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Abstract
To achieve the quick and accurate calibration of the geometric errors of NC machine tool, a new method with laser tracker 
on the basis of space vector’s direction measurement principle is proposed in the paper. A series of measuring points are 
mounted on the moving part of the machine tool, and then adjacent measuring points are connected to form a space vector 
respectively. Due to the motion error of the machine tool, the direction of the vectors composed will be changed. Meanwhile, 
the deviation of vector’s direction only relates to angular displacement error rather than linear displacement error. Based on 
the characteristic, the change of vectors’ direction is measured by laser tracker based on the multi-station and time-sharing 
measurement during the motion of machine tool, and then the angular displacement errors and linear displacement errors 
of each axis can be accurately identified successively, which reduces the complexity of error identification. By establish-
ing the mathematical model of geometric error measurement of machine tool based on the principle of space vector’s 
direction measurement, the base station calibration algorithm by measuring the motion of the designed precise turntable, 
the measuring point determination algorithm and geometric error separation algorithm are derived respectively, and the 
accuracy of these algorithms are verified by simulations. In addition, the results of the experiments show the feasibility of 
the proposed method.

Keywords Laser tracker · Geometric error · Space vector’s direction measurement · Error separation

List of Symbols
�x(x)  X-axis position error
�y(x)  X-axis horizontal straightness error
�z(x)  X-axis vertical straightness error
�x(x)  X-axis roll error
�y(x)  X-axis pitch error
�z(x)  X-axis yaw error
A  Measuring point
����⃗AB  Vector composed of measuring points A and B
T   Theoretical homogeneous transformation matrix
U  Error homogeneous transformation matrix
P1  First base station
xp1  x coordinate of base station P1

R  Distance between the center of cat eye and 
turntable

l1i  Corresponding ranging data of laser tracker
x0
p1

  Approximations of x
p1

R0  Approximations of R
ΔR  Deviation between R0 and R
fi  Residuals
H  Objective function
W   Coordinate system transformation matrix

1 Introduction

With the continuous development of modern manufac-
turing technology, the demand for high-precision NC 
machine tools is increasing. Machining accuracy is a sig-
nificant performance index of NC machine tool, which 
directly influences the machining quality of the workpiece. 
How to improve the machining accuracy economically is 
a crucial issue, and researchers around the world have 
carried out in-depth studies on it [1–4]. Compared with 
the hardware compensation for machine tool error, error 
measurement and compensation as software technology 
to improve the machining accuracy have the advantages 
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of wide applicability and low cost etc. [5–7], which has 
been widely used in the field of accuracy compensation 
of machine tool. In the machining process of workpiece, 
there exist many error factors, such as geometric error, 
thermal deformation error, cutting force error, clamping 
error etc., and these errors affect the final machining accu-
racy. Among these error factors, the geometric error is a 
major one [8–12]. It is relatively stable, and it is easy to 
be measured and compensated. Thus, the measurement 
and compensation for the geometric error of machine tool 
is one of the effective ways to improve the machining 
accuracy.

Currently, there are many methods for detecting the 
geometric error of machine tool, such as artifact standard 
measurement, laser ball bar measurement [13, 14], orthogo-
nal grating measurement [15], laser interferometer meas-
urement [16, 17], and so on. When the artifact standard 
is adopted, the operation is relatively easy, and the meas-
urement is efficient. However, the measurement accuracy 
is lower due to the contact measurement adopted by this 
method. For laser ball bar measurement, the measurement 
can only be carried out within a certain range due to the 
limitation of the displacement sensor range, and the whole 
working space of machine tool can not be measured. Mean-
while, the identification of individual error is complex. For 
orthogonal grating measurement method, the measure-
ment accuracy and efficiency is relatively high. However, 
the larger planar grating is challenging to be manufactured, 
and the cost is high. For laser interferometer measurement, 
the measurement accuracy is high. The corresponding opti-
cal accessories are needed for different geometric errors 
measurement. Meanwhile, the light adjustment is time-con-
suming in the measurement, so the measurement efficiency 
is inefficient.

Recently, laser tracker as a three-dimensional measur-
ing instrument has been applied to the error calibration of 
the machine tool and the coordinate measuring machine 
[18–23]. Laser tracker is usually adopted spherical coor-
dinate measurement principle, and its angle measurement 
error has a great influence on the coordinate measurement 
result [24]. For example, if the angle error is assumed as 
1 arc seconds, the error will be amplified by about 5 µm 
each meter. [22] At present, the requirement of accuracy 
detection of machine tool is becoming higher and higher, 
and this measurement mode can not satisfy the accuracy 
demand. To further improve the measurement accuracy, a 
laser tracker is used to measure the target points succes-
sively at different base stations on the basis of GPS (Global 
positioning system) principle in Ref [18]. and [20], which 
is called‘multi-station and time-sharing measurement’. Only 
distance is involved in the measurement, and the influence 
of angle error on the measurement results can be effectively 
avoided. So, the measurement accuracy is greatly improved. 

