

The Mixed Kernel Function SVM‑Based Point Cloud Classifcation

ChaoChen¹ D · Xiaomin Li¹ · Abdelkader Nasreddine Belkacem² · Zhifeng Qiao³ · Enzeng Dong¹ · Wenjun Tan⁴ · **Duk Shin⁵**

Received: 10 October 2018 / Revised: 22 January 2019 / Accepted: 21 February 2019 / Published online: 7 March 2019 © Korean Society for Precision Engineering 2019

Abstract

Measurement and detection of ground information by airborne Lidar are one of the hot topics in the feld of intelligent sensing in recent years. This study proposes a new point cloud classifcation algorithm of Mixed Kernel Function SVM to distinguish diferent types of ground objects. Firstly, the combined features including the coordinate values, the RGB value, normalized elevation, standard deviation of elevation, and elevation diference of point cloud data were extracted. A mixed kernel function of Gauss and Polynomial was designed. Then, one-versus-rest SVM multiple classifers was constructed. Finally, the feature of 3D point cloud data was employed to train the SVM classifers. The overall classifcation accuracies of test data were 97.69% and 99.13% for two data sets, I and II respectively. In addition, the experimental results have showed that the performance of the proposed method with mixed kernel function SVM was better than standard SVM method with Gaussian kernel function and polynomial kernel function only, which demonstrates the efectiveness of the proposed method.

Keywords Point cloud classifcation · Mixed kernel function · One-versus-rest (OVR) · Support vector machine (SVM)

1 Introduction

The point cloud data obtained by the airborne laser scanning system is stored as discrete points (e.g., three-dimensional coordinate information (X, Y, and Z), RGB color information). Each point is unordered and there is no association between each point, which makes the classifcation of the point clouds a difficult issue.

In recent years, three-dimensional (3D) point cloud scene analysis has attracted more attention in the aspects of urban

 \boxtimes Chao Chen cccovb@hotmail.com

- ¹ Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin 300384, China
- ² Department of Computer and Network Engineering, College of Information Technology, UAE University, Al Ain 15551, UAE
- ³ Key Laboratory of Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China
- ⁴ School of Computer Science and Engineering, Northeastern University, Shenyang 110189, China
- ⁵ Department of Electronics and Mechatronics, Tokyo Polytechnic University, Atsugi 2430297, Japan

buildings extraction $[1-3]$ $[1-3]$ $[1-3]$, vehicle and road related information extraction $[4–6]$ $[4–6]$ $[4–6]$, tree extraction $[7]$ $[7]$, modeling $[8]$ $[8]$, and 3D digital urban reconstruction [\[9](#page-9-2)] with the continuous development of laser scanning technology. Many researchers have made progress in the feld of 3D point cloud scene classifcation in recent years, however,the accuracy of point cloud classifcation is afected by some factors such as the noise, partial missing, discrete and uneven density distribution of point cloud data [[10,](#page-9-3) [11\]](#page-9-4), and diversity of features in the actual scene. One of the most important issues is how to category each point in 3D point cloud scenes. Many scholars have proposed a number of methods to classify the 3D point cloud.

Franceschi uses refected laser intensity information to distinguish marble from limestone [\[12](#page-9-5)]. The intensity is an 8-bit digital number representing the distance-corrected intensity normalized to the range 0–255 and the number of points backscattering is a useful component of the signal returned (in particular, the points where saturation of the receiver occurred are excluded by the parsing software). In this way, two targets acquired at diferent distances but having the same refectance at the laser wavelength return similar intensity. This algorithm is mainly used to distinguish marls from limestone, and is not applicable. Elevation and intensity airborne LiDAR data are used in Antonarakis'

