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Abstract
Radial stress superposed bending is a sheet metal bending process, which superposes predetermined radial stresses. Stress 
superposition is mandatory to enable the reduction of the triaxiality in bending, resulting in delayed damage evolution and an 
improved product performance. The knowledge of the stress state is essential for damage-controlled bending as the triaxial-
ity is the driving force for the void evolution. To control the stress state in radial stress superposed bending, an additional 
counter force responsible for the pressure in the outer fiber is applied. To predict the effect of the counter force on the radial 
stress and the triaxiality an analytical model is proposed. The prediction of the reaction forces in the system is required for 
the process design and for the calculation of the stress superposition. The stress state for plane strain bending with stress 
superposition is derived, and pressure calculations are made using the theory of Hertz. The model and the assumptions are 
verified in numerical and experimental studies for various counter pressures and bending ratios. Finally, a discussion of 
the load path depending on the transient counter pressure is carried out and experimental evidence for a inhibited damage 
evolution due to stress superposition is given.
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List of Symbols
ε  Plastic strain
σii  Principal stresses
σf  Flow stress
σm  Mean stress
σvM  Von Mises equivalent stress
Ii  Stress invariants
Ji  Deviatoric stress invariants
η  Stress triaxiality
ξ  Normalized third stress invariant
�̄�  Lode angle parameter
L  Lode parameter
µi  Friction coefficient
Ni  Normal forces
Ti  Tangential forces

φi  Contact angle of forces
α  Loaded bending angle
rp  Punch radius
Rbo  Outer bending radius
si  Distances between forces
t  Sheet thickness
Mb  Bending moment
dr  Contact width of the radial stress
pr  Contact pressure
b  Sheet width
h  Punch stroke

1 Introduction

A key approach to achieve weight reduction in automotive 
industry is the usage of high-strength metals with a low den-
sity-to-strength ratio. This advocates the use of advanced 
high-strength steels (AHSS) since they offer a high specific 
strength with a reasonable formability. A representative steel 
of this group is the dual-phase steel, which consists of a 
ductile ferrite matrix and embedded hard martensite islands. 
In the forming process, failure typically occurs via ductile 
damage mechanisms, whereby voids nucleate at inhomo-
geneities in the material and then grow and coalescence. 
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McClintock firstly investigated the growth of voids in low 
triaxiality fields [1]. Rice and Tracey later showed the strong 
stress triaxiality dependency of fracture [2]. Bao et al. gave 
a comprehensive overview of the relationship between the 
stress state and the equivalent plastic strain at fracture [3]. 
In a later study a fracture locus is introduced to correlate the 
fracture initiation to the current stress states and is derived 
through various models and material tests [4]. Descriptors 
of the stress state include the stress triaxiality η and the lode 
angle parameter �̄�.

Anderson et al. [5]. and Roth and Mohr [6] showed that 
for DP780 the fracture strain at lower triaxialities is sig-
nificantly higher than at higher triaxialities at constant lode 
parameter, for example for a load path near shear (η = 0.027 
and �̄� = 0.069: εf = 0.86) and plane strain bending (η = 0.57 
and �̄� = 0: εf = 0.58) (Fig. 1).

In bending an inhomogeneous multi-axial stress and 
strain state evolves. In general, the outer fiber of the bent 
specimen experiences maximum tensile stresses, whereas 
stresses in the inner fiber are compressive. As the stress state 
is inhomogeneous, the resulting properties are a function 
of the position over the sheet thickness. Damage and also 
failure is usually triggered by the maximum tensile stress 
and therefore takes place at the outer area of the bent part 
[7]. Kaupper and Merklein showed that for the DP780 severe 
voids and microscopic damage appear before the onset of 
necking [8].

Rice and Tracey [2] suggested that a superposition of 
hydrostatic tensile stresses leads to higher void growth 
rates. In the past, many attempts have been carried out to 
superpose compressive stresses in order to lower the value 

of the bending stresses. The aim of this superposition was 
to increase the formability and to reduce springback, since 
additional compressive stresses lower the required bending 
moment and therefore the springback.

In four roll bending an additional pressure roll is used 
for applying a stress superposition during bending (Fig. 2). 
The superposition leads to a reduction of the tensile stresses 
in the outer fibre and therefore the formability is increased 
[9]. It focuses on the increased formability for thick sheet 
with t > 6 mm and corresponding bending radii > 250 mm 
of  AlMg3.

Another solution is the bending with a solid counter-
punch [10]. A solid counter punch is inserted into a conven-
tional air bending die and applies counter pressure on the 
plastic zone while bending. The superposition also leads 
to improved formability and decreased springback, but flat-
tens the outer fibre.

