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Abstract
An integrated approach has been applied to predict and optimize multi-performance characteristics, such as optimum thrust 
force (Fz), torque (Mz), hole surface roughness (Ra), delamination (D) and hole roundness (R), in drilling process of Kevlar 
fiber reinforced polymer. The experiments were performed by varying drill point geometry and drilling process parameters, 
i.e., drill point angle, feed rate, and spindle speed. The quality characteristics Fz, Mz, Ra, D, and R were the smaller the 
better. Taguchi orthogonal array (OA) L18 was used as the design of experiments. Grey fuzzy analysis was first applied to 
obtain a rough estimation of the optimum drill point geometry and drilling process parameters. Backpropagation neural 
network (BPNN) model was developed and utilized to predict the optimum Fz, Mz, Ra, D, and R. Genetic algorithm (GA) 
was performed to search for global optimum of drilling process parameters combinations. The analysis of the effect of drill 
point angle, as well as drilling process parameters, on the individual performance characteristics was conducted by examin-
ing both the percentage contribution of drill point geometry and drilling process parameters on the total variance of three 
responses individually, and the response graphs. The results of the confirmation experiment showed that the BPNN based 
GA optimization method could accurately predict and also significantly improve the multiple performance characteristics.

Keywords  BPNN–GA · Drilling process · KFRP · Multi performance optimization · Grey fuzzy analysis

List of Symbols
yi	� Measured characteristic value of the response
X∗
i
(k)	� Normalization value of the k response

min Xi(k)	� The smallest value of Xi(k) for the kth 
response

max Xi(k)	� The largest value of Xi(k) for the kth response
�	� Distinguishing coefficient
�i(k)	� GRG value of the kth response
Δ0,i(k)	� Deviation sequence of reference for the kth 

response
Δmin	� Smallest value of Δ0,i

Δmax	� Largest value of Δ0,i

1  Introduction

Kevlar has been widely used as a reinforcing fiber in produc-
ing composite materials due to its specific tensile modulus 
which is greater than glass and aluminum. However, they 
are not as stiff as graphite or boron fibers. Kevlar fiber rein-
forced polymer (KFRP), or also often called aramid fiber 
reinforced polymer (AFRP), is one of the composite types 
which have several beneficial properties, such as high ten-
sile strength, high hardness, low density, heat and corrosion 
resistant, strong and lightweight [1]. KFRP is usually used 
in the automotive industry, tank industry, aircraft, military 
equipment and spacecraft. In the manufacturing industry, 
drilling is one of the machining processes commonly applied 
in producing hole for components assembly using bolt and 
rivet. There is a difference in the drilling process of this 
material from the metal materials because of its nonhomoge-
neous and anisotropic properties. While drilling composite 
materials, the two phases namely filler and matrix behave 
differently than when they are separate, because composite 
contains the soft epoxy matrix and hard fibers.
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The performance of the drilling process on composite 
materials can be measured based on several performances 
or quality characteristics such as delamination (D), hole 
surface roughness (Ra) and hole roundness (R) [2–4]. 
Delamination is initiated by thrust force, which is affected 
by feed rate and tool geometry significantly [2]. There-
fore, the aforementioned quality characteristics, including 
responses such as thrust force (Fz) and torque (Mz), should 
be minimized. The minimum multiple quality character-
istics could be achieved by determining the optimal drill-
ing parameters using the multiple quality characteristics 
optimization methods. Currently, the multiple quality or 
performance characteristics optimization methods are 
developed based on statistical and meta-heuristic methods. 
Response surface methodology (RSM) is commonly used 
to explore the relationships between machining or explana-
tory variables and performance characteristics or response 
variables, as well as to predict the response. The popular 
statistical based optimization methods include RSM com-
bined with desirability function, Taguchi method com-
bined with grey relational analysis (GRA), fuzzy logic, 
utility, a technique for order performance by similarity 
to ideal solution (TOPSIS) and weighted principal com-
ponent analysis (WPCA). Palanikumar et al. conducted 
an optimization of multiple performance characteristics 
in turning of glass fiber reinforced polymer composite 
material using grey-fuzzy analysis [5]. The optimized 
responses were tool wear and surface roughness. Fiber 
orientation, cutting speed, feed, depth of cut and machin-
ing time was considered as the turning parameters. An 
optimization of multiple performances using grey-fuzzy 
analysis in the drilling of hybrid metal matrix composites 
has been performed [6]. The drilling parameters used in 
the optimization were spindle speed, feed rate and percent-
age weight of SiC. The optimized multiple performance 
characteristics were thrust force, surface roughness, and 
burr height. Krishnamoorthy et al. have also used grey-
fuzzy analysis to optimize five different performance char-
acteristics (thrust force, torque, entry delamination, exit 
delamination, and hole surface roughness) in the drilling 
of carbon fiber reinforced plastic (CFRP) [3]. The drill-
ing parameters which considered affected the performance 
characteristics were spindle speed, point angle, and feed 
rate. Pandey and Panda have applied the grey-based fuzzy 
algorithm to conduct an optimization of multiple per-
formance characteristics in the drilling of bone [7]. The 
objective of the multiple performance optimization were 
reducing the temperature and force during the drilling 
process and surface roughness of the hole. The drilling 
parameters considered were spindle speed and feed rate. 
Sakthivel et al. have also used grey-fuzzy logic in the opti-
mization of cutting parameters in the drilling of glass fibre 
reinforced stainless steel mesh polymer composite [8]. The 

optimized responses were thrust force, torque, delamina-
tion and diameter deviation. The varied drilling parameters 
were point angle, spindle speed, and feed rate.