paper in order to classify forest and ground types quickly and efficiently without the need for manipulating multispectral image fles, using a supervised object orientated approach [\[13](#page-9-6)]. This algorithm needs to set some thresholds according to experience, which leads to the inapplicability of the algorithm. For urban infrastructure mobile laser scanning data classifcation, Pu et al. [[14\]](#page-9-7) proposed a two steps method which starts with an initial rough classification into three larger categories: ground surface, objects on ground, and objects off ground. This algorithm based on a collection of characteristics of point cloud segments like size, shape, orientation and topological relationships, the objects on ground are assigned to more detailed classes such as traffic signs, trees, building walls and barriers. But the complexity of this algorithm is relatively high. And the size, shape, direction and topological relationship of diferent objects may be similar, leading to classifcation errors. Recognizing the redundancy of labeling every individual data, Lim and Suter [[15\]](#page-9-8) proposed over-segmenting the raw data into adaptive support regions: super-voxels. The super-voxels are computed using 3D scale theory and adapt to the above-mentioned range data properties. Colors and refectance intensity acquired from the scanner system are combined with geometry features that are extracted from the super-voxels, to form the feature descriptors for the supervised learning model. And they proposed using the discriminative Conditional Random Fields for the classifcation problem and modifed the model to incorporate multi-scales for super-voxel labeling. Then they improved above method by introducing regional edge potentials in addition to the local edge and node potentials in the multi-scale Conditional Random Fields, and proposed using multi-scale Conditional Random Fields to classify 3D outdoor terrestrial laser scanned data [\[16\]](#page-9-9). In the model, the raw data points are over-segmented into an improved midlevel representation, "super-voxels". Local and regional features are then extracted from the super-voxel and parameters learnt by the multi-scale Conditional Random Fields. Although this method shortens the operation time, the calculation method of super-voxel is complex, which leads to low classifcation accuracy.

Support vector machine (SVM) [[17\]](#page-9-10) is one of the most widely used classifcation methods in remote sensing feld. Golovinskiy et al. [[18\]](#page-9-11) investigates the design of a system for recognizing objects in 3D point clouds of urban environments. They divided the system into four steps: locating, segmenting, characterizing, and classifying clusters of 3D points. They frst cluster nearby points to form a set of potential object locations with hierarchical clustering. Then, the points near these locations are divided into foreground and background sets using graph cutting algorithm and an eigenvector based on its shape and context is established for each point group. Finally, SVM with polynomial kernels function is used to train classifers and classify objects into semantic

groups, such as cars, streetlights, trees and fre hydrants. But the algorithm has high complexity and low classifcation accuracy. Mallet [[19\]](#page-9-12) decomposed full waveform data and extracted waveform feature variables including echo amplitude and radiation characteristics, and used SVM method with Gaussian kernels function to divide urban areas into buildings, grounds and vegetation, but these methods do not fully consider the characteristics an applicability of the algorithm. However, because the shape features are not clear enough, the classifcation efect is poor.

The data in this paper is point cloud data collected by laser LiDAR, which has the characteristics of disorder, unstructured data and no grid. The steps of meshing and image fusion of point cloud data are subtracted, and the errors in the process of generating grid from threedimensional point cloud data are reduced. It is generally known that the selection of kernel function of support vector machine has an important infuence on the classifcation result of SVM algorithm [[20\]](#page-9-13). In view of this, the single kernel function used in the past is no longer suitable for point cloud data classifcation. This paper proposed an improved support vector machine with a novel mixed kernel function to classify 3D point cloud data. Firstly, Compound features of point cloud data are extracted, including RGB color, normalized elevation, the deviation of normalized elevation and diference of elevation and constructed the feature vectors. Then, a part of the data is randomly selected as the training sample to train a one-versus-rest SVM classifer. Finally, the SVM classifer is employed to classify the remained data. As we all know, the Gauss kernel function has the interpolation ability, and it is good at extracting the local properties of samples. It is a kind of kernel function with strong local learning ability. But the overall situation is weak. Relatively speaking, the polynomial kernel function is good at extracting the global characteristics of samples, although its interpolation ability is relatively weak. Therefore, the mixed kernel function proposed in this paper combined the advantages of the Gauss kernel function and the Polynomial kernel function, and the combined kernel function has good learning ability and strong generalization ability. The experimental results showed that proposed method has a better classifcation efect and robustness compared with the conventional SVM method.