One solution to supply compressive stresses without flat-
tening the outer fibre is bending with an elastomer cushion, 
which facilitates the compressive stress superposition during 
the entire plastic deformation. For the complex phase steel 
CP1000 an improved formability by the use of compressive 
stresses is shown experimentally and numerically in [11].

A study on the effect of elastomer bending on damage 
evolution and the resulting product properties is carried out 
for a DP1180 steel in Tekkaya et al. [12]. This study showed 
that by using the elastomer-bending the stress triaxiality is 
lowered and therefore the void evolution is delayed, with-
out macroscopic failure. Additionally, the delayed damage 
evolution caused an improved performance characteristics 
determined by multiple-step cyclic tests [12].

Despite the positive effect on the bent product, the repro-
ducibility by the application of elastomer-bending is not ful-
filled, which is often a required criterion for the industrial 
usage. Also, the predictability of the stress state and dam-
age evolution is limited due to the evolving properties of 
the elastomer. For superposing predetermined compressive 
stresses a novel bending technology has been introduced, 
which is designed for the forming of advanced high strength 
steels [13].

Fig. 1  Equivalent plastic strain to fracture depending on the stress 
state according to the Hosford–Coulomb model. (Adopted from [6]) Fig. 2  Four roll bending
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The missing key to facilitate a damage controlled bending 
is the knowledge and predictability of the resulting stress 
state with adaptable compressive stress superposition. 
Therefore, the process principle and technological imple-
mentation of the so-called radial stress superposed bending 
(RSS-bending), which is capable of applying predetermined 
pressure, is shown. Then an analytical model for plastic 
bending with radial stress superposition is presented. With 
the proposed model the stress state can be described by the 
stress triaxiality and the lode angle parameter, which are 
values that allow for determining the void evolution. The 
additional radial stress applied in RSS-bending is derived 
by the pressure distribution according to Hertz [14]. For the 
calculation of the resulting pressure, the static equilibrium 
for the determination of the forces responsible for the stress 
superposition is required. The model is validated by numeri-
cal simulations and the load path variation in RSS-bending 
is discussed. Finally, the effect of the reduced triaxiality on 
the damage evolution is revealed by SEM-micrographs.

2  RSS‑Bending

In this section the process principle of RSS-bending and 
the technological implementation with the most important 
geometry and process data is presented.

2.1  Process Principle

RSS-bending superposes predetermined radial stresses dur-
ing bending. Additional compressive radial stresses are uti-
lized by an additional counter punch and rotating tool seg-
ments (Fig. 3). During the bending process, radial stresses 
are applied by a force Nr, which acts in the instantaneous 
bending zone. The bending moment is applied by the force 
Nb and reaches its maximum in the contact area of punch 
force Np. The bending moment remains constant between 
the punch forces and therefore the forming zone is moving 
along the circumference and a constant plastic strain dis-
tribution develops [15]. So the curvature is created by the 
maximum bending moment. The value of the counterforce 

Nr can be adjusted during the process to influence the stress 
state while bending.

The technological set-up consists out of two rotating tools 
to apply the bending moment with superposed compressive 
stresses (Fig. 4). A groove is inserted in the rotating tool 
for the introduction of radial stresses (Fig. 4). The contact 
area between the round surface of the rotating tool and the 
sheet is the area where the stress superposition is applied. 
Additionally, the lower rotating tools guide the sheet from 
underneath and rotate in a bearing shell, which moves axi-
ally. The axially moveable bearing shell is supported by a 
hydraulic cylinder, which applies a counter pressure force 
Ncp. By changing the counter pressure force, the radial stress 
superposition is adjusted. The upper punch is divided and 
rotatable so that the punch indentation is lower. Previous 
studies also showed that the adaptable stress superposition 
with RSS-bending is technologically possible and leads to 
delayed void area fraction in the outer fiber of RSS-bent 
products compared to air bending [15].

2.2  Tool Set‑Up

The tool set-up of RSS-bending technology is given in 
Fig. 5. The geometry and process data used in the following 
anaylsis are given in Table 1 referring to Fig. 4.

The material used is a dual phase DP800 steel bent paral-
lel to the rolling direction and consisting of multiple phases 
for increased strength with a comparably high ductility. 

Fig. 3  Process principle at initial state (left) and during bending 
(right)

Fig. 4  Technological implementation of RSS-bending
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The tools are made of a tool steel 42CrMo4 + QT. Differ-
ent bending operations are carried out with different punch 
geometries and different counter pressures.

