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The ability to detect traversable terrains is essential for autonomous mobile robots to guarantee safe navigation. In this paper, we

present a method for terrain classification for wheeled mobile robots. Our scope is limited to mobile service robots that are used for

surveillance or delivery in semi-structured urban environments. A reliable terrain detection scheme is required for both indoor and

outdoor applications anytime. A low-cost Lidar (Light detection and ranging) is adopted for terrain detection. To deal with intrinsic

measurement errors and uncertainties of the Lidar, the classification criteria are trained through a supervised learning approach.

Training data are obtained from manual driving at target environments. Various decision boundaries resulted from a variety of floor

conditions, sensor types and robot platforms. The proposed terrain classification scheme is experimentally tested in success.
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1. Introduction

In recent years, autonomous mobile robots have been commercialized

in industrial fields.1-3 Service robots with autonomous navigation

capability are used in hospitals4 and hotels.5 Mobile robots operate in

our daily life, where robots and humans coexist. In a human environment,

a typical terrain contains various obstacles such as protruding obstacles,

stairs, and holes, as shown in Fig. 1. Failure to avoid terrain obstacles

introduces the risk of a robot being stuck and overturned, which may

result in damage to the robot as well as bodily injury to the service users.

Ensuring robot safety based on the traversability analysis significantly

lowers the risk of serious accidents in mobile robot applications. In a

structured environment, two-dimensional (2D) laser sensors are sufficient

to detect obstacles. Therefore, most of the commercialized robot platforms

have used 2D laser sensors for navigation. However, the mobile robot

that use a planar 2D laser sensor should equip additional sensors for

detecting terrain. Without reliable methods for terrain detection, global

navigation by wandering is not allowed when the robot pose is missing.

In this paper, we present a terrain classification method for ensuring

navigation safety of mobile service robots, which operates in semi-

structured urban environments. Our requirements of considerations for

implementing a terrain classification method for mobile service robots

are summarized as follows: (1) Navigation in indoor and outdoor urban

environments, excluding unstructured rough terrain. (2) Reliable

performance regardless of illumination change. (3) Precise detection of

hazardous regions. (4) Capability to cope with various terrain types,

sensors and robots. (5) Real time, low cost sensor.

Significant attention has been devoted to developing vision-based

methods of terrain traversability analysis.6-9 However, vision sensors

have not been primarily used in outdoor environments owing to the

well-known problem of illumination dependence of detection

performance. On the other hand, Lidars (Light detection and ranging)

have been widely utilized for terrain classification. The Lidars are
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Fig. 1 Terrain obstacles in human environments
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advantageous because they provide accurate range measurements

irrespective of changes in the environment in which they operate.

Recently, three-dimensional (3D) Lidars have been increasingly

considered for environmental perception of autonomous vehicles.10

Mobile robots are typically quite small and move at a lower speed than

vehicles. Therefore, it is effective to precisely measure the terrain in the

vicinity of a robot, rather than in a remote area. Although commercial

3D laser sensors provide a large amount of point clouds, their vertical

field of view makes it hard for a robot to measure a nearby terrain. In

addition, owing to their exorbitant price, mounting an additional 3D

laser sensor is not easy in service applications using mobile robots. A

possible solution is to use a 2D laser sensor inclined toward the ground.

Recent short range Lidars are commercially available under $300, and

the cost is decreasing fast. A terrain can be accurately measured by a

tilted 2D laser sensors, which focus on the terrain in the vicinity of a

robot. Data processing is also more efficient because the majority of the

scanned data correspond to the terrain. Andersen et al. detected

traversable regions by using a 2D laser sensor inclined at a fixed angle.11

C. Ye built an elevation map for the terrain traversability analysis

(TTA).12,13 The elevation map was constructed in the grid representation,

in which each grid cell was assigned a traversability index. A similar

approach was suggested by Y. Tanaka et al.14 The weakness of these

methods is that they depend on heuristic thresholds for extracting

traversable regions from scanned data. The heuristic thresholds should

be redefined when operational conditions are changed.

When a terrain is scanned by using a Lidar, the measurements depend

on the operational conditions such as robots, sensors, and terrain types.

Therefore, obstacle detection based on the geometric relations in the

scanned data is difficult in general. It is important to derive classification

criteria that could be easily adapted in different operational conditions.