2 Method

2.1 Experimental Data

Three experiment data sets were used in this paper. The experiment data set I was from Institute of Geodesy and Photogrammetry of Department of Civil, Environmental and Geomatic Engineering of ETH Zurich [\[21](#page-9-14)]. The experiment data set II was collected using Navlab11 equipped with side looking SICK LMS laser scanners and used in push-broom. The data was collected around CMU campus in Oakland, Pittsburgh, PA [\[22\]](#page-9-15). The experiment point clouds data set III was obtained by laser scanners [\[23](#page-9-16)].

The frst 3D point dataset was collected from a region of Bill Stein, Germany, including a series of diferent urban scenes: churches, streets, railroad tracks, squares, villages, football felds, castles, and so on. These 3D point data can be classifed into 8 categories as shown in Table [1,](#page-2-0) containing: ① Artifcial terrain: mainly pavement; ② Natural terrain: most of them are grassland; ③ High vegetation: trees and large shrubs; \circledA Low vegetation: flowers or small shrubs which less than 2 meters; © Buildings: churches, cities hall, station, apartment, etc.; ⑥ Artifcial landscapes, such as garden walls, fountains and so on; \odot Scanning artifact: artifacts caused by moving objects dynamically during the recording of static scanning; ⑧ Cars. The 3D point cloud data was shown in Fig. [1a](#page-2-1) by using the Cloud Compare software.

The second 3D point data set was recorded from the Oakland area, American, which is scanned by a 3D laser scanner mounted on the mobile platform. As shown in Table [2](#page-3-0) the data set contains fve types objects: ① Vegetation; ② Wire; ③ Pole/Trunk; ④ Ground; ⑤ Facade (the face of a building). The 3D point cloud data was shown in Fig. [1b](#page-2-1).

Table 1 Data set I sample information in a certain area of Germany

Type								8	Total
Name	Artificial terrain	Natural terrain	High vegetation	Low vegetation	Buildings	Artificial land- scapes	Scanning artifact	Cars	
Number	24.197	65.281	47.401	927	22,994	14.032	239	1225	176,296

(a) A certain area of Germany

(b) Oakland area

(c) Moscow area

Table 2 Data set II sample information in Oakland area

The third 3D point data set are provided by Graphics and Media Lab (GML), Moscow State University, which is scanned by a 3D laser scanner mounted on the mobile plat-form. As shown in Table [3](#page-3-1) the data set contains five types' objects: ① Ground; ② Building; ③ Car; ④ High vegetation; ⑤ Low vegetation. A part of the 3D point cloud data was shown in Fig. [1](#page-2-1)c.

2.2 Feature Extraction of Point Cloud Data

Considering the characteristics of the laser point cloud data, some feature such as the color (RGB) value of each point cloud data, the normalized elevation, the elevation standard deviation, the elevation diference, the curvature feature, and the intensity from the point cloud data can be used as efective feature for classifcation [[23](#page-9-16)]. In this paper, the coordinate values, the RGB value, normalized elevation, standard deviation of elevation and elevation diference were selected to construct the feature vectors based on the following parameters:

- RGB (the color characteristics of each point.)
- Normalized elevation, the absolute height information of the terrain, obtained by calculating the diference between DSM (Digital Surface Model) and DEM (Digital Elevation Model), in which DEM is obtained by the fltering method.

$$
H_{nor} = H_{dsm} - H_{dem} \tag{1}
$$

• The elevation standard deviation is the microscopic refection characteristic of the elevation variation in the local neighborhood of the laser foot point. The formula is as shown in Eq. ([2\)](#page-3-2).