The various punch radii lead to maximum equivalent 
plastic strains εmax in the range of 0.24 < εmax < 0.36. The 
hydraulic force is controlled by a PID-control implemented 
in a LabVIEW program [16], which decreases the hydraulic 
force with increasing punch displacement. The hydraulic 
force is directly measured under the bearing shell and for the 
validation of the numerical model the punch force is directly 
measured above the upper bearing shell. For a constant stress 
superposition during the whole process, the counter pressure 
force has to be monotonically reduced. A simplified model 

for the required counter force Ncp for a nearly constant radial 
stress superposition as a function of the punch displacement 
h is given in [16]. A reduction of 30% of the initial counter 
force Ncp,0 at hmax leads to a nearly constant stress super-
position for the given experimental setup over the bending 
stroke. Therefore, the counter force is reduced by

over the bending stroke h.

3  Analytical Model

An analytical model is developed to determine the effect of 
the stress superposition on the stress state in terms of stress 
triaxiality and lode angle parameter. Also, the bending angle 
as a function of the punch movement is derived. The forces 
responsible for the additional pressure are determined by the 
static equilibrium.

3.1  Approach

For the detailed strain and stress distribution over the sheet 
thickness, the bending theory proposed by Wolter is used 
[17]. The stress distribution is applied to plane strain bend-
ing and superposed with radial stresses. The used approach 
to estimate the contact pressure between a sphere and a sur-
face is the analytical model of Hertz [14]. For the process 
design and the calculation of the contact force responsible 
for the pressure, all contact and friction forces as well as the 
moments between the bending tools have to be taken into 
account. Therefore, free body diagrams (FBD) for all exter-
nal and internal forces are constructed. The variables of the 
whole system are the tool geometries, the applied counter 
pressure, the bending ratio and the material properties

3.2  Simplifications

In the beginning of the last century Ludwik [18] developed 
the basis of the analytical descriptions of the plastic bending, 
the elementary bending theory. In this theory the following 
simplifications are made:

• Pure bending moment (constant bending radius)
• Plane strain condition
• Plane sections remain flat
• The influence of shear forces is neglected
• The sheet thickness remains constant during the bending 

process
• The neutral fiber remains in the geometric center of the 

sheet

(1)Ncp(h) = Ncp,0 ⋅

(

1 −
h

hmax
⋅ 0.3

)

Fig. 5  Tool set-up of RSS-bending

Table 1  Geometry and process data

Geometry data in mm Process data

Sheet thickness t 1.5 Friction coef-
ficient

µ1µ3µ4 0.02
Sheet width b 50
Sheet length l 100 Friction coef-

ficient
µ2µ5 0.10

Punch radius rp 1–3
Die width g 65 Poisson’s ratio v 0.3
Die radius rg 1
Tool radius rrt 28 Young’s 

modulus
E 210 GPa

Distance s1 0.5
Distance s2 12 Counter Force Ncp/b 1.12–1.4 kN/

mmDistance s3 12
Distance s4 28
Distance s5 1.5
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• An isotropic material behavior is present
• The flow behavior is identic under tensile and compres-

sive load

Within the force calculations, force and moment equi-
librium are assumed. It is presupposed, that the dominant 
surface loads operate as point loads, at predefined point 
of tool contacts. The bending tools are assumed rigid. 
Because the Hertz’ian pressure is conventionally used for 
the purely elastic state, the plastic deformation in thick-
ness direction in the contact zone is assumed to be small 
in contrast to the plastic deformation in circumferential 
direction. The friction coefficient has to be estimated.

3.3  Bending Angle

The ideal loaded bending angle α is a function of the punch 
displacement h. For a given punch displacement h the pivot 
point T of the rotating system moves to T′ (Fig. 6).

The nominal bending angle is only dependent on the 
tool geometry and the punch displacement h and can be 
derived as following:

(2)

�(h) = 2 ⋅

�

arctan

�

s6
√

(h − s6) + s8

�

+ arctan

�

h − s6

s8

�

�

where s6 and s8 are constants given the Appendix 2.

3.4  Estimation of the Bending Stress and Bending 
Moment for Pure Bending

The strain distribution in pure bending (Fig. 7) is obtained 
by the model developed by Wolter [17].