Artificial neural network (ANN) has gained popularity 
for modeling very complex nonlinear systems and predict-
ing the responses. The meta-heuristic methods for single 
or multiple objectives optimizations commonly used are a 
genetic algorithm (GA), ant colony optimization (ACO), 
harmony search, simulated annealing (SA), particle swarm 
optimization (PSO) and gravitational search algorithm 
(GSA). Jayabal and Natarajan conducted an optimization 
of three different responses (thrust force, torque, and tool 
wear) in the drilling of coir fiber reinforced composites 
using Nelder-Mead and GA methods [9]. The varied drill-
ing parameters were drill bit diameter, spindle speed, and 
feed rate. Saravanan et al. applied GA based multi objec-
tive optimization in drilling carbon fibre reinforced plastic 
(CFRP) [10]. The input parameters were spindle speed and 
feed rate, while the output were metal removal rate (MRR) 
and hole eccentricity or hole roundness. Kannan et al. per-
formed a study to improve hole quality (surface rough-
ness), to increase productivity (drilling time) and to reduce 
thrust force in drilling copper by applying the integration 
of ANN with GA and PSO [11]. Spindle speed and feed 
rate were the varied drilling parameters. The relationships 
between the drilling parameters and surface roughness, 
drilling time and thrust force were developed by using 
ANN. GA and PSO were utilized for minimizing surface 
roughness, drilling time and thrust force. Shunmugesh and 
Panneerselvam conducted a multi objective optimization 
in drilling of CFRP using ANN which is linked with par-
ticle swarm optimization gravitational search algorithm 
(PSO GSA) and GA [4]. Cutting speed, feed rate and drill 
bit type were the varied drilling parameters, while thrust 
force, torque and surface roughness were the minimized 
responses. In the past, Wan et al. experimented with multi-
objective optimization in small scale resistance spot weld-
ing of titanium alloy [12]. Grey relational analysis was 
used for rough estimation of the optimum welding param-
eters. BPNN based GA was applied to search the global 
optimum parameters.

The usage of grey fuzzy analysis and BPNN based 
GA for the minimization of thrust force, torque, hole sur-
face roughness, delamination and hole roundness simul-
taneously in drilling composites was very limited. This 
research has taken KFRP as working material and applying 
the combination of grey fuzzy analysis and BPNN-based 
GA for determining the optimal parameters in the drilling 
process. Grey fuzzy analysis has been used for obtaining 
a rough estimation of optimum parameters combination in 
drilling KFRP. The multiple performance characteristics 
were predicted and improved by BPNN-based GA opti-
mization method.
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2 � Optimization Methodologies

2.1 � Grey‑Fuzzy Optimization

Taguchi’s method has been carried out for analyzing the 
experimental results. Taguchi method uses the design of 
orthogonal arrays to study the variables and its interactions 
using a small number of experiments. The steps used to per-
form an optimization using grey-fuzzy analysis are shown 
in Fig. 1.

2.1.1 � Calculation of S/N Ratio

The signal-to-noise (S/N) ratio is a measure of the data set 
relative to the standard deviation. If the S/N is large, the 
magnitude of the signal is large relative to the noise, as 
measured by the standard deviation. There are three S/N 
ratios available, depending on the type of the performance 
characteristics; lower is better (LB), higher is better (HB) 
and nominal is better (NB). In drilling process, lower thrust 
force, torque, hole surface roughness, delamination and hole 
roundness are indications of better performance. Therefore, 
for obtaining minimum machining performance, the “LB” 
ratio was selected for all of these responses. The S/N ratios 
for LB characteristic can be calculated as follows [13]:

where n is the number of measurements and y2
i
 is the meas-

ured characteristic value. Regardless the category of perfor-
mance characteristics, the greater S/N ratio corresponds to 
the better performance characteristic.

(1)S∕N ratio = −10 log

[

n
∑

i=1

y2
i

n

]

,

2.1.2 � Calculation of S/N Ratio

In the grey relational analysis method, data preprocessing is 
used to normalize the initial data. The experimental results of 
thrust force, torque, hole surface roughness, delamination and 
hole roundness have been converted into values in the range 
between zero and one by using linear normalization. The nor-
malization of S/N ratio of the responses were calculated using 
Eq. (2) [14, 15].

where X∗
i
(k) is the normalization value, min Xi(k) is the 

smallest value of Xi(k) for the kth response and max Xi(k) 
is the largest value of Xi(k) for the kth response.

2.1.3 � Grey Relational Coefficient

Grey relational analysis is used to measuring the two systems 
or two sequences relevancies. The sequences used in the grey 
relational analysis are called grey relational coefficient (GRC), 
which shows the relationship between the ideal condition and 
the actual condition of the normalized response. The calcula-
tion of GRC �i(k) conducted by using Eq. (3) [14, 15].

where Δ0,i(k) is the deviation sequence of the reference 
sequence, ζ the distinguishing coefficient (ζ = 0.5 is gener-
ally used), Δmin is the smallest value of Δ0,i and Δmax is 
the largest value of Δ0,i.

2.1.4 � Fuzzification and Defuzzification

The GRC of each quality characteristic converted into one 
multi-response output which is called grey fuzzy reasoning 

(2)X∗
i
(k) =

Xi(k) −min Xi(k)

max Xi(k) −min Xi(k)
,

(3)�i(k) =
Δmin + �Δmax

Δ0,i(k) + �Δmax
,

Experimental Result Calculation of S/N ratios for Fz,
Mz, Ra, D and R

Normalization of S/N ratios for 
Fz, Mz, Ra, D and R

Calculation of the grey relational 
coefficient (GRC)

Fuzzification using the fuzzy 
membership functionApplication of fuzzy rule

Defuzzification (generating 
grey-fuzzy reasoning grade)

Determination of drilling 
parameters levels that produce 
optimal responses using grey-
fuzzy reasoning grade (GFRG)

Fig. 1   Steps for optimization using grey-fuzzy
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grade (GFRG). The fuzzy logic analysis which uses mem-
bership function, fuzzy rule and defuzzification are used to 
perform the GRC conversion.

2.1.5 � Analysis of Variance (ANOVA)

The purpose of ANOVA is to evaluate the significance of the 
factor effect on an experiment. The factor effect is not cited 
in the prediction formula until its significance has reached 
a certain level. The percentage contribution of machining 
parameters or factors on the desired quality measures value 
indicates the relative power of a factor and/or interaction for 
reducing the total variance [16]. If the factor or/and interac-
tion levels could be controlled precisely, then the total vari-
ation could also be reduced by the amount indicated by the 
percentage contribution. This tool has been used by several 
researchers [15–18].

2.2 � Back Propagation Neural Network (BPNN)

Artificial neural network (ANN) is an information process-
ing system that has certain work-related characteristics that 
resemble biological neural networks [19]. ANN has been 
developed as a generalization of mathematical models of 
the cognitive aspects of human or biological nerves, that is 
based on the assumptions that:

1.	 Information processing occurs on elements called neu-
rons.

2.	 Signals propagate between neurons through the intercon-
nection.

3.	 Each interconnection has a corresponding weight that on 
most neural networks serves to multiply the transmitted 
signal.