$$
HSTD = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (H_i - \bar{H})^2}
$$

$$
\bar{H} = \frac{1}{n} \sum_{i=1}^{n} H_i
$$
 (2)

Difference of elevation, that is, the difference between the highest and lowest values of the laser foot elevation in the local neighborhood.

$$
H_d = H_{\text{max}} - H_{\text{min}} \tag{3}
$$

Finally, the feature vector was built by the elements mention above, was fned as following.

$$
T = [X, Y, Z, R, G, B, H_{nor}, H_{std}, H_d]
$$
\n(4)

2.3 Proposed Mixed Kernel Function of SVM

For nonlinear two classifcation problems, the SVM algorithm solves the constraint optimization problems of quadratic prog-ramming function [[24\]](#page-9-17) 错误**!**未找到引用源。. For data sets (x_i, y_i) , $i = 1, 2, ..., l$, $y_i \in (1, -1)$, where x_i are the features of data, and y_i are the la-bels of the data class.

The optimal classifcation plane can be calculated the maximum value in Eq. (5) (5) under the constraint condition Eq. (6) (6) .

$$
W(\alpha) = \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)
$$
 (5)

Under the Constraint condition

$$
\sum_{i=1}^{l} \alpha_i^0 y_i = 0, C \ge \alpha_i^0 \ge 0, \quad i = 1, ..., l
$$
 (6)

where $K(x_i, x_j)$ is a kernel function.

The mixed kernel function proposed in the paper was defned as following:

$$
K(x, x_i) = \lambda_1 * \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right) + \lambda_2 * ((x \cdot x_i) + 1)^d
$$
\n(7)

Under the constraint condition, $\lambda_1 + \lambda_2 = 1$, $0 \le \lambda_1 \le 1$, $0 \leq \lambda_2 \leq 1$.

Table 3 Data set III sample information in Moscow area

 ϵ

Fig. 3 The fow chart of classifcation method

After solving the optimal solutions corresponding to the above coefficients, the optimal classification function is obtained as ([8\)](#page-4-0).

$$
f(x) = sgn\left(\sum_{i=1}^{l} a_i^0 y_i K(x_i, x) + b_0\right)
$$
 (8)

where *x* is an unknown vector, $sgn(\cdot)$ is a symbolic function.

2.4 Design of SVM Classifer

The one-versus-rest (OVR) classifcation method was used to convert multiple categories classifcation issue into two categories classifcation. The schematic diagram of OVR classifcation method is shown in Fig. [2.](#page-4-1) To classify K categories, the corresponding number of SVM classifers was needed as shown in Fig. [3.](#page-4-2) Thus, eight and fve SVM classifers were employed to classify data set I and data set II/ III respectively. Because of the huge number of 3D points data, 18491 and 157,805 points was selected randomly as training and test set respectively for data set I, as shown in Table [4](#page-4-3). The number of 9414 and 84,691 points was selected

) randomly as training and test set respectively for data set II. The number of 10,742 and 1,063,247 points was selected randomly as training and test set respectively for data set III.

Test data was inputted to SVM classifers. Two rules were designed to determine which category the test data belong to.

- 1. If only one classifer outputs a positive value, the result is the corresponding category.
- 2. Otherwise, the category of the test data is selected as the maximum value of the discriminant function.

2.5 Evaluation Criteria

The confusion matrix as shown in Table [5](#page-4-4) was used for evaluating the performance of proposed method. The italic in Table [5](#page-4-4) showed the ratio which was calculated from the classifcation result. Each column value in the Table [4](#page-4-3) represents the number of point clouds of the prediction category after classifcation. Each row value represents the number of the

real point cloud in the actual point cloud. The accuracy refers to the ratio of the number of points correctly divided into a certain category to the total number of real reference points.