However, this measurement has some shortcomings: (1) In 
order to identify the geometric error of machine tool, the 
machine tool should be controlled to feed in the 3D space, 
and the corresponding measurement trajectory is relatively 
complex. When the motion trajectory of machine tool is in 
a 2D plane or 1D line, the geometric error of machine tool 
can not be separated. (2) In the calibration of the base sta-
tion, the calibration accuracy will be affected by the error 
of machine tool, which limits the further improvement of 
measurement accuracy. Given the problems mentioned 
above, a new method for geometric error calibration of the 
machine tool with laser tracker is proposed in the paper. A 
series of measuring points are set on the moving parts of 
the machine tool, and adjacent measuring points are con-
nected to form a space vector. Then, the corresponding geo-
metric errors can be identified by measuring the change of 
vector’s direction in the motion of machine tool, which is 
called‘space vector’s direction measurement’. For this new 
method, it does not require the motion area of the machine 
tool in a 3D space in the measurement, which simplifies the 
measurement trajectory. Meanwhile, the identification of 
angular displacement error and linear displacement error 
of each linear axis are separated, which reduces the com-
plexity of error identification. In addition, a precision NC 
turntable is introduced to achieve the accurate calibration 
of base station, which overcomes the shortcoming of the 
calibration accuracy of the base station affected by the error 
of machine tool.

In this paper, a laser tracker is adopted the space vec-
tor’s direction measurement principle to achieve quick 
and accurate calibration of the geometric error of machine 
tool. The mathematical model of geometric error meas-
urement of machine tool based on the principle of space 
vector’s direction measurement is established, and the cor-
responding measurement algorithm and geometric error 
identification algorithm are deduced respectively. The 
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Fig. 1  Six geometric errors with the motion of machine tool along 
x-axis



513International Journal of Precision Engineering and Manufacturing (2019) 20:511–524 

1 3

feasibility of this method is verified by simulations and 
experiments.

2  Space Vector’s Direction Deviation 
and Geometric Error

There are 6 degrees of freedom for object moving in space. 
Figure 1 shows the six geometric errors with the motion 
of machine tool along x-axis . Here, �x(x) , �y(x) , �z(x) are 
the linear displacement errors, and �x(x) , �y(x) , �z(x) are the 
angular displacement errors.

Three measuring points A , B and C are mounted on the 
moving part of machine tool in Fig. 1. Due to the motion 
error of the machine tool, the direction of three vectors ����⃗AB , 
����⃗BC , ����⃗CA composed of measuring points A , B and C would be 
changed during the motion as shown in Fig. 2.

At the initial position, three measuring points are assumed 
as A(xa0, ya0, za0) , B(xb0, yb0, zb0) and C(xc0, yc0, zc0) respec-
tively, and the corresponding vectors composed of these 
measuring points are:

When the moving part is moved the distance L along 
the x-axis from the initial position, the measuring points 
A , B and C will be reached at the position of A′ , B′ and C′ 
respectively. During the motion, the theoretical homogene-
ous transformation matrix is defined as:

The homogeneous transformation matrices caused by 
angular displacement error �x(x) , �y(x) and �z(x) during the 
motion are: [12, 25]

(1)

����⃗AB = (xa0 − xb0, ya0 − yb0, za0 − zb0),

����⃗BC = (xb0 − xc0, yb0 − yc0, zb0 − zc0),

����⃗CA = (xc0 − xa0, yc0 − ya0, zc0 − za0).

(2)T =

⎡
⎢
⎢
⎢
⎣

1 0 0 L

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

The homogeneous transformation matrices caused by posi-
tion error �x(x) , straightness error �y(x) and �z(x) are:

The total error homogeneous transformation matrix is:

Then we can obtain

The total homogeneous transformation matrix during the 
motion is given as follows:

The coordinates of measuring point A′ , B′ and C′ are 
assumed as A�

(xa1, ya1, za1) , B
�

(xb1, yb1, zb1) , C
�

(xc1, yc1, zc1) , 
respectively. The following relation should be satisfied 
between measuring point A and A′.

(3)

T1 =

⎡
⎢
⎢
⎢
⎣

1 0 0 0

0 cos �
x
(x) − sin �

x
(x) 0

0 sin �
x
(x) cos �

x
(x) 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

,

T2 =

⎡
⎢
⎢
⎢
⎣

cos �
y
(x) 0 sin �

y
(x) 0

0 1 0 0

− sin �
y
(x) 0 cos �

y
(x) 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

,

T3 =

⎡
⎢
⎢
⎢
⎣

cos �
z
(x) − sin �

z
(x) 0 0

sin �
z
(x) cos �

z
(x) 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

.

(4)

T4 =

⎡
⎢
⎢
⎢
⎣

1 0 0 �x(x)

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

, T5 =

⎡
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 �y(x)

0 0 1 0

0 0 0 1

⎤
⎥
⎥
⎥
⎦

,

T6 =

⎡
⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 �z(x)

0 0 0 1

⎤
⎥
⎥
⎥
⎦

.

(5)U = T1T2T3T4T5T6.

(6)U =

⎡
⎢
⎢
⎢
⎣

1 −�z(x) �y(x) �x(x)

�z(x) 1 −�x(x) �y(x)

−�y(x) �x(x) 1 �z(x)

0 0 0 1

⎤
⎥
⎥
⎥
⎦

.

(7)Q = TU =

⎡
⎢
⎢
⎢
⎣

1 −�z(x) �y(x) L + �x(x)

�z(x) 1 −�x(x) �y(x)

−�y(x) �x(x) 1 �z(x)

0 0 0 1

⎤
⎥
⎥
⎥
⎦

.