Each neuron implements an activation function, which 
is not linear usually, on the network input to determine its 
output signal. One of the architectures of artificial neural 
networks that has a high accuracy and speed is the back-
propagation neural network (BPNN). BPNN was first intro-
duced in 1986 [20]. BPNN is commonly applied to multi-
layer perceptrons. Perceptron has at least an input section, 
an output section and several layers that are between input 
and output. This middle layer, also known as hidden layers, 
can be one, two, three layers or more. The last layer output 
from the output layer is directly used as the output of the 
neural network.

Training on back-propagation method involves three 
stages, that is feed forward training pattern, error counting 
and weight adjustment. After the training, network applica-
tions only use the first stage of computing, i.e., feed forward, 
to perform testing. Although the training phase is slow, the 
network can produce output very quickly. Back-propagation 

method has been varied and developed to improve the speed 
of the training process. Since a single layer of the network 
has a very limited capacity in learning, adding layered net-
works would give more capacity in learning. BPNN archi-
tecture consists of many layers (multilayer neural network), 
namely [21]:

1.	 Input layer which consists of neurons or input units, 
from input 1 to input unit n.

2.	 The hidden layer which consists of hidden units ranging 
from hidden units 1 to hidden units p.

3.	 Output layer consists of units of output starting from the 
output unit 1 to the output unit m.

The symbols n, p and m is each arbitrary integer num-
bers according to the artificial neural network architecture 
designed.

2.3 � Genetic Algorithm (GA)

Genetic algorithm is a search method of stochastic optimum 
value based on natural selection mechanism-genetic theory. 
Genetic algorithms differ from conventional convergence 
method that are more deterministic [22, 23].The classical 
optimum search method generally utilizes the convergence 
of the convergent asymptotic curves to the desired solution. 
The convergence process is conducted by evaluating a point 
on the asymptotic curve in each iteration process. In the 
next iteration process, the evaluation point is shifted towards 
the valleys/hills that are expected to lead to the convergent 
point that exists. Point-by-point analysis like this can pro-
duce the correct value only if the problem being analyzed 
has an extreme point that ensures that the local optimum 
value is also a global optimum value. On the other hand, 
genetic algorithms perform the process of searching the opti-
mum value at several points simultaneously (one genera-
tion). A set of optimized parameters will be used to create 
a chromosome which defined as a solution candidate for 
an optimization problem. The chromosome being analyzed 
can be a binary, integer or decimal code. For the first gen-
eration, the initial chromosome is randomly generated from 
its solution space. A set of good chromosome (parent) is 
then selected based on its fitness value, whereas a set of 
bad chromosome will be removed from solution candidate 
in the next generation. The iteration process is then carried 
out with a generation-to-evolution approach, but the number 
of chromosome in each generation is generally maintained. 
Two parent chromosomes are then selected using selection 
method (e.g. roulette wheel, ranking and tournament) to pro-
duce offspring chromosome through crossover and mutation 
process for generating and maintaining the population set. 
A stopping parameter is finally applied to stop iteration and 
a chromosome with the best fitness is then selected as a 
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solution for the optimization problem. Figure 2 shows the 
flow chart of BPNN–GA based optimization method.

3 � Experimental Design and Result

3.1 � Materials and Equipment

A CNC Milling Machine YCM MV 86A is used to con-
duct the experimental study. The drilling process of KFRP 
composite was conducted without coolant as shown in 
Fig.  3. A KISTLER 4-component dynamometer Type 
9272 was used to measure the thrust force and torque as 
shown in Fig. 4. Table 1 shows the levels of drill point 
geometry, point angle, feed rate and cutting speed that 
were used in the experiment. The levels of parameters 
used in the study adapted to the levels interval recom-
mended by the manufacturer of the cutting tool. The drill 
bits used in this experiment were two flute straight twist 
drill having a diameter of 10 mm. Two drill point geom-
etries were selected, i.e., S-type and X-type as shown in 
Fig. 5. While the first type was made of HSS, the other was 
made of HSS-cobalt. KFRP composite with a dimension 
of 200 mm (length) × 30 mm (width) × 6 mm (thickness) 
was used as workpiece material. The matrix material is 
an epoxy resin, while the fiber is kevlar/aramid. The com-
posite was manufactured by PT. Dirgantara Indonesia, an 
aircraft manufacturer. It has a tensile strength of 515 MPa, 
a tensile modulus of 25 GPa, the density of 1.35 g/cm3 
and shear modulus of 8.45 GPa. The hole surface rough-
ness values were measured using a Mitutoyo Surftest 
SJ-310. The hole roundness values were measured using 
a Roundtest Roncorder EC-3D. The value of delamination 

is represented by delamination factor which is calculated 
as the ratio between maximum diameter (Dmax) in the 
delamination area and the nominal diameter (D0) of the 
drill (10 mm), or [24]:

(4)D =
Dmax

D0

,

BPNN

Experimental result

Normalizing data

BPNN training setting

Developing BPNN architecture

Training BPNN

BPNN prediction

Achieving the 
stopping criteria?

- Prediction result
- Objective function

yes

no

GA

Initializing GA

Fitness function determination

Selection

Crossover

Mutation

Optimal?

Optimization result

yes

no

Finish

Start

Fig. 2   Optimization using BPNN–GA method

Fig. 3   KFRP drilling process

Fig. 4   Schematic of thrust force and torque measurement

Table 1   Drilling parameters and their levels

Parameters Unit Level

1 2 3

Drill point geometry (PG) – S type X type –
Drill point angle (PA) Degree 100 118 140
Feed rate (Vf) mm/min 50 115 180
Cutting speed (Vc) m/min 47.1 62.8 78.5
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3.2 � Design of Experiments

An experiment was designed using Taguchi method which 
uses an orthogonal array to study the entire parametric 
space with a limited number of experiments [14]. Design 
of experiments and Taguchi’s method have been used to 
accomplish the objective of the experimental study. To 
select an appropriate orthogonal array for the experiments, 
the total degrees of freedom had to be computed. There 
were 7 degrees of freedom due to one two-level machin-
ing parameter and four three-level machining parameters 
in the drilling process. Hence, an L18 orthogonal array 
was selected for the experiment and shown in Table 2. 
To preserve the randomness of the experiment, a random 
order was also determined for running the experiments. 
The experiments were replicated three times.