The overall classification accuracy of all categories is defned as Eq. ([9](#page-5-0))

$$
Accuracy = \frac{a+e+k}{a+b+c+d+e+f+g+h+k}
$$
 (9)

The classification accuracy of predicted category 1 is defined as Eq. (10) (10) (10)

$$
Precision_1 = \frac{a}{a + d + g} \tag{10}
$$

Fig. 4 The classifcation result of data set I

$$
Recall_1 = \frac{a}{a+b+c}
$$
\n⁽¹¹⁾

3 Results

The classifcation results of proposed method with parameters $\lambda_1 = 0.7$, $\lambda_2 = 0.3$ and true classification labels of data set I were shown in Fig. [4a](#page-5-3), b, respectively. While, Fig. [5](#page-5-4)a, b showed the classifcation results of proposed method with

The classification results of the algorithm in this paper

True classification label

The classification results of the algorithm in this paper

True classification label

Fig. 5 The classifcation result of second data set II

parameter λ_1 =0.7 and λ_2 =0.3 and true classification labels of data set II. And, Fig. [6](#page-6-0)a, b showed the classifcation results of proposed method with parameters λ_1 =0.7, λ_2 =0.3 and true classifcation labels of data set III. Diferent colors in Figs. [4](#page-5-3), [5](#page-5-4) and [6](#page-6-0) represent diferent categories.

The overall classifcation accuracy using SVM method with Gaussian, polynomial, and proposed kernel function was shown in Fig. [7](#page-6-1). The average classification accuracy of Gaussian kernel function and polynomial kernel function is 89.22% and 86.01% respectively. While, the average classifcation accuracy of the proposed mixed kernel function with parameter $\lambda_1 = 0.7, \lambda_2 = 0.3, \lambda_1 = 0.5, \lambda_2 = 0.5$ and $\lambda_1 = 0.2$, $\lambda_2 = 0.8$ were 99.34%, 94.64% and 94.87%, respectively. The performances of the proposed method

with mixed kernel function were higher than the conventional method with Gaussian and polynomial kernel function. The highest classifcation accuracy was achieved by proposed mixed kernel function SVM with parameter λ_1 =0.7 and λ_2 =0.3.

Tables [6,](#page-7-0) [7](#page-8-4) and [8](#page-8-5) showed the confusion matrix of classifcation results of data set I, II and III respectively with the mixed kernel function parameter $\lambda_1 = 0.7$, $\lambda_2 = 0.3$. The bold showed the highest classifcation rates in the Tables [6,](#page-7-0) [7](#page-8-4) and [8.](#page-8-5)

The precision and the recall of the six categories were higher than 90%. The highest precision and recall were 99.8% and 99.6%, respectively. The precision and the recall of low vegetation category were higher than 80%.

The classification results of the algorithm in this paper

Fig. 7 Comparison of classifcation results

Table 6

The confusion matrix of data I obtained by SVM with mixed kernel function

Only Scanning artifact category was 23.22% and 32.12%. These results were classifed correctly in data set I.

For five categories in data set II, the precision and recalls were almost higher than 87%. The highest precision and recall were 100% achieved by Wire category, because the point number of Wire category was only 33. While the low est precision and recall were 86.55% and 88.64%, respec tively. These results showed the 3D points were classifed successfully in data set II.

For five categories in data set III, the precision and recalls were almost higher than 86%. The highest precision and recall were 100% achieved by Car category, because the point number of Car category was only 1833. While the lowest precision and recall were 86.55% and 88.64%, respectively. These results showed the 3D points were classifed successfully in data set III.

4 Discussion and Conclusion

This paper presented a point cloud classifcation algorithm based on support vector machine (SVM) with new mixed kernel function. Firstly, the coordinate values, the RGB value, normalized elevation, standard deviation of elevation and elevation diference of 3D point cloud data were fea ture selected. Then, by combining Gaussian and polynomial kernel functions, a mixed kernel function is constructed. Eight and fve one-versus-rest SVM classifers were trained to classify the 3D point data. The averaged classifcation results of three data sets were 97.69%, 99.13% and 96.20%, which suggested proposed method classify the 3D point data successively.