Supervised learning has been widely exploited for terrain classification

to deal with various operational conditions.15 For detecting negative

obstacles in an off-road environment, a method for terrain classification

was proposed by J. Larson and M. Trivedi.16 They made use of support

vector machine (SVM) based classifier, which was learned based on the

geometric features of negative obstacles. K. M. Wurm et al. proposed a

terrain classification approach for detecting low vegetation in structured

outdoor environments by using the SVM and linear discriminant analysis

(LDA).17,18 In these approaches, classifiers were learned based on range,

reflectivity, and incidence angle. The learned classifiers could distinguish

vegetation from streets with high accuracy. However, their studies are

different from our interest in that the classifier did not consider the

detection of obstacles. Principal component analysis (PCA) has also

been used to learn classifiers for detecting drivable surface from the 3D

point clouds.19-21 The above-mentioned methods require constructing

training data sets that contain negatively labeled data as well as positively

labeled data. Therefore, operators should amass large amounts of data

not only for non-traversable terrains but also for various types of

obstacles. These approaches also involve exhausting tasks of hand-

labeling the training data set as individual classes.

Detecting hazardous terrains is the same as detecting outliers in

terrain data. This problem can be solved using a decision criterion that

is learned by the samples from the traversable parts. B. Sugar proposed

a method for traversability analysis based on a semi-supervised

approach.22 A. Santamaria-Navarro also suggested a method for terrain

classification that exploits Gaussian process.23 To obtain traversable

samples from the target environment, in both works, footprint data of

the robot trajectory were collected by manually operating the robot.

This approach is advantageous because the training data can be easily

obtained without hand-labeling a large number of data set. However,

both of the above works are not suitable for the detection approach that

uses a 2D laser sensor, because they use terrain features from 3D point

clouds, which are measured by using a 3D laser sensor. There is a lack

of research on terrain classification that uses only positive labeled data

based on a 2D laser sensor.

In this paper, we propose a method for terrain classification using a

2D Lidar with a fixed tilting angle. Our approach is especially suitable

for mobile service robots that are used for surveillance, transportation,

and entertainment in semi-structured urban environments. The capability

of traversing obstacles depends on an individual platform that is used

in a specific application. Therefore, we learned the classification criterion

for traversable regions on the basis of a supervised learning approach

for individual operational conditions.

The contribution of this paper is twofold. The first contribution is a

method for the range calibration of laser sensors. The geometry of the

terrain surface is distorted due to the intrinsic bias errors of a laser

sensor. A geometric relation between a scan point and flat terrain is

considered to estimate the errors. Secondly, we propose a method for

terrain classification to detect traversable terrains by using a 2D laser

sensor. We use the data collected from the footprint area, which is

already known as a traversable terrain. All an operator has to do is simply

steer the platform through a traversable terrain in a target environment.

Because the collected samples are only composed of traversable positive

samples, we utilize the support vector data description (SVDD), which

is appropriate for detecting negative outlier samples. Our approach

allows to deal with a variety of operational conditions, and assures the

robustness of terrain classification for individual platforms.

The remainder of this paper is organized as follows. In Section 2,

we suggest a method for pre-processing of the range data for bias

calibration. A classification scheme based on SVDD is presented in

Section 3. In Section 4, we describe several experimental results that

include terrain classification in indoor and outdoor environments.

2. Range Data Pre-Processing

The measurement accuracy of a terrain measured by a Lidar depends

on sensor types and terrain materials. Adams and Probert suggested

that bias errors of laser sensors are relevant to an internal gain amplifier

that leads to amplitude-induced range errors.24 The researchers found

that these range errors of laser sensors are affected by the materials,

colors, and distance to a target object.25,26 Based on their empirical data,

they built a calibration model that the true distance is given as a linear

combination of the mean value of the range measurements and the

constant bias. In a similar way, Borges et. al. proposed a method for the

bias compensation of Lidar beams.27 They suggested that the bias error

is varying with true distance. The bias of Lidar beams is approximated

by a sixth-order polynomial. Although above work achieved improved

results in range measurements, they assumed that all beams of a sensor

have the same bias. However, biases of Lidar beams differ from each
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other. In our approach, the bias errors of each Lidar beam are estimated

by using a geometric relation between scan points and flat terrain.

In this section, we present a method for calibrating the intrinsic bias

error. Since the intrinsic bias error is induced by the gain amplifier of

the sensor, we assume that the bias error is not related to the movement

of the robot. Therefore, our approach estimates the intrinsic bias by

calculating height measurement errors of the ground surface when a

robot is in a static condition. Fig. 2 presents the configuration of the

robot equipped with a tilted 2D Lidar. The height of the terrain surface

at each scan point is estimated by the Kalman Filter. If the surface is

flat, the height of the expected terrain surface converges to 0. When

height measurement zi
t and noise σi of the i-th scan point pi are given,

estimated terrain height hi
t and its variance vi

t are calculated as follows.

