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Abstract
The measuring accuracy of coordinate measuring machines (CMMs) depends on different factors such as the errors associ-
ated to the CMM axis movement, the working table and other CMM elements. In order to estimate the measuring errors that 
can be present during the dimensional evaluation of mechanical components, the nature and relevance of the distinct factors 
involved in the inspection process should be properly identified, such as the position errors, straightness errors, part errors 
and other geometrical and dynamic deviations. The knowledge about the influence of the main errors related to the elements 
integrated in the CMM, can serve to estimate the expected accuracy during the geometrical evaluation of manufactured prod-
ucts or machinery components.In this work, the effect of position errors will be evaluated by separate in order to deduce the 
contribution of this factor to the resultant measuring accuracy. This study is oriented to the analysis of three-axis coordinate 
measuring machines, and distinct types of CMM axis errors will be discussed. The results shown in this work are focused 
on CMMs type FXYZ, although similar studies could be developed for other structural configurations.

Keywords Coordinate measure machines (CMMs) · Dimensional inspection · Measuring accuracy · Position errors · 
Straightness errors · Theoretical modelling

1 Introduction

During the last years, there are different studies that were 
developed with the purpose of improving the performance 
of coordinate measuring machines (CMMs). Among the top-
ics covered in these works, the definition of new devices to 
enhance the measuring process, new methodologies to char-
acterize the geometrical errors associated to this equipment 
and numerical models to estimate the measuring accuracy 
can be found.

Some authors proposed different models that could serve 
to carry out the analysis of the CMM performance and the 
influence of some errors of machine axis and probes. In 

order to estimate the uncertainty associated to the coordinate 
measuring systems (CMS), the virtual machine model of 
Sładek and Gąska could be applied [1]. This model imple-
ments the errors related to the probe head and CMS kinemat-
ics, and employs the Monte Carlo method to evaluate the 
effect of these error sources.

Zhang proposed a model to evaluate the thermal deforma-
tion of the elements integrated in CMMs [2]. This work was 
focused on coordinate measuring machines with a rotary 
working table, and considered distinct CMM configura-
tions during the analysis of the main machine errors. The 
most typical errors of CMMs can be studied by the model 
of Huang and Ni. This numerical model can be applied for 
on-time compensation of these geometrical errors [3].

The correction of errors in five-axis multi-sensor CMMs 
can be made by the parametric model of Ramu et al. [4]. 
These authors provided a virtual machine for this type of 
coordinate measuring machines, as well as a parametric 
model that can be helpful to obtain guidelines for reduc-
ing the influence of these errors. In the case of coordinate 
measuring arms (CMA), the machine errors can be analysed 
by the kinematic model of Sładek et al. This model serves to 
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improve the resultant accuracy of CMAs, by using a correc-
tion matrix that allows the error compensation [5].

The method developed by Thompson and Cogdell [6] 
could be assumed to increase the accuracy of precision 
cylindrical CMMs. This method makes possible to deduce 
the intersection error that describes the normal distance 
between the rotation axis and probe tip, and to minimize the 
errors related to the probe alignment.

The expected accuracy of six-freedom-degree parallel 
mechanism CMMs can be enhanced by the method provided 
by Meng et al. [7]. It consists of a direct-error-compensa-
tion method that can be used to evaluate the probe position 
errors, process errors associated to the force, heat and con-
trol system, and other different machine errors. The multi-
probe calibration method of Yang et al. can be applied to 
kinematic errors of micro-coordinate measuring machines. 
The method proposed by these authors serves to identify 
the yaw and straightness errors related to the machine stage 
displacement, which is carried out by using an autocollima-
tor and two laser interferometers [8].

A recent review about technical advances on coordinate 
measuring machines was developed by Swornowski. This 
work remarked some of the main limitations of this equip-
ment, such as the selection of high testing speeds, the selec-
tion of optimum measurement points, the deflection errors 
on the stylus and the evaluation of ball tip radius [9]. The 
relationship between the dynamic errors and the CMM 
performance was analysed by Echerfaoui et al. [10]. From 
the experimental results obtained in this work, the effect of 
some parameters such as the positioning speed, positioning 
distance, approaching speed and approaching distance was 
discussed.

The optimum sampling conditions for the inspection of 
mechanical products was studied by Raghunandan and Ven-
kateswara Rao. These authors analyzed the effect of sam-
ple size and sample points during the measuring of flatness 
error, and applied a computational method to choose the 
sampling conditions as a function of the surface finish [11]. 
Among the different factors to be considered, González-
Madruga et al. analysed the effect of operators during the 
application of Articulated Arm Coordinate Measuring 
Machines (AACMMs). With this purpose, these authors 
developed a new methodology that serves to determine the 
contribution of AACMM, operator and measuring technique 
to the measurement uncertainty [12].

In order to characterize the performance of coordinate 
measuring machines (CMMs), the quick check method 
deduced by Curran and Phelan can be employed [13]. This 
method is based on using a telescoping ball-bar instead 
of laser interferometry, and provides a simplified proce-
dure for verification of this equipment. A device based 
on implementing a fiber-type interferometer was proposed 
for CMM’s axis verification by Chanthawong et al. The 

multi-Fabry-Pérot etalon (multi-FPE) developed by these 
authors, can be recommended before the conventional 
techniques for CMM verification [14].