3.3 � Experimental Results

Table 3 shows the experimental result for thrust force, 
torque, hole surface roughness, delamination and hole 
roundness. The S/N ratios for all response parameters were 
calculated using Eq. (1).

4 � Optimization Results

4.1 � Grey‑Fuzzy Optimization

The normalization of S/N ratio of the responses was cal-
culated using Eq. (2). The calculation of GRC �i(k) was 
conducted using Eq. (3). The GRC of each response was 
converted into one multi-response output which is called 
grey fuzzy reasoning grade (GFRG) as shown in Table 4. 
The conversion was conducted by using fuzzy logic anal-
ysis which uses membership function, fuzzy rule and 
defuzzification.

In this research, three fuzzy subsets are assigned in the 
GRC of thrust force, torque, hole surface roughness, delami-
nation and hole roundness as shown in Fig. 6a, b shows 
that there are nine fuzzy subsets assigned in the GFRG. For 
both figures, S is small, VS is very small, M is middle, SM 
is smaller middle, LM is larger middle, L is large, VL is 
very large and H is huge. The GFRG from all 18 experi-
ments with three replications were predicted by evaluating 
the fuzzy inference system (FIS), which was activated by a 
set of rules that have been written.

The optimum condition of the parameter levels can be 
chosen by using average analysis from the response graph. 
The procedure of response table is used to group GFRG 
by parameter levels and then to calculate the average. The 
average GFRG value for each factor levels is then plotted in 
Fig. 7 to attain the optimum parameter setting that would 
reduce the total variance of the responses simultaneously. 
Based on Fig. 7, for minimizing all of the responses in drill-
ing of KFRP composite drill point geometry, drill point 
angle, feed rate and cutting speed are set at level 2 (type X), 
level 1 (100°), level 1 (50 mm/min), level 1 (50 mm/min) 
and level 2 (62.8 m/min) respectively. This setting is selected 
from the drilling parameters which have the greatest GFRG.

Table 5 shows the ANOVA table of the GFRG which 
includes the percentage contribution of each drilling 
parameters. The application of grey-fuzzy optimization is 
useful in determining the levels of drilling parameters for 

Fig. 5   Drill point geometry for a S-type, b X-type

Table 2   Experimental Layout 
Using L18 Orthogonal

No. PG PA Vf Vc No. PG PA Vf Vc

1 1 1 1 1 10 2 1 1 3
2 1 1 2 2 11 2 1 2 1
3 1 1 3 3 12 2 1 3 2
4 1 2 1 1 13 2 2 1 2
5 1 2 2 2 14 2 2 2 3
6 1 2 3 3 15 2 2 3 1
7 1 3 1 2 16 2 3 1 3
8 1 3 2 3 17 2 3 2 1
9 1 3 3 1 18 2 3 3 2
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Table 3   Result of experiments

No. Thrust force (Fz) (N) Torque (Mz) (Nm) Hole surface roughness 
(Ra) (µm)

Delamination (D) Hole roundness (R) 
(µm)

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

1 32.16 31.89 31.23 0.749 0.891 0.787 1.988 1.812 1.954 1.093 1.185 1.016 170 175 195
2 67.84 68.65 68.23 1.038 1.091 1.105 2.219 2.094 2.134 1.085 1.076 1.109 220 215 225
3 97.81 97.93 98.89 0.916 1.088 0.924 2.945 2.792 2.888 1.327 1.399 1.27 260 255 265
4 76.35 77.12 74.98 0.558 0.558 0.408 3.112 3.112 3.19 1.31 1.371 1.243 250 240 230
5 46.73 45.75 47.11 0.362 0.488 0.386 2.96 3.077 2.921 1.168 1.171 1.159 290 300 310
6 129.10 129.52 129.28 2.049 1.957 1.991 3.763 3.735 3.713 1.423 1.475 1.365 400 395 405
7 46.15 45.66 45.14 0.662 0.732 0.682 1.9 1.968 1.889 1.277 1.217 1.361 260 285 295
8 167.00 167.24 168.26 1.065 1.057 0.983 3.358 3.36 3.299 1.43 1.498 1.338 390 380 370
9 210.70 211.52 211.38 1.601 1.574 1.538 3.045 3.066 3.081 1.495 1.536 1.478 400 405 395
10 83.40 83.11 84.59 0.103 0.187 0.094 2.227 2.139 2.222 1.047 1.074 1.005 190 205 205
11 53.13 53.81 51.55 1.621 1.532 1.635 2.376 2.456 2.389 1.178 1.156 1.2135 220 210 230
12 72.27 71.54 72.10 1.695 1.735 1.73 2.133 2.034 2.139 1.152 1.194 1.095 210 195 195
13 58.09 58.97 57.96 0.416 0.417 0.256 1.955 2.075 1.955 1.081 1.075 1.0945 190 175 175
14 108.55 108.72 107.63 0.924 1.055 0.952 3.044 2.994 2.974 1.291 1.288 1.2865 270 285 285
15 96.75 97.54 96.71 1.616 1.461 1.612 2.839 2.996 2.802 1.335 1.364 1.3135 330 300 330
16 124.47 123.39 124.44 0.522 0.524 0.583 2.047 1.932 2 1.254 1.258 1.229 210 220 230
17 173.87 173.22 173.41 0.38 0.385 0.312 2.578 2.678 2.64 1.242 1.239 1.224 260 265 255
18 166.83 167.54 167.23 1.324 1.334 1.377 2.026 1.969 1.921 1.3 1.374 1.2455 290 275 275

Table 4   GRC of responses and GFRG

No. Grey relational coefficient (GRC) GFRG No. Grey relational coefficient (GRC) GFRG