(8)

⎡
⎢
⎢
⎢
⎣

xa1
ya1
za1
1

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

1 −�z(x) �y(x) L + �x(x)

�z(x) 1 −�x(x) �y(x)

−�y(x) �x(x) 1 �z(x)

0 0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

xa0
ya0
za0
1

⎤
⎥
⎥
⎥
⎦
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Fig. 2  The change of vectors’ direction composed of some measuring 
points
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From Eq. (8), the spatial coordinates of the measuring point 
A

′ can be calculated. In the same way, the spatial coordinates 
of the measuring point B′ , C′ can be also calculated in turn. 
Then, the direction of the vectors composed of A′ , B′ and C′ 
are:

The direction deviations of vectors ����⃗AB , ����⃗BC , ����⃗CA during 
the motion of are:

It can be seen from Eq. (10) that the direction devia-
tions of ����⃗AB , ����⃗BC , ����⃗CA during the motion are only related to 
angular displacement error �x(x) , �y(x) , �z(x) rather than 
linear displacement error �x(x) , �y(x) , �z(x) . In the identi-
fication of geometric errors of machine tool, the angular 
displacement error can be firstly separated by measuring 
the direction changes of vectors composed of adjacent 
measuring points set on the moving part of machine tool, 
and then the linear displacement error can be separated 
in the end.

(9)

������⃗
A

�

B
�

= (xa0 − xb0 − 𝜀x(x)(ya0 − yb0) + 𝜀y(x)(za0 − zb0),

ya0 − yb0 + 𝜀z(x)(xa0 − xb0) − 𝜀x(x)(za0 − zb0),

za0 − zb0 + 𝜀x(x)(ya0 − yb0) − 𝜀y(x)(xa0 − xb0)) ,

�������⃗
B

�

C
�

= (xb0 − xc0 − 𝜀x(x)(yb0 − yc0) + 𝜀y(x)(zb0 − zc0),

yb0 − yc0 + 𝜀z(x)(xb0 − xc0) − 𝜀x(x)(zb0 − zc0),

zb0 − zc0 + 𝜀x(x)(yb0 − yc0) − 𝜀y(x)(xb0 − xc0)) ,

�������⃗
C

�

A
�

= (xc0 − xa0 − 𝜀x(x)(yc0 − ya0) + 𝜀y(x)(zc0 − za0),

yc0 − ya0 + 𝜀z(x)(xc0 − xa0) − 𝜀x(x)(zc0 − za0),

zc0 − za0 + 𝜀x(x)(yc0 − ya0) + 𝜀y(x)(xc0 − xa0)) .

(10)

Δ����⃗AB =
������⃗
A

�

B
�

− ����⃗AB

= (−𝜀x(x)(ya0 − yb0) + 𝜀y(x)(za0 − zb0),

𝜀z(x)(xa0 − xb0) − 𝜀x(x)(za0 − zb0),

𝜀x(x)(ya0 − yb0) − 𝜀y(x)(xa0 − xb0)),

Δ ����⃗BC =
�������⃗
B

�

C
�

− ����⃗BC

= (−𝜀x(x)(yb0 − yc0) + 𝜀y(x)(zb0 − zc0),

𝜀z(x)(xb0 − xc0) − 𝜀x(x)(zb0 − zc0),

𝜀x(x)(yb0 − yc0) − 𝜀y(x)(xb0 − xc0)) ,

Δ ����⃗CA =
�������⃗
C

�

A
�

− ����⃗CA

= (−𝜀x(x)(yc0 − ya0) + 𝜀y(x)(zc0 − za0),

𝜀z(x)(xc0 − xa0) − 𝜀x(x)(zc0 − za0),

𝜀x(x)(yc0 − ya0) + 𝜀y(x)(xc0 − xa0)).

3  Measurement Principle and Algorithm

3.1  Measurement Principle

In order to reduce the influence of angle measurement error 
on the final coordinates measurement result, the multi-
station and time-sharing measurement is adopted. A laser 
tracker is used to measure the direction of space vectors 
composed of a series of measuring points set on the machine 
tool, and then the geometric errors of machine tool can be 
identified by corresponding algorithms. Figure 3 shows its 
measurement principle. P1 , P2 , P3 and P4 represent the four 
positions of base station. Points ABC are the three initial 
measuring points, while points A′B′C′ , A′′B′′C′′,etc. repre-
sent the measuring points at other locations.

Fig. 3  The principle of geometric error measurement of machine tool 
on the basis of space vector’s direction measurement

Fig. 4  The precision NC turntable
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Taking the motion error measurement of x-axis of 
machine tool for example, the corresponding measurement 
process is as follows. With the laser tracker at the first base 
station P1 , the cat eye is successively moved to point A , 
B , C , and the corresponding distances between base station 
P1 and point A , B , C are measured successively. Then the 
moving part is fed to next location along x-axis , and the 
distances between the base station P1 and point A′ , B′ , C′ 
are similarly measured. Repeat the above measurement at 
other locations, until the motion error measurement of mov-
ing part is accomplished at the first base station. After that, 
the laser tracker is moved to other base station P2 , P3 , P4 , 
and the same measurement process is repeated just as the 
measurement at the base station P1 until the motion error 
measurement of machine tool is finished at all base stations.

In the actual measurement, in order to ensure the cat eye 
can move accurately to the measuring points A , B , C etc., a 
precision NC turntable is designed as shown in Fig. 4.

Manufactured with tight geometric tolerances, the radial 
and axial run outs of the turntable are less than 0.3 μm . 
Meanwhile, the position closed loop is constituted by a built-
in motor and Renishaw circular grating, and its angular posi-
tion accuracy is ± 2

�� , with a repeat accuracy of ± 1
�� . The 

axial and radial run out errors of this turntable are small, and 
its position accuracy and repeat accuracy are high. The cat 
eye is mounted on the turntable, and the turntable can drive 
the cat eye to rotate accurately with different angles. In addi-
tion, the position of base station can be accurately calibrated 
by measuring the motion of turntable. The turntable is fixed 
in the vicinity of the machine tool spindle as shown in Fig. 5.