Jinwen and Yanling presented a model to enhance 
the measuring accuracy of CMMs during fast scanning-
probing by means of error compensation [15]. The pro-
posed model includes the influence of CMM geometric 
and dynamic errors such as the position and straightness 
errors associated to the probe tip, and the angular errors 
in the linear axes Y and Z. The dimensional measuring 
of curve surfaces by coordinate measuring machines was 
studied by Ahn et al. This work describes a transforma-
tion algorithm that compensates the probe tip radius and 
pre-travel errors, and then can be applied to enhance the 
CMM accuracy [16].

The device conceived by Krajewski and Wozniak can 
be also valid to compensate the dynamic errors of coor-
dinate measuring machines. These authors discussed the 
effect of scanning speed on the measuring process, and 
developed a simple master artefact that serves to improve 
the CMM resultant accuracy [17]. In order to increase the 
CMM performance during the dimensional inspection of 
freeform surfaces, the artifact of Savio and De Chiffre can 
be helpful. It can be applied when a CAD model is adopted 
as geometrical reference for the freeform measurements, 
and then the measuring traceability can be enhanced [18].

Besides the different works that were carried out dur-
ing the last years in relation with of the optimization of 
coordinate measuring machines (CMMs), more research 
studies are required with the purpose of improving the 
expected accuracy of this type of equipment during the 
dimensional inspection of mechanical components. For 
this reason, a new analysis about the influence of some of 
the main errors associated to the CMM axis displacement 
was developed in this work, which is specially focused on 
the discussion about the contribution of position errors 
among the rest of geometric and dynamic deviations of 
these devices.

In the present study, a simplified mathematical model 
is considered to evaluate the influence of position errors 
that can be originated during the CMM axis movement, as 
well as the straightness errors related to the distinct CMM 
linear axes and the dimensional deviations that are found 
on the part surface. An adequate random algorithm was 
implemented in this model in order to describe the unex-
pected variations in positions not covered during the peri-
odical calibration of CMM linear axes, such as all the posi-
tions that correspond to the intermediate range between 
consecutive calibration points. A parameter named as the 
maximum local deviation for each error source will be 
assumed to represent the random deviations in the different 
axes and the part to be tested.
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2  Modelling of CMM Dimensional Accuracy 
from Position Errors

The errors associated to the CMM axis movement can be 
remarked as one of the main factors that affect the dimen-
sional accuracy of coordinate measuring machines (CMM). 
These CMM axis errors represent a totality of 21 error 
sources, and they can be divided in 3 position errors, 6 
straightness errors, 3 squareness errors and 9 angular errors 
in the case of a three-axis coordinate measuring machine [2]. 
During the numerical modelling of the CMM accuracy, the 
totality of these errors could be assumed.

The performance of CMM will be also affected by other 
dimensional and geometrical errors such as the deviations 
associated to the working table and the part to be tested, 
as well as other different factors involved in the measuring 
process. These error factors could be included in the numeri-
cal modelling in order to increase the validity of the results.

The 21 error sources related to the CMM axis displace-
ment are illustrated in Fig. 1, including the position, straight-
ness, squareness and angular errors for the different linear 

axes. The geometrical errors of the part to be measured 
are also depicted. The symbols employed in this study to 
identify each CMM axis error are contained in this figure, 
and the ijk subscripts denote the coordinates (x, y, z) of the 
CMM probe inside the overall working volume.

Since the aim of this work consists of analyzing the effect 
of position and straightness errors on the expected accuracy 
of CMM during the dimensional inspection of mechanical 
components, the influence of these axis errors will be spe-
cially discussed. For this purpose, only the position, straight-
ness and part errors will be considered, and the rest of error 
sources of coordinate measuring machines will not be intro-
duced in the numerical modelling.

In the following subsections, a brief definition about the 
main types of error sources of Fig. 1 can be found, mostly 
about the geometrical errors that will be analyzed in this work. 
A graphical explanation about the position and straightness 
errors will be provided as follows, as well as the mathemati-
cal expressions that will be employed to estimate the position, 
straightness and part errors in this study.

Fig. 1  Schematic representation of errors associated to CMM axis displacement



2238 International Journal of Precision Engineering and Manufacturing (2020) 21:2235–2247

1 3

Among the models employed in the works of other authors, 
there are basically theoretical models that consider the 21 
typical errors sources of CMMs, that also integrate the errors 
associated to the rotary working table of some CMM models, 
that are specially focused on the probe alignment errors, or 
that were developed for the analysis of coordinate measur-
ing arms (CMAs) instead of coordinate measuring machines 
(CMMs). Nevertheless, the simplified model of the present 
work is limited to some specific errors with a great influence 
on the CMM measuring accuracy, such as the position errors 
and straightness errors, in order to facilitate a more detailed 
analysis of these geometrical errors.