Fz Mz Ra D R Fz Mz Ra D R

1 1.0000 0.4270 1.0000 0.7789 1.0000 0.8475 10 0.4943 1.0000 0.7113 1.0000 0.7912 0.8183
2 0.5533 0.3921 0.7457 0.8010 0.6655 0.6453 11 0.6505 0.3526 0.5949 0.5913 0.6655 0.5869
3 0.4563 0.4035 0.4517 0.4272 0.5206 0.4198 12 0.5366 0.3459 0.7845 0.6559 0.7912 0.6338
4 0.5200 0.4992 0.4038 0.4464 0.5812 0.4825 13 0.6090 0.5687 0.8944 0.8257 1.0000 0.7932
5 0.7127 0.5403 0.4297 0.6203 0.4387 0.5612 14 0.4357 0.4034 0.4264 0.4631 0.4747 0.4052
6 0.4029 0.3333 0.3333 0.3713 0.3333 0.338 15 0.4590 0.3545 0.4509 0.4231 0.4097 0.3877
7 0.7231 0.4488 0.9984 0.4666 0.4747 0.6305 16 0.4101 0.4874 0.8968 0.5051 0.6655 0.5987
8 0.3629 0.3967 0.3756 0.3709 0.3482 0.3537 17 0.3581 0.5713 0.5131 0.5187 0.5206 0.5044
9 0.3333 0.3540 0.4159 0.3333 0.3333 0.3362 18 0.3632 0.3688 0.9231 0.4472 0.4747 0.4795

Fig. 6   Membership function of a GRC for all responses, b GFRG
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multiple-performance optimization. However, the obtained 
levels of the drilling parameters are considered as rough 
estimations. Therefore, further analysis is conducted for 
searching the global optimum drilling parameters by using 
the combine methods of BPNN and GA.

4.2 � BPNN–GA Based Optimization

4.2.1 � BPNN

The numbers of neurons of input and output layers were the 
same as the numbers of drilling parameters and responses. 
Therefore, there are four neurons of input layers and five 
neurons of output layers. Trial and error method was 

performed to obtain the minimum value of mean square 
error (MSE) in determining the number neuron of the hid-
den layer, as well as the number of hidden layers. The result 
showed that the number of neurons in the hidden layer was 
16, which meant that the optimum architecture of BPNN 
used in this study was 4–16–5 as seen in Fig. 8. This archi-
tecture produces MSE training and testing values of 0.019 
and 0.015 respectively, which are the minimum values from 
trial and error calculation. The activation functions for hid-
den layers and output layers were tansig and purelin respec-
tively. Levenberg–Marquardt (trainlm) was applied as the 
training function. The stopping criteria in training the data 
is shown in Table 6. The percentage of data used for training 
and testing were 70% and 30% respectively from 54 total 

Fig. 7   Response graph for 
GFRG

Table 5   ANOVA and 
percentage contributions of 
drilling parameters for GFRG

Source DF SS MS F SS′ % con.

PG 1 0.019536 0.019536 5.05 0.015671 3.48
PA 2 0.11509 0.057545 14.89 0.10736 23.82
Vf 2 0.218722 0.109361 28.3 0.210992 46.8
Vc 2 0.058804 0.029402 7.61 0.051074 11.33
Error 10 0.038649 0.003865 14.57
Total 17 0.450801 100

Fig. 8   BPNN architecture
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data. Table 7 shows the overall data of BPNN that compare 
the predicted and experimental results of each combination 
for all of the responses. It can be seen that the average error 
between experimental and predicted results did not exceed 
10%, which verified that the prediction of the responses 
close to the experimental data [25].

BPNN training, testing and validation were conducted by 
using MATLAB R2013a. The graphs between the targets 
(experimental data) and BPNN output or predicted results 
for training, testing, validation and all data are shown in 
Fig. 9. The values of the correlation coefficients for train-
ing, testing and all data were 0.99258, 0.96947 and 0.98534 
respectively. These results indicating that there was an excel-
lent goodness of fit between the targets (experimental data) 
and BPNN output or predicted results. The same procedure 
[26] for examining the correlations between the target and 
output values in term of training, testing and all data was 
also applied.

4.2.2 � GA

GA parameters are shown in Table 8. By solving the optimi-
zation problem using GA, the minimum thrust force, torque, 
hole surface roughness, delamination and hole roundness 
could be obtained by using X-type drill point geometry and 
setting drill point angle, feed rate and cutting speed at 100°, 
50 mm/min and 75 m/min respectively.

5 � Result and Discussion

5.1 � Influence of Drilling Condition on Thrust Force, 
Torque, Hole Surface Roughness, Delamination 
and Hole Roundness

The percentage contributions of drilling parameters on 
the total variance of the multiple responses or GFRG are 
shown in Table 5. Feed rate has the highest contribution 
(46.8%), followed by point angle (23.82%), cutting speed 
(11.33%) and drill point geometry (3.48%). The analy-
sis of the influence of drilling parameters on KFRP was 
conducted by examining the percentage contribution of 
drilling parameters on total variance of five responses 
individually and the response graphs. The percentage 

contribution of drilling parameters is shown in Table 9. 
Regarding the magnitude of the percentage contribution 
of drilling parameters on the total variance of thrust force, 
torque, hole surface roughness and delamination, the high-
est contributor was feed rate, followed by cutting speed, 
drill point angle and drill point geometry respectively. 
The same results were also obtained by several research-
ers [17, 18]. The percentage contribution of cutting speed 
is the highest for hole roundness, followed by drill point 
geometry, drill point angle and feed rate respectively. 
The response graphs for thrust force, torque, hole surface 
roughness, delamination and hole roundness are presented 
in Figs. 10, 11, 12, 13 and 14. The results of the opti-
mization using grey fuzzy analysis and BPNN–GA have 
shown that drill point geometry type X would produce a 
low value of thrust force, torque, hole surface roughness, 
delamination and hole roundness.

Figure  10 shows that increasing point angle would 
increase the thrust force. The increase of feed rate increases 
the load on the drill and hence increases the thrust force, 
while the increase of cutting speed reduces the thrust force. 
The increase of feed rate would enhance the cross-sectional 
area of the undeformed chip which has a greater resistance 
to chip formation, consequently needs a greater axial thrust 
force to cut it through [27]. This figure also indicates that 
the increase of cutting speed would decrease the thrust force 
[18, 28]. Several researchers were also obtained the same 
conclusion regarding the effects of point geometry, point 
angle, feed rate and cutting speed on thrust force [3, 5, 6, 
18].

Figure 11 depicts that only the increase of feed rate would 
increase the torque, while the increase of the other three 
drilling parameters would reduce the torque. This corre-
sponds to the empirical equation for calculating the torque 
during the drilling process, which states that the torque is 
influenced by the diameter of the workpiece, feed rate and 
chisel geometry [29]. This finding is in accordance with the 
results of several researchers [3, 17, 27].