With the use of the Bernoulli hypothesis and neglect-
ing elastic strains, the maximum plastic strain in the outer 
fiber is determined by:

The strain in a fiber ε1(y) is given in terms of the maxi-
mal outer fibre strain ε1,max as by Wolter [17]. The model 
takes the shift of the fibres due to volume constancy into 
account and is therefore nonlinear:

When bending wide sheets with a large width-to-thick-
ness ratio (b/t > 10), plane strain can be assumed within 
the bulk of the sheet. So the strain along the bending axis 
is �2 = 0 . In air bending the radial stress is assumed to be 
zero, �3 = 0.

During RSS-bending only the tensile fibers (upper part 
of bent part, Fig. 7) is important, so no case study for 
compressive fibers have been done.

(3)�1,max = ln(1 +
t

2 ⋅ (Rbo − t∕2)
)

(4)�1(y) = −1 +

√

1 + �2
1,max + 4 ⋅ �1,max ⋅

y

t

Fig. 6  Process parameters for the determination of the bending angle 
α in function of the punch displacement h 

Fig. 7  Definition of parameters for describing a bent segment and 
Strain and stress state during bending of sheets with b/t > 10
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3.5  Stress State with Radial Stress Superposition

A model to determine the resulting stress state for bend-
ing with stress superposition is necessary. In bending with 
radial stress superposition, the radial stress is not equal to 
zero (Fig. 7). Due to volume constancy, the ratio between 
the strains for a constant sheet thickness and assuming no 
thickness reduction is:

With this ratio and the use of the Levy–Mises flow rule 
for the plastic region of the bent sheet

A principle stress relationship can be derived, whereas σ3 
represents the radial stress:

Thus, the mean stress can be calculated as:

By assuming plane strain, the third invariant J3 of the 
deviatoric stress tensor is always 0, as the second deviatoric 
stress components �′

22
 is equal to zero. With equation for the 

calculation of the third normalized stress invariants (Fig. 1) 
the lode angle parameter is zero.

With the von Mises flow condition, Eq. (7) and the flow 
stress, the tensile stress σ1 can be estimated:

The strain at which the stress superposition is at its maxi-
mum is assumed reached (Fig. 24, Strain at minimum triaxi-
ality). It is assumed that the first 50% of the plastic bending 
is with stress superposition and that at 50% of the strain in 
superposed bending the maximum of the stress superposi-
tion is. Therefore, the strain at the stress superposition εS is 
empirically assumed to:

With the three principal stress values the triaxiality and 
the lode angle parameter can be calculated for the descrip-
tion of the stress state, which will allow for the determina-
tion of the void evolution.

The compressive stress σ3 is determined by the use of 
a model which calculates contact stresses out of contact 
forces. As the rotating tool has a round tool shape for con-
trolling the area of contact, the pressure distribution of Hertz 
is used [14] (Fig. 8).

(5)�1 = −�3

(6)d�ij = d� ⋅ ��
ij

(7)�2 =
1

2
⋅ (�1 + �3)

(8)�m =
1

2
⋅ (�1 + �3)

(9)�1 = �3 +
2
√

3
⋅ �f

(10)�S = 0.25 ⋅ �1,max

The distribution describes the maximum pressure 
between two surfaces in contact. For a round and a flat sur-
face with a given poisons ratio ν, contact radius rc, contact 
length b and contact force Nr the following maximum pres-
sure pr,max results:

The average Young’s-modulus E is a function of the two 
young’s modulus E1 and E2 of the contact partners

Also with this model the width of the pressure zone dr 
can be derived:

To obtain the pressure distribution in relation to the sheet 
thickness, the pressure distribution is given by [14]:

For the calculation of the stress superposition an average 
pressure  pr,ave is used, which is defined as the following and 
assumed to be the superposed stress σ3 in the outer fiber of 
the bending zone:

(11)pr,max = −

√

Nr ⋅ E

2 ⋅ � ⋅ (1 − �2) ⋅ rc ⋅ b

(12)E =
2 ⋅ E1 ⋅ E2

E1 + E2

(13)dr = 2 ⋅

√

8

�
⋅ (1 − �2) ⋅ Nr ⋅ rc

b ⋅ E

(14)�z(x) = pr,max ⋅ (1 +
y2

(dr∕2)
2
)−1

Fig. 8  Pressure distribution between rotating tool and sheet
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This model facilitates the control of the stress state by 
adjusting the counter force for different superposed processes.

4  Force Calculation

For the adjustment of the stress state by controlling the coun-
ter pressure and for the tool design all acting forces need to 
be calculated. The analytical prediction of all acting forces 
is derived by applying the equilibrium state for all free body 
diagrams. All forces with Ni represent normal forces, all forces 
with Ti represent tangential forces out of friction, which are 
acting against the movement of the tools (see Appendix 1 for 
the declaration of friction coefficients).