The error sources assumed in this model are the 3 forms of 
position errors, the 9 forms of straightness errors and the devi-
ations originated in the part geometry, which imply a reduced 
number of 13 geometrical errors to be evaluated. It allows to 
optimize the mathematical modelling, and to achieve almost a 
half of the computational times needed for the analysis of the 
CMM measuring accuracy.

In addition, this new numerical model include a mathemati-
cal algorithm for estimating the random variation of CMM 
geometrical errors in the interval between calibration points, 
to facilitate the analysis of the expected accuracy that would 
result when using different models of coordinate measuring 
machine. As will be explained in the following subsection, 
this random algorithm is based on the Marsaglia and Bray’s 
method, and will be applied to the totality of geometrical 
errors that are assumed in this work.

The implementation of this random error generation algo-
rithm, allows the analysis of different possible conditions with 
a similar calculation time, saving the computation time that 
would be required to repeat the theoretical modelling with dif-
ferent error distributions in the distinct linear axes of CMM.

As will be explained in Sect. 2.7, the model employed in 
this work is oriented to coordinate measuring machines of 
the most typical structural configuration, such as the con-
figuration type FXYZ, which corresponds to moving bridge 
CMMs. It also helped to simplify the numerical model that 
is applied in this study, although the proposed model can be 
easily redefined for other machine configurations.

2.1  Modelling of Random Errors Generation 
by Marsaglia and Bray’s Method

The random variations that occur in the errors associated 
to CMM axis displacement and the errors detected on part 
surface, can be estimated by a mathematical algorithm for 
random error generation. Among the different well-known 
algorithms that exist for this purpose, in this work the Mar-
saglia and Bray’s method was applied, which consists of a 
random algorithm based on the Montecarlo method.

This mathematical algorithm can be used to deduce 
the possible variations in each axis error between the 

consecutive calibration points, as well as the possible devia-
tions on the surface of the mechanical part to be measured. 
This algorithm is divided in two distinct stages, such as the 
generation and validation of each pair of uniform variables, 
and the deduction of each value according to the resultant 
normal variable.

In the first stage of Marsaglia and Bray’s method, a pair of 
variables  u1i and  u2i that correspond to a uniform distribution 
U(− 1,1) should be generated, and the following mathemati-
cal restriction must be satisfied by each pair of values for 
these uniform variables:

In the case that this condition was not achieved, a new 
pair of values should be generated for variables  u1i and  u2i, 
and the previous restriction should be checked again. On 
the contrary, if this condition is satisfied, a variable δi that 
corresponds to a normal distribution N(0,1) can be deduced 
by using the following mathematical expression:

From this equation, a resultant variable δi of normal dis-
tribution N(0,1) with random values between 0 and 1 can 
be determined for each value of subscript i = 0, 1, 2,…n. In 
this work, this normal variable will be employed to deduce 
the random values of position, straightness and part errors 
during the modelling of CMM performance.

2.2  Modelling of Position Errors 
during Dimensional Verification by CMMs

The deviations that correspond to the position errors associ-
ated to each CMM linear axis, are illustrated in Fig. 2. As 
an example, this figure represents the position errors related 
to axis X, while a similar schematic representation could 
be assumed for axes Y and Z. These errors represent the 
discrepancies that can be registered between the theoretical 
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Fig. 2  Schematic representation of position errors in coordinate 
measuring machines
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and real position adopted by the CMM probe during its dis-
placement in the direction of the different CMM linear axes, 
as depicted in this figure.

The position errors in the longitudinal, traverse and ver-
tical axes of CMM can be identified as (εps,x)i, (εps,y)j and 
(εps,z)k, and the following mathematical expression can be 
applied for instance to deduce the CMM axis errors in lon-
gitudinal axis from the random values provided by the Mar-
saglia and Bray’s method:

where the i subscript corresponds to the position  xi in the 
longitudinal axis (in which this geometrical error is evalu-
ated), (δps,x)i is a random value between 0 and 1 that was 
previously generated for position  xi, and (εps,x)max represents 
the maximum local deviation for position errors associated 
to the longitudinal axis, which is expressed in terms of the 
standard deviation deduced from the fluctuations evidenced 
in this CMM axis error.

This equation serves to estimate the position error in 
the direction of longitudinal axis (axis X) for the different 
points to be considered along this linear axis, while a similar 
expression could be also applied for the traverse and verti-
cal axes (axes Y and Z) of coordinate measuring machine 
(CMM).

2.3  Modelling of Straightness Errors 
during Dimensional Verification by CMMs

Figure 3 provides a schematic representation of CMM axis 
errors that are identified as straightness errors. This figure 
depicts the straightness errors that can be registered in verti-
cal axis (axis Y) during the CMM probe displacement along 
the direction of longitudinal axis (axis X), while a similar 
illustration could be assumed for the straightness errors in 
other CMM linear axes. These errors describe the variations 
that can be evidenced in each specific normal axis during the 
CMM movement along a certain linear axis.