It can be seen in Fig. 12 that low hole surface roughness 
could be obtained by using small point angle, low feed rate 
and high cutting speed. Increasing feed rate would increase 
the thrust force and fracture the composite materials, which 
finally increasing surface roughness. The use of high cutting 
speed and low feed rate will lead to a rise in temperature in 
the composite material. The temperature rise will decrease 
the hardness of the composite hence composite material will 
be cut easily, resulting in lower surface roughness. These 
phenomena are in agreement with literature [27]. Other stud-
ies also obtained similar results [5, 6, 17, 18].

From Fig. 13, it can be seen that delamination could be 
prevented by using small point angle, low feed rate and 
high cutting speed. Increasing the feed rate will enhance 
the thrust force, hence leads to increase the delamination 

Table 6   The stopping criteria in training

Name Values

Max. epoch 10,000
Performance goal 0.001
Min. performance gradient 0.00001
Max. validation failure 1000



602	 International Journal of Precision Engineering and Manufacturing (2019) 20:593–607

1 3

Ta
bl

e 
7  

P
re

di
ct

io
n 

er
ro

r o
f B

PN
N

N
o.

Th
ru

st 
fo

rc
e 

(F
Z)

To
rq

ue
 (M

Z)
H

ol
e 

su
rfa

ce
 ro

ug
hn

es
s (

R
a)

D
el

am
in

at
io

n 
(D

)
H

ol
e 

ro
un

dn
es

s (
R

)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

1
32

.1
6

29
.6

3
7.

86
0.

74
9

0.
74

6
0.

34
1.

98
8

1.
94

7
2.

06
1.

09
3

1.
13

4
−

 3.
75

17
0

17
9

−
 5.

36
2

67
.8

4
68

.2
2

−
 0.

56
1.

03
8

1.
03

6
0.

19
2.

21
9

2.
15

9
2.

69
1.

08
5

1.
06

7
1.

65
22

0
22

0
−

 0.
14

3
97

.8
1

97
.6

7
0.

15
0.

91
6

1.
05

4
−

 15
.0

2
2.

94
5

2.
88

5
2.

03
1.

32
7

1.
35

2
−

 1.
89

26
0

26
2

−
 0.

86
4

76
.3

5
77

.1
8

−
 1.

09
0.

55
8

0.
57

7
−

 3.
35

3.
11

2
3.

09
5

0.
55

1.
31

1.
33

8
−

 2.
11

25
0

24
5

2.
07

5
46

.7
3

45
.5

3
2.

57
0.

36
2

0.
55

2
−

 52
.4

6
2.

96
3.

04
3

−
 2.

80
1.

16
8

1.
18

4
−

 1.
41

29
0

29
7

−
 2.

52
6

12
9.

1
12

8.
01

0.
85

2.
04

9
1.

98
8

2.
99

3.
76

3
3.

75
1

0.
33

1.
42

3
1.

39
7

1.
85

40
0

40
4

−
 1.

03
7

46
.1

5
47

.2
0

−
 2.

27
0.

66
2

0.
62

0
6.

35
1.

9
1.

89
8

0.
13

1.
27

7
1.

31
5

−
 2.

98
26

0
28

3
−

 8.
69

8
16

7
16

8.
65

−
 0.

99
1.

06
5

1.
03

1
3.

19
3.

35
8

3.
38

5
−

 0.
79

1.
43

1.
44

1
−

 0.
80

39
0

38
4

1.
60

9
21

0.
7

21
5.

78
−

 2.
41

1.
60

1
1.

63
0

−
 1.

83
3.

04
5

2.
99

4
1.

67
1.

49
5

1.
52

6
−

 2.
08

40
0

40
1

−
 0.

28
10

83
.4

85
.7

9
−

 2.
87

0.
10

3
0.

12
4

−
 20

.4
7

2.
22

7
2.

16
2

2.
94

1.
04

7
1.

05
0

−
 0.

29
19

0
19

9
−

 4.
67

11
53

.1
3

63
.6

5
−

 19
.8

0
1.

62
1

1.
82

8
−

 12
.7

8
2.

37
6

2.
39

2
−

 0.
67

1.
17

8
1.

31
3

−
 11

.4
2

22
0

25
7

−
 16

.6
1

12
72

.2
7

71
.7

3
0.

75
1.

69
5

1.
71

2
−

 1.
03

2.
13

3
2.

08
9

2.
08

1.
15

2
1.

15
1

0.
06

21
0

21
0

−
 0.

08
13

58
.0

9
59

.1
4

−
 1.

81
0.

41
6

0.
37

2
10

.6
8

1.
95

5
1.

98
6

−
 1.

61
1.

08
1

1.
08

6
−

 0.
46

19
0

17
8

6.
29

14
10

8.
55

10
8.

94
−

 0.
36

0.
92

4
1.

01
7

−
 10

.1
0

3.
04

4
2.

96
7

2.
53

1.
29

1
1.

28
7

0.
28

27
0

28
4

−
 5.

08
15

96
.7

5
98

.8
3

−
 2.

15
1.

61
6

1.
61

1
0.

32
2.

83
9

2.
85

8
−

 0.
67

1.
33

5
1.

33
4

0.
04

33
0

32
9

0.
23

16
12

4.
47

12
8.

42
−

 3.
17

0.
52

2
0.

45
8

12
.3

4
2.

04
7

2.
06

9
−

 1.
10

1.
25

4
1.

26
2

−
 0.

60
21

0
21

4
−

 1.
98

17
17

3.
87

17
9.

19
−

 3.
06

0.
38

0.
34

5
9.

34
2.

57
8

2.
60

2
−

 0.
93

1.
24

2
1.

23
8

0.
32

26
0

25
8

0.
63

18
16

6.
83

17
0.

77
−

 2.
36

1.
32

4
1.

41
3

−
 6.

70
2.

02
6

1.
90

4
6.

01
1.

3
1.

29
5

0.
42

29
0

28
5

1.
72

19
31

.8
9

29
.6

3
7.

08
0.

89
1

0.
74

6
16

.2
2

1.
81

2
1.

94
7

−
 7.

46
1.

18
5

1.
13

4
4.

31
17

5
17

9
−

 2.
35

20
68

.6
5

68
.2

2
0.