At the first base station P1 , the position of P1 can be firstly 
calibrated by measuring the rotary motion of turntable. After 
that, the motion error of machine tool along each axis can be 
measured. The moving part of machine tool is controlled to 

move on the preset path, and some measurement locations 
are set on the path. At each measurement location, a series of 
measuring points can be set according to the different angles 
of turntable rotation. The corresponding distance between 
the base station P1 and each measuring point can be succes-
sively measured by laser tracker. When the measurement is 
finished at the base station P1 , the laser tracker is moved to 
other base stations, and the above process is repeated until 
the motion measurement of machine tool is accomplished 
at all base stations.

3.2  Measurement Algorithm

With multi-station and time-sharing measurement by laser 
tracker, the measurement algorithms are mainly involved with 
base station calibration and measuring point determination, in 
which the base station calibration is a key issue that directly 
affects the final measurement accuracy. In order to accurately 
calibrate the base station, a precision NC turntable mentioned 
above is adopted, and the position of base station can be cali-
brated by measuring the motion of precision turntable.

3.2.1  Base Station Calibration

In the measurement, the distance between the center of cat 
eye and turntable is defined as R . The measurement is carried 
out with rotating each � of turntable, and a series of measur-
ing points such as M1, M2, …MN can be obtained, and the 
corresponding ranging data of laser tracker will be recorded. 
The rotary center O1 of turntable is defined as the origin of the 
coordinate system. The line O1M2 is defined as Y1 axis, and the 
line perpendicular to the Y1 axis and through point O1 is defined 
as X1 . Then according to the right-hand screw rule, the Z1 axis 

Fig. 5  The installation of precision turntable on the machine tool
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Fig. 6  The establishment of the coordinate system of the turntable
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can be also determined, and the coordinate system of turntable 
will be established as shown in Fig. 6. Here, OXYZ is defined 
as the coordinate system of machine tool.

The coordinate of base station P1 is assumed as 
P1(xp1, yp1, zp1) in the coordinate system of turntable. With 
rotating each � of turntable, the corresponding ranging data of 
laser tracker is defined as l1i . The following equations concern-
ing on the base station calibration can be obtained.

Equation (11) is a nonlinear redundant equations, and it 
can be solved by least squares [26].

The residuals is defined as:

Suppose x0
p1
, y0

p1
, z0

p1
,R0 are the approximations of x

p1
 , y

p1
 , 

z
p1

 and R respectively, that is

Equation (13) is expanded at (x0, y0, z0,R0) in accordance 
with Taylor series, and the terms over the first-order partial 
derivatives are omitted to eliminate the nonlinear terms, then 
the following Eq. (14) can be obtained

Let ti =
√

(x0 − R0 cos �i)
2 + (y0 − R0 sin �i)

2 + z2
pi

 , then 
we can obtain

L e t  axi =
x0−r0 cos �i

ti
 ,  ayi =

y0−r0 sin �i

ti
 ,  azi =

z0

ti
 , 

ari =
−x0 cos �i−y

0 sin �i+r
0

ti
 , the following equations can be 

obtained

(11)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�
(xp1 − R cos �1)

2 + (yp1 − R cos �1)
2 + z2

p1
= l11�

(xp1 − R cos �2)
2 + (yp1 − R cos �2)

2 + z2
p1

= l12

⋮�
(xp1 − R cos �i)

2 + (yp1 − R cos �i)
2 + z2

p1
= l1i

.

(12)
fi = ((xp1 − R cos �i)

2 + (yp1 − R sin �i)
2 + z2

p1
)
1∕2 − l1i.

(13)
xp1 = x0 + Δx, yp1 = y0 + Δy, zp1 = z0 + Δz, R = R0 + ΔR.

(14)

fi =
√

(x0 − R0 cos �i)
2 + (y0 − R0 sin �i)

2 + z2
pi

− l1i +
�fi

�xp

||0Δx +
�fi

�yp

||0Δy +
�fi

�zp

||0Δz +
�fi

�R
||0ΔR

(15)
fi = ti − l1i +

x0 − r0 cos �i

ti
Δx +

y0 − r0 sin �i

ti
Δy

+
z0

ti
Δz +

−x0 cos �i − y0 sin �i + r0

ti
.

Equation (16) is a linear redundant equations. According 
to least squares principle, the objective function is defined 
as:

According to the maximum principle, it should satisfy 
following conditions to make H minimum,

Meanwhile,

From Eq. (19), the extreme value obtained by solving 
Eq. (18) is the minimum, and it can be deduced:

When Δx , Δy , Δz , ΔR are obtained, the position of the 
base station P1 and the distance between the center of cat 
eye and turntable can be determined from Eqs. (21) and (22) 
respectively,

Repeat the above process, the position of base station P2 , 
P3 , P4 can be also calibrated.

(16)

⎧
⎪
⎨
⎪
⎩

f1 = t1 − l11 + ax1Δx + ay1Δy + az1Δz + ar1ΔR

f2 = t2 − l12 + ax2Δx + ay2Δy + az2Δz + ar2ΔR

⋮

fi = ti − l1i + axiΔx + ayiΔy + aziΔz + ariΔR

.

(17)H =

n∑

i=1

(ti − l1i + axiΔx + ayiΔy + aziΔz + ariΔR)
2.

