS and iterative LLS
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The improved accuracy mentioned above is position and 
orientation accuracy in the case of position tracking. To 
evaluate the effect of calibration in the accuracy of contour 
tracking, a test contour was executed using both the nominal 
and estimated parameters. Since the estimated parameters 
obtained by using the nonlinear least squares are more accu-
rate than those obtained by the iterative linear least squares, 
they are used in the test contour. In this work, a full circle 
was selected as the test contour. Figure 16 shows the contour 
performed by the lower mechanism and therefore lying on 
the XY plane. The circle is centered at (400, 300) mm and 
has a radius of 50 mm. As shown in the figure, the contour 
corresponding to the nominal parameters was at a glance 
very close to that corresponding to the calibrated (estimated) 
parameters. In order to compare the accuracy, contour errors 
which are defined as the difference between the nominal 
coordinates and the calibrated coordinates were plotted as 
shown in Fig. 17. Since the planar contour has two coordi-
nates, i.e. x and y, the contour errors should be evaluated for 
each coordinate. The figures depict the contour errors along 
the whole trajectory of the contour. It is shown in the figures 
that the contour corresponding to the calibrated parameters 
is more accurate by around 0.2 mm than that corresponding 
to the nominal (uncalibrated) parameters. This is consist-
ent with the position accuracy of around 0.2 mm provided 
by both the calibration algorithms. The remaining position 
accuracy is basically due to the posture and/or dynamics 
of the mechanism which is a task for the control system to 
overcome. Along the trajectory of the circle, the mechanism 
posture keeps changing. As can be seen in Fig. 17, at some 

postures the error is zero while at other postures the error 
starts increasing. 

8  Conclusion

It is shown that the nonlinear least squares algorithm suc-
cessfully refined the hand-eye and robot-world transfor-
mation previously obtained by using a simple separable 
technique. The evaluation of the contouring error also 
shows that the nonlinear least squares algorithm estimates 
more accurately the geometric parameters of the machine’s 
mechanisms than the iterative linear least squares algo-
rithm. In return to this higher accuracy, the nonlinear 
least squares algorithm should be performed in two steps 
by employing the subset selection approach in which m 
parameters should be firstly fixed at their nominal val-
ues while the rest of the parameters are estimated (where 
N is the total number of parameters to be estimated, r is 
the rank of the system Jacobian matrix, and m = N − r). 
Subsequently, the previously fixed parameter(s) should be 
estimated in the next estimation step. This implies that 

Fig. 16  Test contour performed by the lower mechanism (blue: using 
nominal values, red: using calibrated values). (Color figure online)

Fig. 17  Contour errors of a the absicca (x) coordinates and b ordinate 
(y) coordinates of the test contour
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the fixed parameter(s) in the first step should have a con-
siderably accurate value. Among all the estimated param-
eters, the parameter(s) which is believed to have the most 
accurate value(s) can be chosen as the fixed parameter(s). 
Such dependency to the nominal values of the parameters 
does not only occur in this situation; it also occurs in the 
hand-eye and robot-world calibration which assumes some 
degree of accuracy of the nominal values of the mecha-
nism geometric parameters. On the other hand, the closed-
form solution of the linear least squares should be iterated 
until it converges to the actual values. Otherwise, it may 
give estimates of the parameters that are worse than the 
nominal values due to divergence from the actual values. 
Finally, using the compensated kinematics, it is shown that 
both the position tracking error and the contour tracking 
error were reduced.
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