(3)(�ps,x)i = (�ps,x)i (�ps,x)max

In this work, a random algorithm based on the Marsa-
glia and Bray’s method will be also adopted to estimate 
the straightness errors, and so a mathematical expression 
similar to that previously established for position errors can 
be applied. In this sense, the straightness errors during the 
displacement in the axis X that are observed on normal axis 
Y can be calculated by the following expression:

where the i subscript represents the position  xi in the dis-
placement axis (which in this case corresponds to the axis 
X), (δst,xy)i is a random value between 0 and 1 that must be 
previously generated for this position in the displacement 
axis, and (εst,xy)max consists of the maximum local deviation 
for straightness errors during the displacement of axis X that 
is registered on normal axis Y.

2.4  Modelling of Squareness Errors 
during Dimensional Verification by CMMs

During the characterization of geometrical errors of coordi-
nate measuring machines (CMMs), each pair of orthogonal 
linear axes (such as the axis pairs XY, YZ, and ZX) can 
experience a certain deviation with regards to their expected 
orthogonal orientation. These geometrical deviations are 
named as squareness errors, and could influence the result-
ant measuring accuracy of CMM.

In three linear axis CMMs, a total number of 3 squareness 
errors are involved, and in the present work are identified as 
εsq,xy, εsq,yz and εsq,zx (Fig. 1). These machine errors will be 
neglected in this work, in order to analyse by separate the 
effect of position, straightness and part errors on the CMM 
performance.

2.5  Modelling of Angular Errors during Dimensional 
Verification by CMMs

Each linear axis of a coordinate measuring machine, can 
experience a certain angular deviation in three distinct direc-
tions, such as rotation around this linear axis during probe 
displacement in the axis direction, inclination in the plane 
constituted by this linear axis and one of the normal axes, 
and inclination in the plane formed by this linear axis and 
the other normal axis. These geometrical deviations are 
known as angular errors, and could present a certain influ-
ence on the CMM performance.

The angular errors of each CMM linear axis are named 
as the roll, pitch and yaw errors. The roll errors describe the 
rotation around the direction of this linear axis, while the pitch 
and yaw errors correspond to the inclination in each one of the 
planes formed with both normal axes. Since 3 angular errors 

(4)(�st,xy)i = (�st,xy)i (�st,xy)maxDisplacement axis

A

B

(εst,xy)i

CMM axis straightness errors

Fig. 3  Schematic representation of straightness errors in coordinate 
measuring machines
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can be defined in each linear axis of a coordinate measuring 
machine, a total number of 9 angular errors must be considered 
in three linear axis CMMs.

As an example, the roll, pitch and yaw errors originated 
during the CMM probe displacement along the axis X can be 
denoted by (εar,x)i, (εap,xz)i and (εay,xy)i, respectively (Fig. 1). 
Similar symbols can be employed for the angular errors related 
to the movement along the other two linear axes of coordinate 
measuring machines. The angular errors are also neglected 
in this work, in order to analyze by separate the influence of 
position, straightness and part errors.

2.6  Modelling of Part Errors during Dimensional 
Verification by CMMs

Not only the geometrical errors of coordinate measuring 
machines, but also the deviations observed in the surface of 
part to be measured can affect the results of the measuring pro-
cess. For this reason, the deviations of part geometry should 
be also considered for an adequate modelling of the CMM 
performance.

The Marsaglia and Bray’s method is also assumed in this 
work to describe the possible variations in the part geometry, 
and then these errors are estimated by using a mathematical 
expression similar to that applied for position and straightness 
errors, as can be observed in the following equation:

where the i subscript refers to the position  xi in the dis-
placement axis (in this case axis X), (δ0,x)i corresponds to a 
random value between 0 and 1 that was previously generated 
for position  xi, and (ε0,x)max is the maximum local deviation 
for part errors in the direction of displacement axis. This 
equation corresponds to the case of probe displacement in 
longitudinal axis (axis X), and similar expressions should be 
assumed for the rest of CMM linear axes.

In this work, a total number of 3 part errors are imple-
mented, which represent the deviations originated in the nor-
mal direction to the part surface according to the different 
linear axes of coordinate measuring machine. The part errors 
registered on the direction of axes X, Y and Z, can be denoted 
by (ε0,x)i, (ε0,y)j and (ε0,z)k, respectively.

2.7  Modelling of Expected Accuracy of Coordinate 
Measuring Machine

From the different typical configurations of coordinate meas-
uring machines, the FXYZ, XFYZ, YXFZ and ZYXF con-
figurations can be remarked, and additional cases could also 
be considered when a rotary table is contained. This work is 
focused on the coordinate measuring machines that are most 
commonly employed in the industry, which correspond to 

(5)(�0,x)i = (�0,x)i (�0,x)max

the configuration type FXYZ (or moving bridge CMMs). 
The mathematical expressions applied to evaluate the CMM 
measuring accuracy will be affected by the machine configu-
ration. The equations for a configuration type FXYZ will 
be described as follows, and some modifications would be 
needed in the other cases.