The static equilibrium leads to 11 variable forces, moments 
and angles within the five FBD’s and therefore 11 independent 
equations need to be stated.

The equilibrium of vertical forces acting on the system can 
be derived from Fig. 4:

In Fig. 9 the FBD of the lower (a) and upper (b) bearing 
shell is shown. The force Ncp is controllable over the punch dis-
placement through a hydraulic cylinder and acts in the center 
of the bearing shell.

The equilibrium of the vertical forces leads to the equation:

The angle φ1 is not a geometric variable since it is 
dependent on the equilibrium of forces of the rotating tools.

(15)pr,ave =
pr,max

dr ⋅ b
= �3

(16)NM = Ncp + 2 ⋅ Nd ⋅ (cos(�∕2) + sin(�∕2) ⋅ �2)

(17)Ncp = 2 ⋅ Nbs ⋅ (cos(�1) − sin(�1) ⋅ �1)

The equilibrium of vertical forces on the punch bearing 
results in:

The angle φ2 is only dependent on the tool geometry since 
the rotating punch is tilting and therefore the force Nps acts 
on the outer contact area.

The resulting equations for the upper and lower rotating 
tools are given in the Appendix 3. The whole system rotates 
around point C and this mimics an apparent punch radius 
rp (Fig. 10).

Because the lower rotating tools are identical, only one 
tool is shown in Fig. 11.

Nr is the contact force responsible for the stress superpo-
sition in radial direction. The forces acting on the sheet are 
shown in Fig. 12.

(18)NM − 2 ⋅ Nps ⋅ (cos(�2) + sin(�2) ⋅ �5 = 0

Fig. 9  Forces acting on the lower (a) and upper (b) bearing shell

Fig. 10  Forces acting on the rotating punch tools

Fig. 11  Forces acting on one rotating tool and the important distances 
(for further variable declaration refer to Figs. 9 and 10)
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The forces Np and Nr are not collinear. Therefore, Nr also 
applies a bending moment on the bending zone (Fig. 13). 
The influence of the friction forces is neglected as the lever 
arm of the half sheet thickness t/2 is much smaller than the 
lever arms of the bending forces.

The bending takes place where the bending moment is 
the highest and the material is not strain hardened (Fig. 13, 
Point M). Hence, at first there is bending is under adjustable 
pressure and then bending under a conventional stress state 
without superposition takes place.

The required bending moment for plastic bending is cal-
culated by the elementary bending theory.

When the nonlinear strain hardening according to Gosh 
is taken into account, the flow stress σf is estimated by the 
extrapolated flow curve. For plastic bending, the bending 

(19)Mb =
1

2 ⋅
√

3
⋅ �f ⋅ b ⋅ t

2

moment has to be created by the normal forces acting on 
the sheet:

As the static system static indefinite, one equation of the 
elastic deflections is used. The approach and the equations 
are given in Appendix 4.

By solving the system of equations via the substitution 
method, all internal and external forces and moments can 
be computed. Equations  (17) and (32) are not solvable 
in a closed-form because the angle φ1 appears in several 
angular functions. Contrary to other occurring angles, φ1 
is not geometrically predefined, but derives from the force 
and moment equilibrium. Consequently, the angle must be 
changed iteratively by 0.001° until the equilibrium condi-
tion is accomplished. Likewise, the deflection equations are 
not closed-form solvable since several angular relationships 
prevail simultaneously (39). In a similar manner to φ1, the 
deflection is adjusted iteratively by 0.001 mm steps until the 
state of equilibrium is reached. Even though a closed-form 
solution is not available, all forces, moments and stresses can 
be determined explicitly and are found to comply with force 
and moment equilibrium. All forces, moments and stresses 
can then be determined from this system of equations, and 
the solution verifies a state of equilibrium for every given 
input. With the knowledge of the force responsible for the 
radial stress superposition, the resulting stress state can be 
derived.

5  Numerical Model

In this section the material characterization of the used 
DP800 steel, the numerical model and the comparison of 
the computed punch force and the experimental punch force 
is given. The flow curve is derived from uniaxial tensile tests 
in the transversal direction and extrapolated using the Gosh-
approximation (Fig. 14).

