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Abstract
Measurement and detection of ground information by airborne Lidar are one of the hot topics in the field of intelligent 
sensing in recent years. This study proposes a new point cloud classification algorithm of Mixed Kernel Function SVM to 
distinguish different types of ground objects. Firstly, the combined features including the coordinate values, the RGB value, 
normalized elevation, standard deviation of elevation, and elevation difference of point cloud data were extracted. A mixed 
kernel function of Gauss and Polynomial was designed. Then, one-versus-rest SVM multiple classifiers was constructed. 
Finally, the feature of 3D point cloud data was employed to train the SVM classifiers. The overall classification accuracies of 
test data were 97.69% and 99.13% for two data sets, I and II respectively. In addition, the experimental results have showed 
that the performance of the proposed method with mixed kernel function SVM was better than standard SVM method with 
Gaussian kernel function and polynomial kernel function only, which demonstrates the effectiveness of the proposed method.

Keywords Point cloud classification · Mixed kernel function · One-versus-rest (OVR) · Support vector machine (SVM)

1 Introduction

The point cloud data obtained by the airborne laser scanning 
system is stored as discrete points (e.g., three-dimensional 
coordinate information (X, Y, and Z), RGB color informa-
tion). Each point is unordered and there is no association 
between each point, which makes the classification of the 
point clouds a difficult issue.

In recent years, three-dimensional (3D) point cloud scene 
analysis has attracted more attention in the aspects of urban 

buildings extraction [1–3], vehicle and road related infor-
mation extraction [4–6], tree extraction [7], modeling [8], 
and 3D digital urban reconstruction [9] with the continuous 
development of laser scanning technology. Many research-
ers have made progress in the field of 3D point cloud scene 
classification in recent years, however,the accuracy of point 
cloud classification is affected by some factors such as the 
noise, partial missing, discrete and uneven density distribu-
tion of point cloud data [10, 11], and diversity of features in 
the actual scene. One of the most important issues is how to 
category each point in 3D point cloud scenes. Many schol-
ars have proposed a number of methods to classify the 3D 
point cloud.

Franceschi uses reflected laser intensity information to 
distinguish marble from limestone [12]. The intensity is an 
8-bit digital number representing the distance-corrected 
intensity normalized to the range 0–255 and the number of 
points backscattering is a useful component of the signal 
returned (in particular, the points where saturation of the 
receiver occurred are excluded by the parsing software). 
In this way, two targets acquired at different distances but 
having the same reflectance at the laser wavelength return 
similar intensity. This algorithm is mainly used to distin-
guish marls from limestone, and is not applicable. Elevation 
and intensity airborne LiDAR data are used in Antonarakis’ 
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paper in order to classify forest and ground types quickly and 
efficiently without the need for manipulating multispectral 
image files, using a supervised object orientated approach 
[13]. This algorithm needs to set some thresholds according 
to experience, which leads to the inapplicability of the algo-
rithm. For urban infrastructure mobile laser scanning data 
classification, Pu et al. [14] proposed a two steps method 
which starts with an initial rough classification into three 
larger categories: ground surface, objects on ground, and 
objects off ground. This algorithm based on a collection of 
characteristics of point cloud segments like size, shape, ori-
entation and topological relationships, the objects on ground 
are assigned to more detailed classes such as traffic signs, 
trees, building walls and barriers. But the complexity of this 
algorithm is relatively high. And the size, shape, direction 
and topological relationship of different objects may be simi-
lar, leading to classification errors. Recognizing the redun-
dancy of labeling every individual data, Lim and Suter [15] 
proposed over-segmenting the raw data into adaptive support 
regions: super-voxels. The super-voxels are computed using 
3D scale theory and adapt to the above-mentioned range 
data properties. Colors and reflectance intensity acquired 
from the scanner system are combined with geometry fea-
tures that are extracted from the super-voxels, to form the 
feature descriptors for the supervised learning model. And 
they proposed using the discriminative Conditional Random 
Fields for the classification problem and modified the model 
to incorporate multi-scales for super-voxel labeling. Then 
they improved above method by introducing regional edge 
potentials in addition to the local edge and node potentials 
in the multi-scale Conditional Random Fields, and proposed 
using multi-scale Conditional Random Fields to classify 3D 
outdoor terrestrial laser scanned data [16]. In the model, 
the raw data points are over-segmented into an improved 
midlevel representation, “super-voxels”. Local and regional 
features are then extracted from the super-voxel and param-
eters learnt by the multi-scale Conditional Random Fields. 
Although this method shortens the operation time, the cal-
culation method of super-voxel is complex, which leads to 
low classification accuracy.