In order to evaluate the overall error in the position of 
the measuring probe in three linear axis CMMs, the refer-
ence systems  O1X1Y1Z1,  O2X2Y2Z2 and  O3X3Y3Z3 associ-
ated to the linear axes X, Y and Z must be considered, and 
a transformation matrix can be used to deduce the coordi-
nates that correspond to the stationary coordinate system 
OXYZ within the CMM working volume [2]. The measuring 
accuracy of the CMM can be expressed by the following 
equation:

where  P3 = O3  P3 is the position of CMM probe according to 
the coordinate system  O3X3Y3Z3, S = O  O3 is the position of 
the origin of coordinate system  O3X3Y3Z3 expressed in the 
CMM stationary coordinate system OXYZ, P = O P is the 
position of the measuring probe in the stationary coordinate 
system, and ΔS = ΔO  O3 represents the errors in the CMM 
probe position in the stationary coordinate system.

The expected accuracy of CMM can be also expressed 
in matrix format as indicated in the following equation, 
which contains the geometrical errors that were previously 
described:

This study is focused on the analysis of the effect of 
position errors on the expected accuracy of CMM, and 
then only the position errors associated to the axis dis-
placement will be assumed, as well as the straightness 
errors in this linear axis and the deviations detected on 
the part to be tested. For this reason, the rest of CMM 
geometric errors will be neglected during the numerical 
modelling applied in this work.

(6)ΔS = P − (S + P3)

(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δxijk

Δyijk

Δzijk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(�ps,x)i + (�st,yx)j + (�st,zx)k − y�sq,xy − z�sq,zx − y(�ap,xz)i

+ z[(�ar,y)j + (�ay,xy)i] − yp3[(�ar,z)k + (�ap,xz)i + (�ay,yz)j]

+zp3[(�ar,y)j + (�ay,xy)i + (�ap,zy)k] + (�0,x)i

(�ps,y)j + (�st,xy)i + (�st,zy)k − z�sq,yz − z[(�ar,x)i + (�ap,yx)j]

+ xp3[(�ar,z)k + (�ap,xz)i + (�ay,yz)j]

− zp3[(�ar,x)i + (�ap,yx)j + (�ay,zx)k] + (�0,y)j

(�ps,z)k + (�st,xz)i + (�st,yz)j + y(�ar,x)i

− xp3[(�ar,y)j + (�ay,xy)i + (�ap,zy)k]

+ yp3[(�ar,x)i + (�ap,yx)j + (�ay,zx)k] + (�0,z)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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3  Analysis Procedure

The present work is focused on the analysis of the influ-
ence of position errors on the CMM performance, in 
order to evaluate the measuring accuracy that could be 
achieved during the dimensional verification of mechani-
cal parts. The applied methodology can be used to study 
the expected accuracy of three linear axis CMMs, and the 
results contained in this work correspond to the dimen-
sional inspection in the direction of the main axis of this 
equipment. A three linear axis DEA PIONEER 6.10.6 
CMM with a working volume of 600 × 1000 × 600 mm, 
maximum measuring error of 6.8 μm and maximum prob-
ing error of 3.0 μm was considered.

The CMM measuring accuracy is estimated by means of 
the distance between two opposite plane faces on the eval-
uated part. According to the procedure established in this 
work, the results are registered by the distance between 
the planes constructed from the points measured on both 
part faces, and the totality of results correspond to the 
dimensional verification of a 50 mm length prismatic part.

During the numerical analysis of CMM measuring 
accuracy that was carried out in this work, a range of 
maximum local deviation for position errors between 0 
and 2 μm was assumed. In general terms, part errors of 
1 μm and straightness errors of 0.2 and 0.5 μm were con-
sidered in these numerical simulations. In order to identify 
the behavior that could present two CMMs with distinct 
axis errors, the results that correspond to two series of 
simulations with different sets of random errors will be 
illustrated. In addition, some series of simulations without 
part errors and straightness errors were also executed to 
identify the effect of position errors by separate.

In this work, during the discussion of the effect of the 
different error sources, the measuring accuracy obtained 
in terms of the real resolution of 1 μm that corresponds to 
three-axis coordinate measuring machines are compared to 
the results expressed according to a computing resolution of 
0.1 μm that can be considered during the numerical analysis. 
The numerical predictions for a CMM computing resolution 
of 0.1 μm will allow to better understand the tendency fol-
lowed by the measuring accuracy, which usually can not be 
clearly identified from the rounded results provided by the 
CMM real resolution of 1 μm.

4  Results and Discussions

4.1  Characterization of CMM Axis Errors

The geometrical deviations associated to the CMM axis 
displacement, can be evidenced during the periodical cali-
bration of this equipment. Figure 4 represents the position 
errors that correspond to the distinct linear axes of the 
machine considered in this study, from the results obtained 
during the CMM calibration.

The curves of this figure illustrate the deviations regis-
tered at the coordinates assumed as calibration points along 
each linear axis of the coordinate measuring machine. These 
deviations could be compensated by the control system of 
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this equipment, but the possible fluctuations inside the inter-
vals between consecutive calibration points should be esti-
mated for the numerical modelling of CMM performance.

The magnitude of the possible fluctuation in the posi-
tions belonging the intermediate range between consecutive 
calibration points, can be deduced from the dispersion in the 
results obtained for the total length of each CMM linear axis. 
According to the results shown in Fig. 4, a fluctuation of 
about 0.38 μm can be assumed in terms of standard deviation 
inside these intervals for the position errors associated to this 
three linear axis coordinate measuring machine.