The Kernel Function commonly used in SVM mainly has the following four categories [[25\]](#page-9-18), including linear kernel function, Polynomial kernel function, Gaussian kernel func tion, and sigmoid kernel function. Gaussian kernel function is the most widely used, which is a locally strong kernel function, which can map a sample into a higher dimensional space. Polynomial kernel function can map the low dimen sional input space to the characteristic space of the high latitude. In this paper, a mix kernel by combining Gauss ian kernel function and Polynomial kernel function were proposed, and the classifcation results of proposed method was better than Gaussian kernel function and Polynomial kernel function only.

The experimental results of three sets of point cloud data from diferent regions show that the classifcation algorithm proposed in this paper has high accuracy for various scenes, improves the robustness of the algorithm, and has certain practicability and research value. But the algorithm also has some shortcomings. Because of the large number of data sets, the training speed of the classifer is a little slow as shown in Table [9](#page-8-6).

Table 7 The confusion matrix of data II obtained by SVM with mixed kernel function

	Predicted category								
	Vegetation	Wire	Pole	Ground	Facade	$Recall\%$			
Actual category									
Vegetation	10,224	θ	21		261	97.31			
Wire	$\overline{0}$	29	$\mathbf{0}$	$\mathbf{0}$	$\overline{0}$	100			
Pole	122	$\mathbf{0}$	135	65	38	37.50			
Ground	$\boldsymbol{0}$	$\mathbf{0}$	$\mathbf{0}$	62,481	87	99.86			
Facade	32	$\mathbf{0}$	$\mathbf{0}$	159	11,036	98.30			
Precision/%	98.52	100	86.54	99.64	96.62				

Table 8 The confusion matrix of data III obtained by SVM with mixed kernel function

Table 9 The confusion matrix of data II obtained by SVM with mixed kernel function

The classification result was compared with three other methods. The frst method (method I) was the one described in [[25\]](#page-9-18), using a combination of BoW (Bag of Words) and LDA (Latent Dirichlet Allocation). The second method (method II) used the point-based features to classify point clouds. The third method (method III) is the one described in $[26]$ $[26]$ $[26]$, using geometric and intensity information, and features are selected using Joint Boost to classifcation. The proposed method achieved average accuracy 97.67%, which is better than method I 95.3%, method II 92%, and method III 95.15%, which suggest the efectiveness of proposed method.

Acknowledgements This work was fnancially supported by National Key R&D Program of China (2018YFC1314500), National Natural Science Foundation of China (61806146), Natural Science Foundation of Tianjin City (15JCYBJC51800,15JCZDJC32800,17JCQNJC04200), Belt and road international scientifc and technological cooperation demonstration project (17PTYPHZ20060), Tianjin Key Laboratory

Foundation of Complex System Control Theory and Application (TJKL-CTACS-201702) and Young and Middle-Aged Innovation Talents Cultivation Plan of Higher Institutions in Tianjin.

Compliance with ethical standards

Conflict of interest The authors declare that there is no confict of interests regarding the publication of this paper.