For numerical modelling of the RSS-bending, the elas-
tic–plastic FEM is applied (ABAQUS 2016/implicit 2D) 
(Fig. 15). Beyond the planar symmetry, a plane strain con-
dition is assumed in order to reduce the computational effort. 
The sheet is modelled by an isotropic elastic–plastic material 
behavior with isotropic hardening using the gosh model in 
Fig. 14. The rotating parts are modelled to be purely elas-
tic and the bearing shells are rigid. In the prediction of the 
pressure and contact stress distribution, a small element 
size is required. So the element side length in the bending 
zone is 0.05 mm. In the elastic part of the sheet it is 0.3 mm 

(20)

Mb = Nb2 ⋅ s2 − Nl ⋅ (s4 − s5)

+ Nb1 ⋅ s4 + Nr ⋅ s1 =
1

2 ⋅
√

3
⋅ �f ⋅ b ⋅ t

2

Fig. 12  Forces acting on the sheet (variable declaration given in 
Figs. 10 and 11)

Fig. 13  Course of the bending moment over the circumference of the 
sheet
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(Element type: CPE4R, 4-node bilinear with reduced inte-
gration and hour glass control). This results in 30 elements 
over the sheet thickness in the forming zone and five ele-
ments over the thickness in the bending leg.

The friction between the tools, the sheet, the lower rotat-
ing part, and the lower shell is modelled by the means of 
Coulomb friction law (µ = 0.02, as it is well lubricated in this 
contact area). The contact between the tool and the die as 
well as the upper tool and the bearing shell is modelled with 

µ = 0.1. The used contact method is surface to surface with 
fine sliding. Slave adjustment only takes place to remove 
overclosure. The force is applied as a point load, whereas 
the punch stroke is defined by a predetermined displacement.

The resulting punch force during bending is taken as a 
reference to validate the simulation. The maximum force 
deviation between numerical and experimental punch force 
is lower than 4% (Fig. 16).

6  Results

6.1  Prediction of Punch Force

In order to validate the force prediction of the analytical 
model, the directly measured punch force is compared to the 
analytical results (Fig. 16).

The load curves show a maximum deviation of < 7%. At 
the beginning of the process the analytical result overesti-
mates the forces, as the tools are assumed to be rigid in the 
analytics.

6.2  Stress State Analysis over the Sheet Thickness

In order to analyze the damage evolution during plastic 
bending only the outer fiber of the profile is modelled as 
damage is triggered by the tensile stress state. The analytical 
and numerically predicted normalized radial stress distribu-
tion in the maximum point of stress superposition is shown 
in Fig. 17. With increasing counter force, the value of the 
radial stress superposition also increases.

In conventional air bending, the radial stress superposi-
tion at the outer fiber is zero since there is no tool contact. 
Due to inner moments and the compressive bending zone, 
an intrinsic radial stress arises (Fig. 18). These compressive 
stresses explain the deviation of the analytically predicted 
radial stresses around the middle fiber for Ncp/b = 0.3, as 
intrinsic compressive stresses are not considered.

Fig. 14  Flow curve of DP800 (HCT780X), (n = 3)

Fig. 15  Numerical model of RSS-bending

Fig. 16  Punch force comparison of the experimental, numerical and 
analytical analysis
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These radial stresses are neglected since they are more 
than 3-times smaller than the applied radial stress superposi-
tion and act from the middle to the inner fiber.

Furthermore, the impact of various counter pressures and 
bending ratios on the analytical and numerical prediction of 
the bending stress is analyzed (Fig. 19).

The prediction of bending stresses for different counter 
pressures is more accurate for higher counter pressures. This 
is due to the lower deflection when applying a higher pres-
sure. In conventional air bending the normalized bending 
stress is 1.15 according to Eq. (25), so the normalized bend-
ing stresses can be reduced by 60% through a counter force 
of 0.6 kN/mm.

With the knowledge of the flow stress, the pressure value 
and the bending stress, the course of the triaxiality over the 
sheet thickness can be derived (Fig. 20)

The stress triaxiality has a similar distribution as the 
bending and radial stress. The stress triaxiality is the lowest 
at the outer fiber because the radial stress is the most com-
pressive there. In comparison the triaxiality of air bending 
at the outer fiber reaches the theoretically derived value of 
0.57 (Fig. 21) and is therefore more than 500% higher than 
in compressive stress superposed bending.

The analytical prediction of the minimum stress triaxial-
ity (Fig. 22) shows a deviation of 17% to 4% depending on 
the force and can therefore be used to estimate the damage 
evolution. Recall the values for pure bending, or no counter 
pressure, is η = 0.57.