In this study, the numerical analysis of CMM perfor-
mance will be carried out from different levels of possible 
fluctuations for the geometrical errors in the CMM axis dis-
placement, in order to discuss about the expected accuracy 
for coordinate measuring machines with distinct error levels. 
These fluctuations will be described by the maximum local 
deviation that was previously defined for each axis error.

4.2  Effect of Position Errors on Measuring Error

The results shown in this section, correspond to the model-
ling of CMM performance considering uniquely the influ-
ence of position errors associated to the linear axes of this 
equipment. A series of numerical simulations without other 
error sources was developed in this section, in order to iden-
tify by separate the effect of position errors.

Figures 5, 6, 7 and 8 depict the measuring accuracy that 
can be achieved during the application of three-axis CMM 
for dimensional verification of prismatic parts. These curves 
show the maximum and minimum limits that represent the 
expected variation range of measuring results during the 
inspection process. The Marsaglia and Bray’s method was 
used to estimate the random deviations that can be origi-
nated in the distinct position errors within the working vol-
ume of CMM.

These figures illustrate the measuring results that can be 
expected for different levels of machine errors in terms of 
the maximum local deviation for position errors. The rep-
resented results correspond to different values of maximum 
local deviation for position errors inside the range from 0 
up to 2 μm.

The numerical predictions for an extended range of maxi-
mum local deviation for position errors between 0 and 2 μm 
are shown in the illustrations a) of these figures, while the 
illustrations b) reflect the results that correspond to a closer 
range of position errors between 0 and 1 μm.

Figures 5 and 6 represent the numerical predictions for a 
CMM real resolution of 1 μm, and CMM computing resolu-
tion of 0.1 μm was considered for Figs. 7 and 8, as previ-
ously indicated in the section dedicated to the description 
of the analysis procedure. The results shown in Figs. 5 and 
6 were obtained after rounding to the 3 digits that corre-
spond to the measuring resolution of coordinate measur-
ing machine (real resolution), while a higher resolution of 
4 digits provided by numerical computing was assumed in 
Figs. 7 and 8 (computing resolution).

Two distinct sets of random errors were considered, in 
order to evaluate the expected results for different zones 
inside the working volume of coordinate measuring 
machine. Figures 5 and 7 depict the results for a first set of 
random values for the position deviations along the CMM 
longitudinal axis, while Figs. 6 and 8 correspond to a second 
set of random errors.

Experimental results are also contained in these figures, 
in order to validate the simulations provided by the numeri-
cal model. Two different zones 1 and 2 along the direction 
of axis X of coordinate measuring machine were considered. 
The experimental results for both zones will serve to carry 
out the validation of numerical simulations that correspond 
to the first and second sets of random errors.

Figures 5 and 7 illustrate the results of dimensional veri-
fication of a prismatic part at a certain location identified as 
zone 1 inside the axis X, while the experimental results of 
Figs. 6 and 8 correspond to the inspection of this part at the 
zone 2 along the direction of this linear axis.

The totality of curves contained in Figs. 5 and 6 reveal 
a linear increase in the expected measuring error as a func-
tion of the fluctuation level in the position errors associated 
to the CMM linear axes, which is expressed in terms of the 
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maximum local deviation for these machine errors. This 
linear tendency can be easily evidenced in the curves regis-
tered with a maximum local deviation between 0 and 2 μm 
(Figs. 5a, 6a). A linear increase can also be observed in the 
curves for position errors between 0 and 1 μm (Figs. 5b, 6b). 
The deviation observed at the first points of these curves can 
be attributed to the rounding of measuring results according 
to the CMM measuring resolution.

The numerical modelling provides a increasing tendency 
in the CMM measuring accuracy for both sets of random 
errors, as can be seen in Figs. 5 and 6 respectively. Nev-
ertheless, higher measuring deviations are obtained from 
the second set of random errors (Fig. 6) if compared to the 
results provided by numerical simulations under the first set 
of random errors (Fig. 5).

If a CMM computing resolution of 0.1 μm is considered 
(Figs. 7 and 8), the influence of maximum local deviation for 
position errors on the expected measuring accuracy can be 
analyzed with a greater detail. From this higher resolution, 
smoother curves are registered during the numerical model-
ling of CMM performance.

According to the results shown in Figs. 5, 6, 7 and 8, the 
expected fluctuations during the measuring process for dif-
ferent values of position errors are about 6 times lower when 
a computing resolution of 0.1 μm is assumed (Figs. 7, 8), 
with regards to the curves showing the measuring error for 
a real resolution of 1 μm (Figs. 5, 6).

The experimental results registered during the dimen-
sional verification of a prismatic part exceed the maximum 
and minimum limits represented in Figs. 5, 6, 7 and 8, spe-
cially in the figures that depict the results obtained for CMM 
real resolution. This can be attributed to the fact that in this 
section only the position errors are considered during the 
numerical simulation of CMM performance. Nevertheless, 
these experimental results will satisfy the limits provided 
by the numerical modelling when other error sources are 
also assumed, as will be discussed in the next sections of 
this work.