(1)

(2)

The height of each scan point are estimated by Eq. (1) while the

tilted Lidar measures a flat terrain during [0, t]. If we assume that the

heights of the flat terrain are zero, estimated height hi is the measurement

error of the i-th scan point. Range bias error bi of the i-th scanned point

can be calculated from hi by using a geometric relation as shown in Fig.

2. bi is calculated as

(3)

where θtilt is the tilting angle of the Lidar, and φi is the orientation of the

i-th measurement point. Calibrated range Li’ = Li + bi, which is the linear

combination of measured range Li and bias bi, is used for calculating

the coordinates of each scanned point. After the bias calibration, the

scanned points have zero mean with Gaussian noise when the Lidar

measures the flat terrain. As a result, the intrinsic sensor errors can be

calibrated.

3. Terrain Classification

3.1 Terrain features

For terrain classification, it is important to consider terrain

characteristics that can distinguish traversable regions from obstacles.

In structured urban environments, a robot moves through a terrain, most

of which consists of smooth surface, and the vicinity of the robot is

mostly traversable area. In these environment, it is reasonable to regard

occasional hazardous regions as outliers of scanned data. Our approach

uses previous and horizontal information of scanned data for detecting

outliers.

One of the features is a Mahalanobis distance between new height

measurement zi of a current scanned point and previous height

measurements. A measurement which has large Mahalanobis distance

to previous distribution has a large possibility of a non-traversable point,

because the robot previously drives through a safe region. A rolling

window with size k is utilized to compute this feature. The previous

height measurements during time interval [t-k, t-1] are accumulated in

the rolling window, as shown in Fig. 3. For each Lidar beam, the feature

is computed as follows.

(4)

μi and sz,i are the mean and the standard deviation of the previous

height measurements of the i-th scanned point, which are accumulated

in the rolling window. By using the information in the rolling window,

this feature can indirectly reflect the terrain roughness for a 2D laser

sensor that yields a sparse data set in a single scan.

Differences between the terrain surface and measurements are also

used to calculate a terrain feature. Because terrains of the urban

environments mostly consist of smooth surfaces, there is a strong

likelihood that measurements, which have large difference from a terrain

surface, are non-traversable region. We detect the floor surface from

single scan measurements at time t, and compute differences ei. This

feature is computed from the difference as

(5)

where mt and sr,t are the mean and the standard deviation of the
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Fig. 2 The configuration of an 2D Lidar and a flat terrain

Fig. 3 Rolling window for the feature extraction
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differences for a single scan at time t. This feature yields a normalized

deviation of the i-th scan point from the terrain surface.

There are several methods for detecting the terrain surface. The least

square method is simply used for surface detection in structured indoor

environments, because the entire area is flat. In this work, Gaussian

process regression (GPR) is used for terrain detection in order to deal

with non-flat terrain surfaces in outdoor environments. Segmentation

was performed on single-scan data by using the split-and-merge

approach. Thereafter, position (x, y) of the scanned points on the line

segment that corresponds to the terrain surface is used as the input

vector, and height value z of the scan point are estimated by GPR. A

squared exponential function is used as a covariance function.

3.2 Support vector data description (SVDD)

SVDD is one of the methods of supervised learning that deals with

one-class classification problem.28,29 The goal of SVDD is to define a

ball-shaped decision boundary that includes normal positive samples in

the feature space. For this reason, this method has been used for outlier

detection in various fields. Therefore, it allows to define a decision

boundary when there are no negatively labeled samples. An optimal

boundary is defined by a following equation.

(7)

n is the number of training samples x. The decision boundary is a

sphere that is centered at a, and its radius is R. Variable ξi is a slack

variable, which is assigned to outliers that deviate from the decision

boundary. Parameter C regulates trade-off between the volume and the

outliers. Classification of linearly non-separable data can be performed

by applying a kernel function.

3.3 Terrain classification on the basis of SVDD

Detecting obstacles on a terrain is analogous to a problem of detecting

outliers. Our approach for terrain classification defines classification

criteria based on the features of the traversable terrain. An obvious way

to obtain the data on traversable parts is to collect footprint data by

steering the robot platform. By using the footprint data, we calculate the

terrain features that are described in Section 3.1. However, the obtained

data are only composed of positively labeled samples. Therefore, it is

important to adopt a learning algorithm to deal with this type of data.