Support vector machine (SVM) [17] is one of the most 
widely used classification methods in remote sensing field. 
Golovinskiy et al. [18] investigates the design of a system 
for recognizing objects in 3D point clouds of urban environ-
ments. They divided the system into four steps: locating, 
segmenting, characterizing, and classifying clusters of 3D 
points. They first cluster nearby points to form a set of poten-
tial object locations with hierarchical clustering. Then, the 
points near these locations are divided into foreground and 
background sets using graph cutting algorithm and an eigen-
vector based on its shape and context is established for each 
point group. Finally, SVM with polynomial kernels function 
is used to train classifiers and classify objects into semantic 

groups, such as cars, streetlights, trees and fire hydrants. But 
the algorithm has high complexity and low classification 
accuracy. Mallet [19] decomposed full waveform data and 
extracted waveform feature variables including echo ampli-
tude and radiation characteristics, and used SVM method 
with Gaussian kernels function to divide urban areas into 
buildings, grounds and vegetation, but these methods do 
not fully consider the characteristics an applicability of the 
algorithm. However, because the shape features are not clear 
enough, the classification effect is poor.

The data in this paper is point cloud data collected 
by laser LiDAR, which has the characteristics of disor-
der, unstructured data and no grid. The steps of meshing 
and image fusion of point cloud data are subtracted, and 
the errors in the process of generating grid from three-
dimensional point cloud data are reduced. It is generally 
known that the selection of kernel function of support vec-
tor machine has an important influence on the classification 
result of SVM algorithm [20]. In view of this, the single ker-
nel function used in the past is no longer suitable for point 
cloud data classification. This paper proposed an improved 
support vector machine with a novel mixed kernel function 
to classify 3D point cloud data. Firstly, Compound features 
of point cloud data are extracted, including RGB color, nor-
malized elevation, the deviation of normalized elevation and 
difference of elevation and constructed the feature vectors. 
Then, a part of the data is randomly selected as the training 
sample to train a one-versus-rest SVM classifier. Finally, the 
SVM classifier is employed to classify the remained data. 
As we all know, the Gauss kernel function has the interpola-
tion ability, and it is good at extracting the local properties 
of samples. It is a kind of kernel function with strong local 
learning ability. But the overall situation is weak. Relatively 
speaking, the polynomial kernel function is good at extract-
ing the global characteristics of samples, although its inter-
polation ability is relatively weak. Therefore, the mixed ker-
nel function proposed in this paper combined the advantages 
of the Gauss kernel function and the Polynomial kernel func-
tion, and the combined kernel function has good learning 
ability and strong generalization ability. The experimental 
results showed that proposed method has a better classifica-
tion effect and robustness compared with the conventional 
SVM method.

2  Method

2.1  Experimental Data

Three experiment data sets were used in this paper. The 
experiment data set I was from Institute of Geodesy and 
Photogrammetry of Department of Civil, Environmental and 
Geomatic Engineering of ETH Zurich [21]. The experiment 
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data set II was collected using Navlab11 equipped with side 
looking SICK LMS laser scanners and used in push-broom. 
The data was collected around CMU campus in Oakland, 
Pittsburgh, PA [22]. The experiment point clouds data set 
III was obtained by laser scanners [23].

The first 3D point dataset was collected from a region of 
Bill Stein, Germany, including a series of different urban 
scenes: churches, streets, railroad tracks, squares, villages, 
football fields, castles, and so on. These 3D point data can 
be classified into 8 categories as shown in Table 1, con-
taining: ① Artificial terrain: mainly pavement; ② Natural 
terrain: most of them are grassland; ③ High vegetation: 
trees and large shrubs; ④ Low vegetation: flowers or small 

shrubs which less than 2 meters; ⑤ Buildings: churches, 
cities hall, station, apartment, etc.; ⑥ Artificial landscapes, 
such as garden walls, fountains and so on; ⑦ Scanning 
artifact: artifacts caused by moving objects dynamically 
during the recording of static scanning; ⑧ Cars. The 3D 
point cloud data was shown in Fig. 1a by using the Cloud 
Compare software.