(18)

�H

�(Δx)
= 0,

�H

�(Δy)
= 0,

�H

�(Δz)
= 0,

�H

�(ΔR)
= 0.

(19)

𝜕2H

𝜕(Δx)2
= 2

n∑

i=1

a2
xi
> 0,

𝜕2H

𝜕(Δy)2
= 2

n∑

i=1

a2
yi
> 0

𝜕2H

𝜕(Δz)2
= 2

n∑

i=1

a2
zi
> 0,

𝜕2H

𝜕(ΔR)2
= 2

n∑

i=1

a2
ri
> 0.

(20)
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(21)
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⎢
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zp1

⎤
⎥
⎥
⎦
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⎡
⎢
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⎣
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y0

z0

⎤
⎥
⎥
⎦
+

⎡
⎢
⎢
⎣

Δx

Δy

Δz

⎤
⎥
⎥
⎦
.

(22)R = R0 + ΔR.



517International Journal of Precision Engineering and Manufacturing (2019) 20:511–524 

1 3

3.2.2  Determining the Initial Value of Calibration 
Parameters of Base Station

In the base station calibration, the initial position of base 
station and the initial distance between the center of cat eye 
and the rotary center of turntable should be firstly selected. 

The coordinate of the center of the space circle 
determined by three adjacent points M�

i
(x

�

mi
, y

�

mi
, z

�

mi
) , 

M
�

i+1
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, y
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�
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, y

�

mi+2
, z

�

mi+2
) on the 

turntable in the instrument coordinate system is assumed 
as O�

(u
�

, v
�

,w
�

) , and point O′ is in the plane defined from 
Eq. (26) [27]. Then the following equation can be obtained
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.

Fig. 7  The coordinate systems transformation

Meanwhile, the accuracy of the initial value selected may 
affect the calculation accuracy and efficiency. When the 
initial value is far from its true value, the iteration calcu-
lation can not converge. So how to accurately select the 
initial value of calibration parameters of base station is a 
crucial issue. The method of determining the initial dis-
tance and the initial position of each base station is given 
as follows:

3.2.3  Determining the Initial Distance Between the Center 
of Cat Eye and the Rotary Center of Turntable

The coordinates of a series of measuring points meas-
ured by laser tracker in the instrument coordinate system 
with different angles of turntable rotation are assumed as 
M

�

i
(x

�

mi
, y

�

mi
, z

�

mi
),and the space plane through these points can 

be determined by least squares fitting. The plane equation is 
assumed as z� = Ax

�

+ By
�

+ C , and the objective function is

According to the maximum principle, it should satisfy 
following conditions to make F(A,B,C) minimum,

From Eq. (24), we can obtain

Then, the equation of plane through these points can be 
obtained from Eq. (25)

(23)F(A,B,C) =

N∑

i=1

(Ax
�

i
+ By

�

i
+ C − z

�

i
)2.

(24)
�F

�A
= 0,

�F

�B
= 0,

�F

�C
= 0.

(25)
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⎥
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.

The coordinates of the rotary center of turntable in the 
instrument coordinate system can be obtained by solving 
Eq. (26), and the corresponding radius determined by the 
series measuring points is

From Eq. (27), the initial distance between the center of 
cat eye and turntable can be determined.

3.2.4  Determining the Initial Position of Base Station

In the measurement, the coordinates of a series of measuring 
points are given in the instrument coordinate system, and 
this coordinate system X′

Y
′

Z
′ is recorded as the old one. 

In order to determine the initial position of the base sta-
tion, the coordinates of measuring point in the instrument 
coordinate system should be transformed into the turntable 
coordinate system, and this coordinate system O1X1Y1Z1 is 
recorded as the new one. Figure 7 shows the coordinate sys-
tems transformation.

The coordinate system of instrument can be coincident 
with the coordinate system of turntable through the rotation 
and translation transformation. Assuming that the instru-
ment coordinate system moving the distance Δx along 
X-axis , Δy along Y-axis , Δz along Z-axis , and rotating the 

(27)R0 =

√
(x

�

mi
− u)2 + (y

�

mi
− v)2 + (z

�

mi
− w)2.



518 International Journal of Precision Engineering and Manufacturing (2019) 20:511–524

1 3

angle � around X-axis , � around Y-axis , � around Z-axis , 
the two coordinate systems can be coincided, and the cor-
responding homogeneous transformation matrix is defined 
as W  . Here, xmi = R0 cos �i , ymi = R0 sin �i and zmi = 0 , let 
K

�

=
[
x
�

mi
y
�

mi
z
�

mi
1
]T , K =

[
xmi ymi zmi 1

]T.
The least square model concerning on the euclidean dis-

tance between the measuring points is established

Six unknown parameters( Δx , Δy , Δz , � , � , � ) are involved 
in Eq. (28), and nonlinear least squares method can be used 
to solve these parameters. Then the coordinate homogeneous 
transformation matrix between the instrument coordinate 
system and turntable coordinate system can be determined, 
and the initial position of base station can be easily obtained.

3.2.5  Determining the Coordinates of Measuring Points

When the positions of four base stations are calibrated, the 
motion of machine tool can be measured. Then the redun-
dant equation concerning on measuring point determination 
can be established, the actual coordinates of each measuring 
point with different angles of precision turntable rotation dur-
ing the motion of machine tool can be determined by solving 
the equation, and the direction of vectors composed of adjacent 
measuring points can be calculated.