4.3  Effect of Part Errors on Measuring Error

After the analysis of CMM measuring accuracy as a function 
of position errors by separate, in this section the effect of 
other error sources such as the part errors and straightness 
errors will be also considered, and so the CMM performance 
could be discussed in a more realistic form. In this series of 
numerical simulations, a maximum local deviation for part 
errors of 1 μm was assumed in order to describe the possible 
deviations on the part surface. The numerical results of this 
section were carried out from two different values of maxi-
mum local deviation for straightness errors, such as 0.2 and 
0.5 μm. Only the first set of random errors was assumed in 
the totality of simulations of the present section.
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Figures 9 and 10 illustrate the expected measuring accu-
racy for a three-axis coordinate measuring machine accord-
ing to a CMM real resolution of 1 μm, and CMM computing 
resolution of 0.1 μm was adopted for Figs. 11 and 12.

From the curves of Figs. 9 and 10, a clear tendency can-
not be evidenced in the CMM accuracy as a function of 
position errors when the maximum local deviation for these 
errors is between zero and 0.5 μm (Figs. 9b, 10b). On the 
contrary, an increasing linear tendency can be observed 
when the maximum local deviation for position errors is 
higher than 0.5 μm.

If a CMM computing resolution of 0.1 μm is adopted 
(Figs. 11, 12), smoother curves are provided by the numeri-
cal model. These curves show a gradual increase in the 
CMM measuring accuracy for the complete range of maxi-
mum local deviations for position errors, and help to under-
stand the effect of position errors when part errors and 
straightness errors are also considered. Again, an increasing 
linear tendency is only evidenced for position errors greater 
than 0.5 μm.

Lower differences in the curve tendency were evidenced 
between the numerical predictions for both real or comput-
ing resolution of Figs. 9, 10, 11 and 12, if compared to the 
results represented in Figs. 5, 6, 7 and 8. It can be explained 
by the effect of the part errors and straightness errors, since 
these error sources were not assumed during the numerical 
modelling of CMM performance in Sect. 4.2 and so higher 
fluctuations as a function of position errors were provided 
in those numerical predictions.

The curves of Figs. 9 and 11 represent the CMM meas-
uring accuracy that can be achieved for a maximum local 
deviation for straightness errors of 0.2 μm, while Figs. 10 
and 12 correspond to straightness deviations of 0.5 μm. The 
discrepancies between these results for both straightness 
deviations are about 34% when the real resolution and posi-
tion errors up to 1 μm are considered, but it can be negligible 
in the rest of cases.

When not only the position errors but also the part errors 
and straightness errors are considered (as occurs in Figs. 9, 
10, 11 and 12), a lower slope is registered in the curves 

showing the variation of CMM measuring accuracy as a 
function of the maximum local deviation for position errors. 
This can be explained by the influence of part errors and 
straightness errors, since they present a greater weight on 
the overall machine errors when the lowest values of maxi-
mum local deviation for position errors are adopted. In 
fact, an almost constant CMM measuring accuracy about 
1 μm is found in the range of position errors between zero 
and 0.5 μm when these error sources are also considered 
(Figs. 9b, 10b), while an increasing variation from zero to 
about 1 μm is depicted in this interval when only the position 
errors are analyzed (Fig. 5b).

The experimental results registered during the dimen-
sional inspection of a prismatic part in two different zones 1 
and 2 along the axis X of coordinate measuring machine, are 
comprised inside the variation ranges defined by the maxi-
mum and minimum limits of Figs. 9, 10, 11 and 12. It serves 
to validate the predictions provided by the numerical model 
proposed in this work.

4.4  Effect of Random Errors on Measuring Error

The measuring accuracy of three-axis CMMs can be strongly 
affected by the deviations originated at the different posi-
tions covered by the CMM probe along the axis displace-
ment and by the geometrical deviations that occur at the 
different points of the part surface. The influence of these 
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unexpected deviations can be evaluated by adopting distinct 
sets of random errors during the numerical modelling of 
CMM performance.

A few results from different random errors were facili-
tated in Sect. 4.2, but the present section is specially dedi-
cated to discuss the influence of the random errors by sepa-
rate. For this purpose, the totality of numerical simulations 
of this section were developed from a second set of random 
errors, and their effect on the CMM measuring accuracy will 
be discussed in comparison with the results of the previous 
sections of this work.

The results shown in the following figures correspond 
to the numerical modelling with a maximum local devia-
tion for position errors in the range from zero up to 2 μm, 
straightness errors of 0.2 and 0.5 μm and part errors of 1 μm, 
in all the cases with a second set of random errors. Fig-
ures 13 and 14 illustrate the results provided by the numeri-
cal modelling for CMM real resolution, while CMM com-
puting resolution was assumed for Figs. 15 and 16.