The second 3D point data set was recorded from the Oak-
land area, American, which is scanned by a 3D laser scanner 
mounted on the mobile platform. As shown in Table 2 the 
data set contains five types objects: ① Vegetation; ② Wire; 
③ Pole/Trunk; ④ Ground; ⑤ Facade (the face of a building). 
The 3D point cloud data was shown in Fig. 1b.

Table 1  Data set I sample information in a certain area of Germany

Type 1 2 3 4 5 6 7 8 Total

Name Artificial terrain Natural terrain High vegetation Low vegetation Buildings Artificial 
land-
scapes

Scanning 
artifact

Cars

Number 24,197 65,281 47,401 927 22,994 14,032 239 1225 176,296

Fig. 1  Point cloud data



740 International Journal of Precision Engineering and Manufacturing (2019) 20:737–747

1 3

The third 3D point data set are provided by Graphics 
and Media Lab (GML), Moscow State University, which is 
scanned by a 3D laser scanner mounted on the mobile plat-
form. As shown in Table 3 the data set contains five types’ 
objects: ① Ground; ② Building; ③ Car; ④ High vegetation; 
⑤ Low vegetation. A part of the 3D point cloud data was 
shown in Fig. 1c.

2.2  Feature Extraction of Point Cloud Data

Considering the characteristics of the laser point cloud data, 
some feature such as the color (RGB) value of each point 
cloud data, the normalized elevation, the elevation standard 
deviation, the elevation difference, the curvature feature, 
and the intensity from the point cloud data can be used as 
effective feature for classification [23]. In this paper, the 
coordinate values, the RGB value, normalized elevation, 
standard deviation of elevation and elevation difference 
were selected to construct the feature vectors based on the 
following parameters:

• RGB (the color characteristics of each point.)
• Normalized elevation, the absolute height information 

of the terrain, obtained by calculating the difference 
between DSM (Digital Surface Model) and DEM (Digi-
tal Elevation Model), in which DEM is obtained by the 
filtering method.

• The elevation standard deviation is the microscopic 
reflection characteristic of the elevation variation in the 
local neighborhood of the laser foot point. The formula 
is as shown in Eq. (2).

(1)Hnor = Hdsm − Hdem

(2)

⎧⎪⎪⎨⎪⎪⎩

HSTD =

�
1

n−1

n∑
i=1

(Hi − H̄)2

H̄ =
1

n

n∑
i=1

Hi

• Difference of elevation, that is, the difference between 
the highest and lowest values of the laser foot elevation 
in the local neighborhood.

Finally, the feature vector was built by the elements men-
tion above, was fined as following.

2.3  Proposed Mixed Kernel Function of SVM

For nonlinear two classification problems, the SVM algo-
rithm solves the constraint optimization problems of quad-
ratic prog-ramming function [24] 错误!未找到引用源。. 
For data sets (xi, yi), i = 1, 2,… , l , yi ∈ (1,−1) , where xi are 
the features of data, and yi are the la-bels of the data class.

The optimal classification plane can be calculated the 
maximum value in Eq. (5) under the constraint condition 
Eq. (6).

Under the Constraint condition

where K(xi, xj) is a kernel function.
The mixed kernel function proposed in the paper was 

defined as following:

Under the constraint condition, �1+�2=1 , 0 ≤ �1 ≤ 1 , 
0 ≤ �2 ≤ 1.