3.3  Geometric Error Separation for Machine Tool

Due to the motion error of machine tool, the direction of the 
vectors composed of adjacent measuring points on the moving 
part of machine tool will be changed. Meanwhile, the deviation 
of vector’s direction is only related to angular displacement 
error rather than linear displacement error. Based on the char-
acteristic, the angular displacement error during the motion of 
machine tool can be firstly separated by measuring the direc-
tion change of vectors composed of adjacent measuring points, 
and then the linear displacement error can be identified. So, 
the identification of angular displacement error and linear dis-
placement error of each linear axis of machine tool are sepa-
rated, which reduces the complexity of error identification.

3.3.1  Angular Displacement Error Separation

At the initial position, three vectors are defined as 
����⃗AB =

[
a1 b1 c1

]
 , ����⃗BC =

[
a2 b2 c2

]
 , ����⃗CA =

[
a3 b3 c3

]
 in 

Fig. 2. When the moving part of machine tool is moved the 
distance L along x-axis , three new vectors ������⃗A

�

B
�

=
[
a

�

1
b

�

1
c
�

1

]
 , 

�������⃗B
�
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�

=
[
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2
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2
c
�

2

]
 , �������⃗C

�

A
�

=
[
a

�

3
b

�

3
c
�

3

]
 are obtained. There 

exists the following relation between vector ����⃗AB and ������⃗A
′

B
′

(28)F = min
1

N

N∑

i=1

‖‖‖‖
WK

�

− K
‖‖‖
2

.

Then, we can deduce

Similarly, the relation between ����⃗BC and �������⃗B
′

C
′  , and the rela-

tion between ����⃗CA and �������⃗C
′

A
′  can be also established, and then 

we can obtain

The direction of each vector in Eq. (31) can be calculated 
by the measuring point determined with laser tracker. Each 
angular displacement error of x-axis can be separated by 
solving Eq. (31) with least squares method. Compared with 
the method of identification of angular displacement error by 
using the deviation of one vector’s direction in Ref [22]., the 
amount of redundant data is increased, which will improve 
the identification accuracy.

3.3.2  Linear Displacement Error Separation

At the initial position, the middle point of the measuring 
point A and B is assumed as J . When the moving part of 
machine tool is moved the distance L along x-axis , the point 
J reaches the position of J′

1
 , and the corresponding motion 

errors are ΔxJ1 = x
�

J1
− xJ1 , ΔyJ1 = y

�

J1
− yJ1 , ΔzJ1 = z

�

J1
− zJ1

,respectively. Here, ΔxJ1 , ΔyJ1 and ΔzJ1 are composed of two 
parts: one part is the displacement error tx1 , ty1 , tz1 along 
x-axis , y-axis , z-axis caused by the angular displacement 
errors in the motion, the other part is the linear displace-
ment error �x(x) , �y(x) , �z(x) . By using the identified angular 
displacement error �x(x) , �y(x) and �z(x) , the displacement 
errors tx1 , ty1 , tz1 along x-axis , y-axis , z-axis caused by these 
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angular displacement error can be calculated. Then the fol-
lowing equation can be established

Similarly, the motion error equations concerning on the 
middle points of measuring point B and C , C and A can also 
be established. Based on that, then the redundant equation 
can be obtained, and each linear displacement error can be 
separated by solving this redundant equation. In the above 
error identification, the motion trajectory of machine tool is 
not required in a 3D space, which simplifies the correspond-
ing measurement trajectory.

4  Simulation for Measurement Algorithm 
and geometric Error Separation Algorithm

In order to verify the accuracy of the measurement algorithm 
derived based on the space vector’s direction measurement 
principle and the geometric error separation algorithm, the 
simulations are carried out as follows.

4.1  Simulation for Measurement Algorithm

The measurement algorithm derived based on the space vec-
tor’s direction measurement principle is involved with base 
station calibration and measuring point determination, and 
the corresponding simulations concerning on base station 
calibration and measuring point determination are given.

4.1.1  Simulation for Base Station Calibration

Firstly, the positions of each base station are assumed 
as follows: P1(1200, 800, 600) ,  P2(1800, 800, 600) , 
P3(1200, 1500, 600) , P4(1800, 1500, 1600) . A measuring 
point is set with turntable rotating each � = 30◦ , and the 
distance between the center of cat eye and rotary center of 
turntable is 100 mm. The position of each base station can be 
determined by the base station calibration algorithm derived 
mentioned above. The simulations are carried out under two 

(32)

⎧
⎪
⎨
⎪
⎩

ΔxJ1 = tx1 + �x(x)

ΔyJ1 = ty1 + �y(x)

ΔzJ1 = tz1 + �z(x)

.

different conditions: with or without considering the motion 
error of turntable

4.1.2  Without Considering the Motion Error of Turntable

The calibration deviations of each base station are 0 with no 
deviation between the initial value of base station selected 
and its true value in calculation. When the deviation between 
the initial value of base station selected and its true value 
is 0.1 mm, the corresponding calibration deviations of four 
base stations are given in Table 1.

It can be seen from Table 1 that the calibration deviations 
of each base station are very small. In the base station cali-
bration, the initial value of base station selected has certain 
influence on the solving accuracy. Taking the calibration of 
base station P1 for example, the influence of the different 
initial values selected on the calculation results are analyzed. 
When the deviations between the initial value of base station 
P1 and its true value are 0.1 mm, 0.3 mm, 0.5 mm, 1 mm 
respectively, the corresponding calibration deviations are 
given in Table 2.