Fig. 17  Comparison of the normalized radial stresses in analytical 
and numerical analysis for two counter forces (h = 15 mm)

Fig. 18  Numerical radial stresses distribution in air bending

Fig. 19  Normalized bending stress prediction for different equivalent 
plastic strains and counter forces (h = 15 mm)

Fig. 20  Triaxiality distribution for different counter forces 
(h = 15 mm)

Fig. 21  Triaxiality distribution in air bending of the outer fiber
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6.3  Load Paths in RSS‑Bending

Damage evolution depends significantly on the degree 
of plastification as well as the corresponding stress state; 
therefore, both must be observed simultaneously. Only if the 
superposition of stress occurs concurrently with the plasti-
fication, it is possible to influence the damage evolution and 
the product properties. Hence, one characteristic feature of 
the developed process is the movement of the forming zone 
(Fig. 23) due to the bending moment distribution. Therefore, 
the plastic zone evolves around the circumference with the 
movement of the tool, and every point on the circumference 
experiences the same stress superposition with the same 
plastification. The highest strain rates appear in the zone 
where the stress superposition is applied.

For the analysis of the whole load path of a single point 
on the outer fiber numerical investigations are carried out. 
(Figure 24).

Hence, a bending with radial stress superposition and 
then a bending operation without stress superposition takes 
place. The moving forming zone is the reason for the con-
stant equivalent plastic strain, after a punch displacement of 
14 mm for this point on the circumference.

The width of the stress superposition and the value of the 
superposition can be adjusted by setting the counter force. 
The radial stress superposition is proportional to the act-
ing force at the contact area. By increasing the radial stress 
superposition, the course of triaxiality is lowered, and the 
equivalent plastic strain at the end of the process remains 
constant. The stress triaxiality is not constant, since the 
rotating tool is moving around the analyzed point. A higher 
counter force reduces the triaxiality in the whole load path 
and will not be higher than in a load path with lower com-
pressive stress superposition.

The stress superposition is assumed to be hydrostatic in the 
analytical model. Hence the deviatoric stress state needs to be 
similar for a given curvature, and only the hydrostatic stress 
state is influenced. The deviatoric and hydrostatic stress ten-
sors of various stress superposition reveals that this assump-
tion is valid for the range of stress superposition (Table 2).

By lowering the maximum principal stress and the stress 
triaxiality, an inhibition of voids is expected. The influence 
of the lowered triaxiality on the void evolution for the same 
product produced by air bending and RSS-bending can be 
estimated by SEM-micrographs (Fig. 25).

The air bending process is adopted by the adjustment of 
the die width to produce parts with a comparable curvature 
in air bending and RSS-bending. For each air bending and 
RSS-bending product four samples are used, and in every 
specimen a number of four micrographs are taken of the 
outer fiber. The voids are separated by a black and white his-
togram from the matrix. The number of voids and the void 
area fraction in air bending is higher than in RSS-bending. 

Fig. 22  Triaxiality depending on the bending ratio and the stress 
superposition (h = 15 mm)

Fig. 23  Maximum principal strain rate in RSS-bending
Fig. 24  Triaxiality and plastic equivalent strain evolution at the outer 
fiber during RSS-Bending (DP800, t = 1.5 mm)
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The calculated void area fraction at the outer fiber for the 
given bending ratio and given counter force is on average 
0.3% for air bending and 0.15% for RSS-bending. The stand-
ard deviation of these two values is 0.028 for air bending and 
0.026 for RSS-bending. In the inner fiber nearly no voids are 
detected. The RSS-bending with the reduced triaxiality leads 
to delayed void evolution as the curvature and therefore the 
plastic strains are identical.

7  Conclusion

The superposition of stresses is mandatory for influencing 
the stress state and therefore influencing the product prop-
erties without changing the strain path in bending. A new 
process is designed, which facilitates controlled superposed 
radial stresses and meets the requirements of reproducibility. 
For the stress state control an analytical model is introduced, 
that is capable of predicting all acting forces and is therefore 
suitable for the tool design. Also, the course of the triaxial-
ity over the sheet thickness, which is the driving force for 
damage evolution, for different stress superposition is deter-
mined. The analysis reveals that an increasing stress super-
position leads to a reduced triaxiality during superposed 
bending. The reduced triaxiality leads to a lower void area 
fraction in RSS-bending. Therefore, the triaxiality can be 
used as an indicator for the accumulated damage in the mate-
rial. Hence, the radial stress superposed bending manifests 
the potential for controlling the load path. For this purpose, 

the adjustment of the counter pressure is necessary, which 
in turn controls the damage evolution.
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Appendix 1

Friction Coefficient Declaration

µ1 Friction between lower bearing sheet and rotating tool
µ2 Friction between sheet and rotating tool
µ3 Friction between sheet and die
µ4 Friction between upper tools and sheet
µ5 Friction between upper tools and shell