(3)Hd = Hmax − Hmin

(4)T = [X, Y , Z,R,G,B,Hnor,Hstd,Hd]

(5)W(�) =

l∑
i=1

�i −
1

2

∑
i,j

�i�jyiyjK(xi, xj)

(6)
l∑

i=1

�
0
i
yi = 0,C ≥ �

0
i
≥ 0, i = 1,… , l

(7)
K(x, xi) = �1 ∗ exp

�
−
‖x − y‖2
2�2

�
+ �2 ∗ ((x ⋅ xi) + 1)d

Table 2  Data set II sample 
information in Oakland area

Type 1 2 3 4 5 Total

Name Vegetation Wire Pole Ground Facade
Number 11,675 33 401 69,521 12,475 94,105

Table 3  Data set III sample 
information in Moscow area

Type 1 2 3 4 5 Total

Name Ground Building Car High vegetation Low vegetation
Number 557,133 98,244 1833 381,677 35,093 1,073,960
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After solving the optimal solutions corresponding to the 
above coefficients, the optimal classification function is 
obtained as (8).

where x is an unknown vector, sgn(⋅) is a symbolic function.

2.4  Design of SVM Classifier

The one-versus-rest (OVR) classification method was used 
to convert multiple categories classification issue into two 
categories classification. The schematic diagram of OVR 
classification method is shown in Fig. 2. To classify K cat-
egories, the corresponding number of SVM classifiers was 
needed as shown in Fig. 3. Thus, eight and five SVM clas-
sifiers were employed to classify data set I and data set II/
III respectively. Because of the huge number of 3D points 
data, 18491 and 157,805 points was selected randomly as 
training and test set respectively for data set I, as shown in 
Table 4. The number of 9414 and 84,691 points was selected 

(8)f (x) = sgn

(
l∑

i=1

a0
i
yiK(xi, x) + b0

) randomly as training and test set respectively for data set II. 
The number of 10,742 and 1,063,247 points was selected 
randomly as training and test set respectively for data set III.

Test data was inputted to SVM classifiers. Two rules were 
designed to determine which category the test data belong to.

1. If only one classifier outputs a positive value, the result 
is the corresponding category.

2. Otherwise, the category of the test data is selected as the 
maximum value of the discriminant function.

2.5  Evaluation Criteria

The confusion matrix as shown in Table 5 was used for eval-
uating the performance of proposed method. The italic in 
Table 5 showed the ratio which was calculated from the clas-
sification result. Each column value in the Table 4 represents 
the number of point clouds of the prediction category after 
classification. Each row value represents the number of the 

Fig. 2  The schematic diagram 
of OVR classification method

Class 4 Not
Class 4

4w

Class 1 Not
Class 1

1w

Class 2 Not
Class2

2w

Class 3 Not
Class 3

3w

Class 5 Not
Class 5

5w

Class 6 Not
Class 6

6w

Class 7 Not
Class 7

7w

Class 8 Not
Class 8

8w

Fig. 3  The flow chart of classification method

Table 4  The number of training and test

Data Total Train Test Ratio (%)

Data set I 176,296 18,491 157,805 10
Data set II 94,105 9414 84,691 11
Data set III 1,073,989 10,742 1,063,247 1

Table 5  Three categorization 
confusion matrix

Confusion matrix Predict class

1 2 3

Real class
 1 a b c
 2 d e f
 3 g h k
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real point cloud in the actual point cloud. The accuracy refers 
to the ratio of the number of points correctly divided into a 
certain category to the total number of real reference points.

The overall classification accuracy of all categories is 
defined as Eq. (9)

The classification accuracy of predicted category 1 is 
defined as Eq. (10)

(9)Accuracy =
a + e + k

a + b + c + d + e + f + g + h + k

(10)Precision1 =
a

a + d + g

The classification accuracy of the true category 1 is 
defined as Eq. (11)

3  Results

The classification results of proposed method with param-
eters �1 = 0.7 , �2 = 0.3 and true classification labels of data 
set I were shown in Fig. 4a, b, respectively. While, Fig. 5a, 
b showed the classification results of proposed method with 

(11)Recall1 =
a

a + b + c

Fig. 4  The classification result 
of data set I

Fig. 5  The classification result 
of second data set II
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parameter �1=0.7 and �2=0.3 and true classification labels of 
data set II. And, Fig. 6a, b showed the classification results 
of proposed method with parameters �1=0.7 , �2=0.3 and 
true classification labels of data set III. Different colors in 
Figs. 4, 5 and 6 represent different categories.   