References

- 1. Weinmann, M., Jutzi, B., & Hinz, S. (2015). Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. *Isprs Journal of Photogrammetry & Remote Sensing, 105,* 286–304.
- 2. Demantké, J., Vallet, B., & Paparoditis, N. (2012). Streamed vertical rectangle detection in terrestrial laser scans for facade database production. *The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1*(3), 99–104.
- 3. Xu, L., Kong, D., & Li, X. (2014). On-the-fy extraction of polyhedral buildings from airborne LiDAR data. *IEEE Geoscience and Remote Sensing Letters, 11*(11), 1946–1950.
- Serna, A., & Marcotegui, B. (2014). Detection, segmentation and classifcation of 3D urban objects using mathematical morphology and supervised learning. *Isprs Journal of Photogrammetry & Remote Sensing, 93*(7), 243–255.
- 5. Yu, Y., Li, J., & Guan, H. (2014). Semiautomated extraction of street light poles from mobile LiDAR point-clouds. *IEEE Transactions on Geoscience and Remote Sensing, 53*(3), 1374–1386.
- 6. Liu, R., Lu, X., & Yue, G. (2017). An automatic extraction method of road from vehicle-borne laser scanning point clouds. *Geomatics & Information Science of Wuhan University, 42*(2), 250–256.
- 7. Kankare, V., Puttonen, E., & Holopainen, M. (2016). The efect of TLS point cloud sampling on tree detection and diameter measurement accuracy. *Remote Sensing Letters, 7*(5), 495–502.
- 8. Livny, Y., Yan, F., & Olson, M. (2010). Automatic reconstruction of tree skeletal structures from point clouds. *ACM Transactions on Graphics, 29*(6), 1–8.
- 9. Musialski, P., Wonka, P., & Aliaga, D. G. (2013). A survey of urban reconstruction. *Computer Graphics Forum, 32*(6), 146–177.
- 10. Guo, B., Huang, X., & Zhang, F. (2013). Points cloud classifcation using joint boost combined with contextual information for feature reduction. *Acta Geodaetica et Cartographica Sinica, 42*(5), 715–721.
- 11. Zhen, D., & Yang, B. (2015). Hierarchical extraction of multiple objects from mobile laser scanning data. *Acta Geodaetica et Cartographica Sinica, 44*(9), 980–987.
- 12. Franceschi, M., Teza, G., & Preto, N. (2009). Discrimination between marls and limestones using intensity data from terrestrial laser scanner. *Isprs Journal of Photogrammetry & Remote Sensing, 64*(6), 522–528.
- 13. Antonarakis, A. S., Richards, K. S., & Brasington, J. (2008). Object-based land cover classifcation using airborne LiDAR. *Remote Sensing of Environment, 112*(6), 2988–2998.
- 14. Pu, S., Rutzinger, M., & Vosselman, G. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. *ISPRS Journal of Photogrammetry & Remote Sensing, 66*(6), S28–S39.
- 15. Lim, E. H., & Suter, D. (2009). 3D terrestrial LIDAR classifcations with super-voxels and multi-scale Conditional Random Fields. *Computer-Aided Design, 41*(10), 701–710.
- 16. Lim, E. H. & Suter, D. (2008). Multi-scale conditional random felds for over-segmented irregular 3D point clouds classifcation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops*. *CVPRW '08*, *IEEE* (pp. 1–7).
- 17. Chaudhuri, A., De, K., & Chatterjee, D. (2008). A comparative study of Kernels for the multi-class support vector machine. In *IEEE International Conference on Natural Computation* (pp. $3 - 7$).
- 18. Golovinskiy, A., Kim, V. G., & Funkhouser, T. (2010). Shapebased recognition of 3D point clouds in urban environments. In *IEEE, International Conference on Computer Vision* (pp. 2154–2161).
- 19. Mallet, C., Bretar, F., & Roux, M. (2011). Relevance assessment of full-waveform lidar data for urban area classifcation. *ISPRS Journal of Photogrammetry & Remote Sensing, 66*(6), S71–S84.
- 20. Song, H., Xue, Y., & Zhang, L. J. (2011). Research on kernel function selection simulation based on SVM classifcation. *Computer & Modernization, 1*(8), 133–136.
- 21. Hackel, T., Savinov, N., & Ladicky, L. (2017). Semantic3d.net: A new large-scale point cloud classifcation benchmark. *The ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-1/W1,* 91–98.
- 22. [http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/.](http://www.cs.cmu.edu/%7evmr/datasets/oakland_3d/cvpr09/doc/)
- 23. Shapovalov, R., & Velizhev, A. (2011). Cutting-plane training of non-associative Markov network for 3D point cloud segmentation. In *2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission(3DIMPVT)* (pp. 1–8).
- 24. Liu, Z. Q., Peng-Cheng, L. I., & Chen, X. W. (2016). Classifcation of airborne LiDAR point cloud data based on information vector machine. *Optics & Precision Engineering, 24*(1), 210–219.
- 25. Wang, Z., Zhang, L., & Fang, T. (2015). A multiscale and hierarchical feature extraction method for terrestrial laser scanning point cloud classifcation. *IEEE Transactions on Geoscience and Remote Sensing, 53*(5), 2409–2425.