Appendix 2

Determination of the Bending Angle

Determination of applied distances:

Determination of resulting angles:

Appendix 3

Upper Rotating Tools

The equilibrium of moments at the apparent punch center 
point C of one upper rotating parts (Fig.  10) leads to 
equation:

(21)s6 = rg + s3 + t + rp

(22)s7 = h − s6

(23)s8 = g∕2 + rg

(24)s9 =

√

s2
7
+ s2

8

(25)s10 =

√

s2
6
− s2

9

(26)�1 = arctan

(

s6

s9

)

(27)�2 = arctan

(

s7

s8

)

(28)� = 2 ⋅ (�1 + �2)

Table 2  Deviatoric and hydrostatic stress state for maximum stress 
superposition at the outer fibre for two counter pressures

σr/σf = − 0.50 σr/σf = − 0.65
Ncp/b = 0.30 kN/mm Ncp/b = 0.42 kN/mm
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Fig. 25  SEM-Micrographs of products produced by air bending and 
RSS-bending
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The two rotating upper parts can be considered as one 
FBD for the equilibrium of vertical forces as they are con-
nected in a cylindrical bearing (Fig. 10). This leads to 
equation:

Lower Rotating Tools

The sum of the vertical forces leads to Eq. 31 and the sum 
of horizontal forces to Eq. 32

The equation for the equilibrium of moments around the 
apparent punch center point is given in equation:

Sheet
The equilibrium of vertical forces of the sheet leads to 

the equation:

Appendix 4

As the static system static indefinite, one equation of the 
elastic deflections is used. The groove in the rotating tool 
(Fig. 11, magnification) concentrates the force Nr to a pre-
defined position, causing an elastic deformation within the 
bending legs (Fig. 26).

The forces Nb1 and Nb2 cause an elastic deflection in the 
bending direction, whereas the force Nl,n operates diamet-
rically opposite. Contact points A and B, located between 
the sheet and the tool, are predetermined by the position 
in which the lower and upper tools lock the metal sheet. 
These are the locations in which the elastic deflections fA 
and fB are determined. The elastic deformation depends on 
the attacking forces at the metal sheet, the Young’s Modulus, 

(29)(Nl + Np) ⋅ rb ⋅ �4 + Nps ⋅ rup ⋅ �5 − Nl ⋅ (s4 − s5) = 0

(30)
2 ⋅ (Nl + Nps) ⋅ (cos(�∕2) − sin(�∕2) ⋅ �4)

− 2 ⋅ Nps ⋅ (cos(�2) + sin(�2) ⋅ �5 = 0

(31)
Nb1 + Nb2 + Nr − Nd

− Nbs ⋅ cos(�2) + Tbs ⋅ sin(�2) = 0

(32)
Tb1 + Tb2 + Tr − Td

− Tbs ⋅ cos(�1) − Nbs ⋅ sin(�1) = 0

(33)

Nb1 ⋅ s4 + Tb1 ⋅ (t + rp) + Nb2 ⋅ s2 + Tb2 ⋅ (t + rp)

+ Nr ⋅ s1 + Tr ⋅ (t + rp) − Nd ⋅ s7 − Td ⋅ (t + rp)

+ Tbs ⋅ rrt = 0

(34)

2 ⋅ Nb1 ⋅ (cos(�∕2) + sin(�∕2) ⋅ �3) + 2 ⋅ Nb2 ⋅ (cos(�∕2)

+ sin(�∕2) ⋅ �3) + 2 ⋅ Nr ⋅ (cos(�∕2) + sin(�∕2) ⋅ �3)

− 2 ⋅ Nl ⋅ (cos(�∕2) − sin(�∕2) ⋅ �4)

− 2 ⋅ Np ⋅ (cos(�∕2) − sin(�∕2) ⋅ �4) = 0

the geometrical moment of inertia and the lever arms, lead-
ing to Eq. 38.

Through the preset tool geometry, the deflections fA and 
fB are predefined in such a way that they are situated on a 
line 0ĀB (Fig. 26). With the given lever arms, the following 
equation arises:

Calculation of the Deflections

I = Area moment of Inertia
Deflection in Point A:

Deflection in Point B:

(35)fA = g(Nb1,Nb2,Nl,E, I, si)

(36)fB = g(Nb1,Nb2,Nl,E, I, si)

(37)(s2 − s1) ⋅ fA = (s4 − s1) ⋅ fB

(38)
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Fig. 26  Deflection of the sheet for individual loads (Deflection is 
exaggerated)
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