The overall classification accuracy using SVM method 
with Gaussian, polynomial, and proposed kernel function 
was shown in Fig. 7. The average classification accuracy 
of Gaussian kernel function and polynomial kernel func-
tion is 89.22% and 86.01% respectively. While, the average 
classification accuracy of the proposed mixed kernel func-
tion with parameter �1 = 0.7, �2 = 0.3 , �1 = 0.5, �2 = 0.5 
and �1 = 0.2, �2 = 0.8 were 99.34%, 94.64% and 94.87%, 
respectively. The performances of the proposed method 

with mixed kernel function were higher than the conven-
tional method with Gaussian and polynomial kernel func-
tion. The highest classification accuracy was achieved 
by proposed mixed kernel function SVM with parameter 
�1=0.7 and �2=0.3.

Tables 6, 7 and 8 showed the confusion matrix of classi-
fication results of data set I, II and III respectively with the 
mixed kernel function parameter �1=0.7,�2=0.3 . The bold 
showed the highest classification rates in the Tables 6, 7 
and 8.  

The precision and the recall of the six categories were 
higher than 90%. The highest precision and recall were 
99.8% and 99.6%, respectively. The precision and the 
recall of low vegetation category were higher than 80%. 

Fig. 6  The classification result 
of second data set III

Fig. 7  Comparison of classifica-
tion results
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Only Scanning artifact category was 23.22% and 32.12%. 
These results were classified correctly in data set I.

For five categories in data set II, the precision and recalls 
were almost higher than 87%. The highest precision and 
recall were 100% achieved by Wire category, because the 
point number of Wire category was only 33. While the low-
est precision and recall were 86.55% and 88.64%, respec-
tively. These results showed the 3D points were classified 
successfully in data set II.

For five categories in data set III, the precision and recalls 
were almost higher than 86%. The highest precision and 
recall were 100% achieved by Car category, because the 
point number of Car category was only 1833. While the 
lowest precision and recall were 86.55% and 88.64%, respec-
tively. These results showed the 3D points were classified 
successfully in data set III.

4  Discussion and Conclusion

This paper presented a point cloud classification algorithm 
based on support vector machine (SVM) with new mixed 
kernel function. Firstly, the coordinate values, the RGB 
value, normalized elevation, standard deviation of elevation 
and elevation difference of 3D point cloud data were fea-
ture selected. Then, by combining Gaussian and polynomial 
kernel functions, a mixed kernel function is constructed. 
Eight and five one-versus-rest SVM classifiers were trained 
to classify the 3D point data. The averaged classification 
results of three data sets were 97.69%, 99.13% and 96.20%, 
which suggested proposed method classify the 3D point data 
successively.

The Kernel Function commonly used in SVM mainly has 
the following four categories [25], including linear kernel 
function, Polynomial kernel function, Gaussian kernel func-
tion, and sigmoid kernel function. Gaussian kernel function 
is the most widely used, which is a locally strong kernel 
function, which can map a sample into a higher dimensional 
space. Polynomial kernel function can map the low dimen-
sional input space to the characteristic space of the high 
latitude. In this paper, a mix kernel by combining Gauss-
ian kernel function and Polynomial kernel function were 
proposed, and the classification results of proposed method 
was better than Gaussian kernel function and Polynomial 
kernel function only.

The experimental results of three sets of point cloud data 
from different regions show that the classification algorithm 
proposed in this paper has high accuracy for various scenes, 
improves the robustness of the algorithm, and has certain 
practicability and research value. But the algorithm also has 
some shortcomings. Because of the large number of data 
sets, the training speed of the classifier is a little slow as 
shown in Table 9.Ta
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The classification result was compared with three 
other methods. The first method (method I) was the one 
described in [25], using a combination of BoW (Bag of 
Words) and LDA (Latent Dirichlet Allocation). The sec-
ond method (method II) used the point-based features to 
classify point clouds. The third method (method III) is 
the one described in [26], using geometric and intensity 
information, and features are selected using Joint Boost 
to classification. The proposed method achieved average 
accuracy 97.67%, which is better than method I 95.3%, 
method II 92%, and method III 95.15%, which suggest the 
effectiveness of proposed method.
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