26. Cramer, M. (2010). The DGPF-test on digital airborne camera evaluation overview and test design. *Photogrammetrie Fernerkundung Geoinformation, 2010*(2), 73–82.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

tion and intelligent algorithm.

Chao Chen received Bachelor degree in Automation, and Master degree in Pattern Recognition and intelligent system from Northeastern University, Shenyang, China in 2005 and 2008. In 2014, He got his Ph.D. degree from Tokyo Institute of Technology, Japan. Currently, he is an Associate professor in School of Electrical and Electronic Engineering, Tianjin University of Technology. He mainly works on Invasive and Non-invasive Brain-Computer Interface (BCI), Robot control, Pattern recogni-

Xiaomin Li is currently pursuing a master's degree in Electrical and Electronic Engineering College of Tianjin University of Technology. Her mainly works on the research of data processing of ground point clouds.

A b d e l k a d e r N a s r e d d i n e Belkacem was born in Relizane, Algeria, on October 31, 1984. He received the engineering degree in Electronics in 2006 from University of Abdelhamid Ibn Badis, Mostaganem, Algeria, and Magister degree in vision and pattern recognition in 2010 from University of Sciences and Technology of Oran, Algeria, where he became interested in brain signals processing. In 2015, He got his Ph.D. degree from Tokyo Institute of Technology, Japan. Currently, he is an

assistant professor at UAE University, UAE. His research is mainly devoted to eye-movement-based communication systems, bio-signal processing, brain machine interface and neuroscience.

Zhifeng Qiao received Bachelor degree in Mechanical Manufacturing and Automation from Qingdao University, Qingdao, China in 2007. He got his Master degree and Ph.D. degree in Mechanical Engineering from Tianjin University, Tianjin, China in 2009 and 2012. Currently, he is a lecturer in School of Mechanical Engineering, Tianjin University of Technology. He mainly works on Multiaxis motion control based on industrial Ethernet, Isogeometric analysis, Robot control system

the Society of Instrument and Control Engineers (SICE), the Japan Neuroscience Society (JNS) and Japanese Neural Network Society (JNNS).

Wenjun Tan received the M.S. degree and the Ph.D. degree in Pattern recognition and intelligent system from Northeastern University, Shenyang, China, in 2007 and 2010, respectively. He is currently an associate professor in the School of Computer Science and Engineering, Northeastern University, China. He has authored or coauthored more than 50 international research papers, and holds sixteen patents. His current research interests include medical image processing, and computer aided diagnosis.

Duk Shin received the B.S. and M.S. degrees in engineering in 1996 and 1998 from Chosun University in Korea. He received Ph.D. degree in engineering in 2005 from Tokyo Institute of Technology, Tokyo, Japan. He is now an associate professor at Dept. of Electronics and Mechatronics of Tokyo Polytechnic University. His research interests include wearable robot, human centered system, human computer interface, brain machine interface, and bio-signal engineering. He is a member of

design, and Intelligent manufacturing technology.

Enzeng Dong received Bachelor and Master degrees from Army Officer Academy of PLA, China, in 2000 and 2003 respectively. He received the Dr. Eng. degrees from Nankai University, Tianjin, China, in 2006. Now, he is a professor in School of Electrical Engineering, Tianjin University of Technology. He is mainly working on chaos system, brain machine interface, and image processing.