62
1.

09
1

1.
03

6
5.

04
2.

09
4

2.
15

9
−

 3.
11

1.
07

6
1.

06
7

0.
83

21
5

22
0

−
 2.

47
21

97
.9

3
97

.6
7

0.
27

1.
08

8
1.

05
4

3.
16

2.
79

2
2.

88
5

−
 3.

34
1.

39
9

1.
35

2
3.

35
25

5
26

2
−

 2.
83

22
77

.1
2

77
.1

8
−

 0.
08

0.
55

8
0.

57
7

−
 3.

35
3.

11
2

3.
09

5
0.

55
1.

37
1

1.
33

8
2.

44
24

0
24

5
−

 2.
01

23
45

.7
5

45
.5

3
0.

49
0.

48
8

0.
55

2
−

 13
.0

9
3.

07
7

3.
04

3
1.

11
1.

17
1

1.
18

4
−

 1.
15

30
0

29
7

0.
90

24
12

9.
52

12
8.

01
1.

17
1.

95
7

1.
98

8
−

 1.
57

3.
73

5
3.

75
1

−
 0.

42
1.

47
5

1.
39

7
5.

31
39

5
40

4
−

 2.
31

25
45

.6
6

47
.2

0
−

 3.
37

0.
73

2
0.

62
0

15
.3

0
1.

96
8

1.
89

8
3.

58
1.

21
7

1.
31

5
−

 8.
06

28
5

28
3

0.
84

26
16

7.
24

16
8.

65
−

 0.
84

1.
05

7
1.

03
1

2.
46

3.
36

3.
38

5
−

 0.
73

1.
49

8
1.

44
1

3.
78

38
0

38
4

−
 0.

99
27

21
1.

52
21

5.
78

−
 2.

01
1.

57
4

1.
63

0
−

 3.
58

3.
06

6
2.

99
4

2.
34

1.
53

6
1.

52
6

0.
65

40
5

40
1

0.
96

28
83

.1
1

81
.9

6
1.

38
0.

18
7

0.
16

2
13

.4
3

2.
13

9
2.

19
4

−
 2.

57
1.

07
4

1.
06

3
1.

00
20

5
19

8
3.

34
29

53
.8

1
50

.0
5

6.
98

1.
53

2
1.

62
8

−
 6.

29
2.

45
6

2.
38

3
2.

99
1.

15
6

1.
21

2
−

 4.
85

21
0

23
1

−
 10

.2
1

30
71

.5
4

73
.9

1
−

 3.
32

1.
73

5
1.

72
0

0.
85

2.
03

4
2.

15
8

−
 6.

12
1.

19
4

1.
10

1
7.

75
19

5
19

5
0.

23
31

58
.9

7
59

.1
4

−
 0.

29
0.

41
7

0.
37

2
10

.8
9

2.
07

5
1.

98
6

4.
27

1.
07

5
1.

08
6

−
 1.

03
17

5
17

8
−

 1.
74

32
10

8.
72

10
8.

94
−

 0.
20

1.
05

5
1.

01
7

3.
57

2.
99

4
2.

96
7

0.
90

1.
28

8
1.

28
7

0.
05

28
5

28
4

0.
45

33
97

.5
4

98
.8

3
−

 1.
32

1.
46

1
1.

61
1

−
 10

.2
6

2.
99

6
2.

85
8

4.
61

1.
36

4
1.

33
4

2.
17

30
0

32
9

−
 9.

74
34

12
3.

39
11

7.
09

5.
10

0.
52

4
0.

59
6

−
 13

.6
8

1.
93

2
1.

94
6

−
 0.

72
1.

25
8

1.
25

2
0.

45
22

0
21

8
0.

80



603International Journal of Precision Engineering and Manufacturing (2019) 20:593–607	

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

N
o.

Th
ru

st 
fo

rc
e 

(F
Z)

To
rq

ue
 (M

Z)
H

ol
e 

su
rfa

ce
 ro

ug
hn

es
s (

R
a)

D
el

am
in

at
io

n 
(D

)
H

ol
e 

ro
un

dn
es

s (
R

)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

Ex
p.

Pr
ed

.
Er

ro
r (

%
)

35
17

3.
22

16
6.

23
4.

04
0.

38
5

0.
34

2
11

.2
9

2.
67

8
2.

60
9

2.
56

1.
23

9
1.

22
8

0.
91

26
5

25
7

3.
13

36
16

7.
54

16
4.

57
1.

77
1.

33
4

1.
31

3
1.

54
1.

96
9

2.
01

6
−

 2.
38

1.
37

4
1.

31
3

4.
40

27
5

27
8

−
 1.

18
37

31
.2

3
34

.0
9

−
 9.

15
0.

78
7

0.
93

1
−

 18
.3

5
1.

95
4

1.
90

9
2.

32
1.

01
6

1.
04

5
−

 2.
81

19
5

18
3

6.
30

38
68

.2
3

77
.2

2
−

 13
.1

7
1.

10
5

1.
24

4
−

 12
.5

6
2.

13
4

2.
04

9
3.

98
1.

10
9

1.
04

9
5.

37
22

5
21

6
3.

89
39

98
.8

9
10

0.
37

−
 1.

50
0.

92
4

0.
84

6
8.

40
2.

88
8

2.
88

0
0.

28
1.

27
1.

29
0

−
 1.

57
26

5
25

5
3.

69
40

74
.9

8
77

.1
8

−
 2.

94
0.

40
8

0.
57

7
−

 41
.3

5
3.

19
3.

09
5

2.
98

1.
24

3
1.

33
8

−
 7.

61
23

0
24

5
−

 6.
44

41
47

.1
1

45
.5

3
3.

36
0.

38
6

0.
55

2
−

 42
.9

8
2.

92
1

3.
04

3
−

 4.
17

1.
15

9
1.

18
4

−
 2.

19
31

0
29

7
4.

09
42

12
9.

28
12

8.
01

0.
99

1.
99

1
1.

98
8

0.
17

3.
71

3
3.

75
1

−
 1.

01
1.

36
5

1.
39

7
−

 2.
32

40
5

40
4

0.
22

43
45

.1
4

46
.3

7
−

 2.
72

0.
68

2
0.

70
1

−
 2.

77
1.

88
9

1.
90

0
−

 0.
60

1.
36

1
1.