From Table 2, the calibration deviations of base station 
with different initial values selected are relatively small. 
Meanwhile, the calibration deviation is becoming larger with 
increasing the deviation between the initial value selected 
and its true value increasing. In the actual calculation, the 
initial value of base station and the initial distance between 
the center of cat eye and the rotary center of turntable are 
calculated by a series of measuring points measured by 
laser tracker. Taking into account the measurement error of 
laser tracker and calculation error, the maximum deviation 
between the initial value of base station determined and its 

Table 1  Calibration deviations of four base stations mm

Base station Δx Δy Δz ΔL

P
1 − 1.1 × 10−5 2.4 × 10−5 − 5.0 × 10−6 − 1.3 × 10−6

P
2 − 1.6 × 10−5 2.4 × 10−5 − 4.9 × 10−6 − 1.2 × 10−6

P
3 1.4 × 10−5 − 6.4 × 10−6 − 5.7 × 10−6 − 9.6 × 10−7

P
4 − 7.7 × 10−6 1.1 × 10−5 1.3 × 10−7 − 3.7 × 10−7

Table 2  The calibration deviation of base station P
1
 with different ini-

tial values selected in calculation mm

Initial value Calibration deviation

Δx Δy Δz

1 − 1.1 × 10−5 2.4 × 10−5 − 5.0 × 10−6

2 − 9.7 × 10−5 2.2 × 10−4 − 4.5 × 10−5

3 − 2.7 × 10−4 6.1 × 10−4 − 1.2 × 10−4

4 4.8 × 10−4 8.6 × 10−4 − 5.0 × 10−4

Table 3  The calibration deviations of each base station under the first 
condition mm

Base station Δx Δy Δz

P
1 − 5.9 × 10−4 6.5 × 10−5 5.8 × 10−4

P
2

− 0.0011 0.0017 0.0014
P
3

− 0.0023 0.0018 3.0 × 10−4

P
4 9.0 × 10−4 5.7 × 10−4 − 8.5 × 10−4
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true value is generally within 0.3 mm. Then the correspond-
ing calibration deviation of base station with this initial 
value can be generally within 10−4 mm, and the calculation 
deviation is small. In addition, in order to further improve 
the calculation accuracy, the base station calibrated for the 
first time can be used as an approximate initial value again in 
calculation. After several iterative calculation, the satisfac-
tory result can be generally obtained.

4.1.3  Considering the Motion Error of Turntable

In the measurement, the position error of the turntable has a 
certain influence on the calibration accuracy of base station. 
According to the different position errors of the turntable, 
the simulations are carried out under two conditions: (1) 
The position error of the turntable obeys a random normal 
distribution within[0, 5″]; (2)The position error of the turn-
table obeys a random normal distribution within[0, 10″]. 
Meanwhile, the ranging error of laser tracker is also con-
sidered, and the ranging error of the laser tracker obeys a 
random normal distribution within [0, 1 μm] in the simula-
tions. Table 3 shows the calibration deviations of each base 
station under the first condition.

It can be seen from Table 3 that the calibration deviations 
of each base station is small, so the base station calibration 
algorithm is feasible. Taking the calibration of base station 
P1 for example, Table 4 shows the calibration deviation of 
base station P1 under different conditions.

From Table 4, the calibration deviations of base station 
are becoming larger with increasing the position error of the 
turntable. To ensure measurement accuracy, the turntable 
should have a certain positioning accuracy requirement in 
the actual measurement.

In addition, the distance between the center of cat eye 
and the rotary center of turntable also has a effect on the 

calibration result. Assuming the distances between the 
center of cat eye and the rotary center of turntable 100 mm, 
200 mm and 300 mm respectively, Table 5 shows the cor-
responding calibration deviations of base station P1 under 
the first condition.

It can be seen from Table 5 that, under the same error 
distribution of turntable, the calibration deviations of base 
station are becoming larger with increasing the distance 
between the center of cat eye and rotary center of turntable. 
So, the initial position of cat eye on the turntable can be 
set as close as possible to the rotary center of the turnta-
ble under the premise of guaranteeing no light block in the 
experiment in order to improve the calibration accuracy of 
base station.

4.1.4  Simulation for Measuring Point Determination

Firstly, some measuring points are presented as follows: 
A1(400, 200, 150) , A2(200, 400, 150) , A3(400, 200, 500) , 
A4(200, 400, 500) . The simulations are also carried out 
under two conditions: with or without considering the 
motion error of turntable.

Without considering the error in the measurement, the 
determination deviations of measuring points are generally 
within 10−4 mm. The determination deviations are small, so 
the algorithm for measuring point determination is feasible. 

Table 4  Calibration deviations of base station P
1
 under the different 

conditions mm

Condition Δx Δy Δz

1 − 5.9 × 10−4 6.5 × 10−5 5.8 × 10−4

2 − 0.0012 1.3 × 10−4 0.0011

Table 5  Calibration deviations of base station P
1
 with different dis-

tances between the center of cat eye and the rotary center of turntable 
mm

Distance Δx Δy Δz

1 − 5.9 × 10−4 6.5 × 10−5 5.8 × 10−4

2 − 0.0012 4.0 × 10−4 0.0013
3 − 0.0016 7.4 × 10−4 0.0023

Table 6  Coordinates of some measuring points mm

Measuring point x y z

A
1

399.9991 200.0019 149.9975
A
2

200.0015 400.0024 150.0007
A
3

399.9978 200.0029 499.9982
A
4

200.0018 399.9973 500.0016

A

B C
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Fig. 8  The distribution of measuring points; a triangle, b square, c 
pentagon, d hexagon, e heptagon, f octagon
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With considering the error in the measurement, the position 
error of the turntable obeys a random normal distribution 
within[0, 5″], and the ranging error of laser tracker obeys 
a random normal distribution within [0, 1 μm] in the simu-
lation. Table 6 shows the coordinates of some measuring 
points under this condition.