A certain increasing tendency is probed in both sets 
of random errors in the complete range of position errors 
between zero and 2 μm, when a computing resolution of 
0.1 μm is considered (Figs. 11, 12, 15, 16). Nevertheless, 
a higher slope is evidenced in the curves that represent the 
results obtained from the second set of random errors, and 
the measuring errors that correspond to this set of random 
errors are a 12% greater.

The discrepancies in the curve tendency between both 
sets of random errors are specially remarked in the range 
of position errors up to 0.5 μm. An almost constant CMM 
measuring accuracy was obtained for position errors 
between zero and 0.5 μm when the first set of random errors 
is considered (Figs. 11b, 12b), while a higher slope was reg-
istered in this interval in the case of the second set of random 
errors (Figs. 15b, 16b).

The expected measuring accuracy of coordinate measur-
ing machine could be estimated by the overall maximum and 
minimum limits that would result as the average between the 
maximum and minimum limits provided by the numerical 

model for each one of both sets of random errors considered 
in this section.

According to the results presented in this section, it can 
be concluded that the numerical model of this work can 
be applied to estimate the measuring accuracy of a certain 
CMM from the possible deviations that can occur in the 
intermediate positions between successive calibration points. 
For this purpose, the numerical simulation of CMM per-
formance should be executed with different sets of random 
errors, and finally the expected CMM measuring accuracy 
could be determined by the overall maximum and minimum 
limits to be deduced as the average between the maximum 
and minimum limits for the distinct sets of random errors.

4.5  Effect of Position Error on Measuring Dispersion 
During Dimensional Inspection

In order to understand the influence of the axis displacement 
errors on the CMM performance, the measuring dispersion 
associated to the successive measures to be executed during 
the dimensional verification of mechanical parts should be 
also discussed, since it can contribute to explain the gradual 
increment evidenced in the variation range that is defined 
between the maximum and minimum limits illustrated in 
previous sections of this work for the different analysis 
conditions.
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Fig. 16  Expected CMM measuring errors from position errors with 
computing resolution and second set of random errors (for part errors 
of 1 μm and straightness errors of 0.5 μm)
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and straightness errors of 0–2 μm)
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The following figures represent the measuring disper-
sion that results from the different dimensional measures 
to be made with the CMM during the inspection process, 
according to the predictions provided by the numerical mod-
elling. Figures 17 and 18 show the results obtained for a 
real resolution of 1 μm and computing resolution of 0.1 μm, 
respectively.

Figures 17 and 18 represent the measuring dispersion 
to characterize the achievable CMM measuring accuracy, 
instead of using the maximum and minimum limits that were 
discussed in the previous sections. These figures depict the 
measuring dispersion as a function of the maximum local 
deviation for position errors, and comprise a series of 
curves that exhibits the results obtained for different values 
of straightness errors between zero and 2 μm. A maximum 
local deviation for part errors of 1 μm and two different sets 
of random errors are assumed in this section.

The differences among the successive curves of these fig-
ures can be more easily identified in Fig. 18, since it illus-
trates the results for a computing resolution of 0.1 μm. Fig-
ures 18a and b show a similar increasing tendency, although 
a distinct slope is obtained for each set of random errors.

The curves of Fig. 18 that correspond to the lowest values 
of straightness errors are closer to consecutive curves, and a 
greater distance between them is observed as the maximum 
local deviation for straightness errors is incremented. A 
gradual increase in the distance between consecutive curves 
can be more easily identified in the range of position errors 
from 1 to 2 μm.

The experimental results obtained from the dimensional 
verification of a prismatic part, are comprised inside the 
variation range defined by the measuring dispersion that 
correspond to the conditions assumed during the numeri-
cal modelling of CMM performance. It serves to check the 
validity of the numerical model that was proposed in this 
work.

5  Conclusions

The variation of the CMM measuring accuracy as a function 
of certain error sources such as the position errors related to 
the CMM axis displacement was evaluated in this work. Dif-
ferent conditions were analyzed with the purpose if deducing 
the specific influence of position errors, from the numer-
ous factors that affect the CMM performance. A simplified 

numerical model limited to the contribution of position 
errors, straightness errors and part errors was applied, in 
order to minimize the computing time required for study-
ing the expected measuring accuracy when a three-axis 
CMM is employed. This work was focused on the analysis 
of three-axis coordinate measuring machines (CMMs) type 
FXYZ, although similar studies could be also carried out for 
other machine structural configurations. According to the 
results obtained in this work, a increasing linear tendency 
is identified in the CMM measuring accuracy as a function 
of the maximum local deviation for position errors, when 
only these error sources are examined and when the part 
errors and straightness errors are also assumed. From the 
results obtained with all these error sources, an almost con-
stant measuring accuracy is found for position errors up to 
0.5 μm, while it is gradually incremented for higher values 
of maximum local deviation for position errors. If the meas-
uring dispersion associated to the successive dimensional 
measures is represented as a function of position errors for 
different values of straightness errors, a lower slope and a 
higher distance between consecutive curves can be observed 
as greater values of maximum local deviation for straight-
ness error are adopted. The proposed model was proved to be 
valid to estimate the CMM measuring accuracy, by identify-
ing the measuring range that would comprise the expected 
results from the dimensional inspection of mechanical parts.
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