31
1

3.
64

29
5

27
1

8.
12

44
16

8.
26

16
3.

41
2.

88
0.

98
3

1.
03

9
−

 5.
66

3.
29

9
3.

25
0

1.
48

1.
33

8
1.

39
8

−
 4.

50
37

0
37

3
−

 0.
85

45
21

1.
38

20
8.

51
1.

36
1.

53
8

1.
48

8
3.

27
3.

08
1

3.
15

1
−

 2.
26

1.
47

8
1.

48
5

−
 0.

45
39

5
39

8
−

 0.
69

47
51

.5
5

50
.0

5
2.

90
1.

63
5

1.
62

8
0.

41
2.

38
9

2.
38

3
0.

27
1.

21
35

1.
21

2
0.

12
23

0
23

1
−

 0.
63

48
72

.1
73

.9
1

−
 2.

52
1.

73
1.

72
0

0.
57

2.
13

9
2.

15
8

−
 0.

91
1.

09
5

1.
10

1
−

 0.
59

19
5

19
5

0.
23

49
57

.9
6

59
.1

4
−

 2.
04

0.
25

6
0.

37
2

−
 45

.1
5

1.
95

5
1.

98
6

−
 1.

61
1.

09
45

1.
08

6
0.

77
17

5
17

8
−

 1.
74

50
10

7.
63

10
8.

94
−

 1.
22

0.
95

2
1.

01
7

−
 6.

86
2.

97
4

2.
96

7
0.

23
1.

28
65

1.
28

7
−

 0.
07

28
5

28
4

0.
45

51
96

.7
1

98
.8

3
−

 2.
19

1.
61

2
1.

61
1

0.
07

2.
80

2
2.

85
8

−
 2.

00
1.

31
35

1.
33

4
−

 1.
59

33
0

32
9

0.
23

52
12

4.
44

11
7.

09
5.

90
0.

58
3

0.
59

6
−

 2.
17

2
1.

94
6

2.
70

1.
22

9
1.

25
2

−
 1.

90
23

0
21

8
5.

11
53

17
3.

41
16

6.
23

4.
14

0.
31

2
0.

34
2

−
 9.

46
2.

64
2.

60
9

1.
16

1.
22

4
1.

22
8

−
 0.

31
25

5
25

7
−

 0.
67

54
16

7.
23

16
4.

57
1.

59
1.

37
7

1.
31

3
4.

61
1.

92
1

2.
01

6
−

 4.
94

1.
24

55
1.

31
35

−
 5.

46
27

5
27

8
−

 1.
18

A
ve

ra
ge

 e
rr

or
−

 0.
45

−
 5.

34
 

0.
18

−
 0.

52
−

 0.
68



604	 International Journal of Precision Engineering and Manufacturing (2019) 20:593–607

1 3

at drilled hole. This observation is similar to the results of 
several researcher [3, 18, 27, 28, 30, 31].

Based on Fig. 14, small hole roundness could be pro-
duced by drilling using small point angle, low feed rate and 
high cutting speed. These phenomena are in agreement with 
other studies [3, 17, 27].

5.2 � Confirmation Experiment

Table 10 shows the results of the confirmation experiments 
using the optimal drilling parameters obtained by using grey 

fuzzy and BPNN–GA optimization methods. Both optimi-
zation methods recommended the same type of drill point 
geometry (type X), drill point angle (100°) and feed rate 
(50 mm/min). However, BPNN–GA optimization method 
yielded a higher cutting speed, i.e., 75 m/min. The con-
firmation experiments of both optimization methods were 
replicated three times and the averages are also presented 
in Table 10. Since grey fuzzy analysis does not predict the 
responses, the given responses values were obtained from 
the confirmation experiment. It can be seen that all of the 
predicted responses of BPNN–GA are lower than the results 
of the experimental confirmation of grey fuzzy, but still 
higher than the results of the experimental confirmation of 
BPNN–GA. Therefore, the minimum thrust force, torque, 
hole surface roughness, delamination and hole roundness 
could be obtained by applying the optimal drilling param-
eters which were determined by using BPNN–GA.

Fig. 9   Comparison between experimental data and prediction data of BPNN

Table 8   Parameters of GA

Parameters Name/value

Population size 100
Generation size 100
Selection function Roulette wheel
Mutation function Uniform
Crossover function Two point
Crossover fraction 0.8
Mutation fraction 0.05

Table 9   Percentage contributions of drilling parameters for individual response

Sources Thrust force (FZ) Torque (MZ) Hole surface rough-
ness (Ra)

Delamination (D) Hole roundness (R)

Rank Cont. (%) Rank Cont. (%) Rank Cont. (%) Rank Cont. (%) Rank Cont. (%)

Drill point geometry
(PG) 4 15.55 4 10.37 4 9.47 4 10.85 2 19.82
Drill point angle (PA) 3 21.30 3 13.46 3 10.18 3 19.73 3 20.67
Feed rate (Vf) 1 37.35 1 23.87 1 42.43 1 40.24 4 11.29
Cutting speed (Vc) 2 22.43 2 50.9 2 33.75 2 26.01 1 45.07
Error – 3.37 1.40 – 4.17 – 3.17 – 3.15
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6 � Conclusions

In this study, a multi-objective prediction and optimiza-
tion of multiple performance characteristics were investi-
gated in drilling KFRP. Grey fuzzy logic was applied first 
to determine a rough estimation of the optimum drilling 
parameters. The most influential drilling parameters on 
multiple performance characteristics were feed rate, fol-
lowed by point angle, cutting speed and drill point geom-
etry. Next BPNN model was developed and used to predict 
the minimum thrust force, torque, hole surface roughness, 
delamination and hole roundness. Afterwards, GA was 
utilized to search for global optimum drilling parameters 
combinations. In the end, the analysis of the influence of 
drilling parameters on the individual performance char-
acteristics was conducted by examining the percentage 
contribution of drilling parameters on total variance of 
five responses individually and the response graphs. The 
results of the experimental confirmation showed that 

Fig. 10   Response graph for thrust force

Fig. 11   Response graph for torque

Fig. 12   Response graph for hole surface roughness

Fig. 13   Response graph for delamination

Fig. 14   Response graph for hole roundness
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BPNN based GA optimization method could accurately 
predict and also significantly improve the multiple quality 
characteristics.
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