4.2  Simulation for Geometric Error Separation

Taking the identification of geometric error of x-axis for 
example, the feasibility of error separation algorithm derived 
is verified as follows. Firstly, each geometric error at the 
position of x = 200 are assumed as follows:

Each geometric error can be identified by measuring the 
direction change of vectors composed of a series of measur-
ing points set on the moving part of machine tool. The simu-
lations are carried out under two different conditions: with 
or without considering the effect of random error during 
the machine tool motion. In addition, the number of vectors 
composed (as shown in Fig. 8) in the measurement also has 
a certain effect on the identification results.

Under the first condition, each geometric error at the posi-
tion of x = 200 are identified with three vectors measured 
(as shown in Fig. 8a) as follows:

The simulation shows that each identified geometric error 
is very close to the assumed one, and the maximum identifi-
cation deviation is 1.9 × 10−14 mm for �x(x) , so the identifica-
tion deviation is very small.

Under the second condition, a random error is added to 
the theoretical motion error at each measuring point. The 

�
x
(x) = 0.015 mm, �

y
(x) = 0.010 mm,

�
z
(x) = 0.005 mm,

�
x
(x) = 3 × 10−5rad, �

y
(x) = 1.5 × 10−5 rad,

�
z
(x) = 2.5 × 10−5 rad,

�x(x) = 0.0150, �y(x) = 0.0100, �z(x) = 0.0050

�x(x) = 3.0 × 10−5, �y(x) = 1.5 × 10−5, �z(x) = 2.5 × 10−5,

random error obeys a random normal distribution within [0, 
3 μm], [0, 5 μm], respectively. Table 7 shows the identifica-
tion results of each geometric error at the position of x = 200 
with different random error distributions.

From Table 7, the maximum identification deviation is 
0.0001 mm for �y(x) under the first condition; the maximum 
identification deviation is 0.0002 mm for �y(x) on the second 
condition. The identification deviation is small, so the error 
separation algorithm is feasible.

The effect of different number of vectors composed on 
the identification accuracy is also analyzed. Taking the iden-
tification of straightness error �y(x) for example, Table 8 
shows the corresponding identification deviations with dif-
ferent number of vectors mentioned in Fig. 8 under the first 
condition.

From Table 8, it can be seen that the identification devia-
tions of straightness error �y(x) is decreasing gradually with 
increasing the number of measured vectors. However, the 
reduction is not large. Considering the measurement accu-
racy and efficiency, the number of the measured vectors is 
about 3–4.

Table 7  Identification results of each geometric error at the position 
of x = 200 mm

Geometric error Condition

1 2

�
x
(x) /mm 0.0150 0.0150

�
y
(x) /mm 0.0101 0.0102

�
z
(x) /mm 0.0051 0.0052

�
x
(x) /rad 0.0000223 0.0000172

�
y
(x) /rad 0.0000164 0.0000173

�
z
(x) /rad 0.0000264 0.0000273

Table 8  Identification deviations of straightness error �
y
(x) with dif-

ferent distribution of measuring points mm

Vectors Identification deviations

3 − 1.39 × 10−4

4 − 1.42 × 10−4

5 − 1.28 × 10−4

6 − 1.16 × 10−4

7 − 1.02 × 10−4

8 − 9.47 × 10−5

Fig. 9  Geometric error detection of the NC milling machine
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5  Experimental Verification

Based on the space vector’s direction measurement, a laser 
tracker is adopted to detect the geometric error of the NC 
milling machine as shown in Fig. 9.

The motion region of the milling machine is 
450 mm × 550 mm × 350 mm, and the measurement will 
be carried out with the movement distance 50 mm. At each 
measurement location, the motion of the milling machine is 
controlled to stop, and the corresponding ranging data of laser 
tracker are recorded with rotating each 120◦ of precise turn-
table fixed on the spindle. The total measuring time is about 
2.5 h, and the measurement efficiency is high. Each geometric 
error of milling machine can be identified by the measurement 
algorithm and error separation algorithm derived. Figure 10 
shows the part error curves of x-axis of milling machine. 

In order to verify the effectiveness of the proposed 
method, taking the detection of position error of x-axis for 
example, the identification result obtained by this method 
is compared with that by laser interferometer measurement 
as shown in Fig. 11.

It can be seen from Fig. 11 that the change trend of 
the position error curves obtained by these two methods 
are basically consistent, and the deviations of the identi-
fied results at different measuring points are small, so the 
method based on the principle of space vector’s direction 
measurement is feasible.

6  Conclusions

1. Based on the space vector’s direction measurement prin-
ciple, a laser tracker is adopted to achieve quick and accu-
rate calibration of the geometric error of machine tool.

2. The mathematical model of geometric error measure-
ment of machine tool based on the principle of space vec-
tor’s direction measurement is established, and the base 
station calibration algorithm by measuring the motion 
of the designed precise turntable, the measuring point 
determination algorithm and geometric error separa-
tion algorithm are derived respectively. Meanwhile, the 
method of determining the initial position of base station 
in its calibration is also given. The simulations verify the 
feasibility and accuracy of these derived algorithms.

3. Taking the detection of the position error of milling 
machine for example, the identification results obtained 
by the proposed method and laser interferometer meas-
urement are compared and analyzed, which further veri-
fies the feasibility of this method.
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