In our approach, we adopt SVDD for classification. In comparison

with other supervised learning methods, an important advantage of

SVDD is that users do not need to hand-label the training data from

traversable regions to obstacles. In this approach, users simply model

characteristics of traversable regions, and the classification criteria can

be learned from the features of the traversable regions. Therefore, SVDD

is appropriate for our problem.

In this work, training data D = {(xi, yi) | i = 1, 2, …, n} are generated

for a traversable terrain. xi is a positively labeled data vector that

comprises two terrain features [di, ri]. yi is a scalar that corresponds to

the class label. Since the training data contain only positively labeled

samples that correspond to traversable parts, yi is 1.

For computational efficiency, we randomly subsampled a large

number of training data that we amassed from the footprints. The

classification boundary was learned from the subsample. The Gaussian

radial basis function (RBF) was used as a kernel function for non-linear

classification of the training data. The optimal parameters that resulted

in the highest classification accuracy were determined by a fivefold

cross-validation.

Terrain feature data are different under different operational

conditions, e.g., for different ground materials, sensor types, and

platform-dependent vibration. Therefore, our approach is to collect the

training data for various operational conditions, thereby defining different

SVDD classification boundaries.

Let znew = [dnew, rnew] be an arbitrary vector from a real-time

measurement in target environments. The decision function to classify

the arbitrary vector is given as follows.28

(8)

where, αi is the Lagrange multiplier that is obtained from the training

data. The decision function corresponds to a mapping function, which

project the feature vector to the trained feature space. The output of the

Eq. (8) is given as a scalar, which means the distance from the center

of the decision boundary. If the distance is larger than the radius of the

boundary, new feature vector znew is classified as an obstacle. The

traversable points are Rt = {znew | F(znew) ≤ R2}, and the obstacles are

Ro = {znew | F(znew) > R2} in the classification step.

When a target environment contains two or more ground materials,

SVDD boundaries should be separately defined according to the ground

materials. The local maps should contain terrain type information, and

the SVDD boundaries are trained for each terrain type.

4. Experiment

4.1 Hardware setup

To validate our algorithm, we analyzed the bias errors and terrain

features under different operational conditions. We conducted experiments

in indoor and outdoor environments with different terrain types. The

platforms and the sensors that were used in these experiments are shown

in Fig. 4. We used two different platforms for data collection. Tetra-DS

was used for indoor environments, and ISR-M1 was used both for indoor

and outdoor environments. In order to detect the terrain, Neato XV-11,

Hokuyo URG-04lx, and SICK LMS-111 were alternately mounted on

a pan-tilt unit. The Xsens MTI IMU was attached for measuring the

platforms’ attitude.
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Fig. 4 Mobile robot platform and sensor configuration
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4.2 Lidar bias calibration

In this section, we computed the bias errors of the Lidar by the use

of empirical data. The experiments were conducted in structured indoor

environments. We measured five different terrain types. The terrain data

were obtained using two different platforms and two different Lidars in

driving and static conditions.

Fig. 5 shows the height measurements of the flat terrain surface in

the driving condition that were represented in the robot’s local y-z plane.

Although the surface is flat, there are many nonzero mean values of the

height measurements. In other words, the geometry of the terrain surfaces

was not accurately measured, owing to the bias errors. Moreover, the

geometric shapes depend on sensor types, and the mean values of the

measurements were different under different terrain types. Consequently,

we concluded that terrain types and sensor types affect bias errors.

In order to investigate the effect of the platform type on the

measurement accuracy, we calculated differences between height

measurements for different platforms equipped with the same sensor.

The results are shown in Fig. 6(a). Height measurements by the same

sensor mounted on different platforms did not show any significant

differences, because the measured peak-to-peak values for all terrains

were within 0.005 m. We concluded that the type of a platform does not

affect terrain bias errors. We also considered the effect of driving state

on bias errors. Fig. 6(b) shows the difference between height

measurements in static and driving conditions of a platform. The results

are shown for all possible combinations of the sensors and platforms.

In Fig. 6(b), mean values are within 0.003 m for all of the considered

terrain types, and peak-to-peak values are mostly within 0.005 m.

Although the vibrations associated with driving were taken into

consideration, the result shows that there is no significant difference

between the robot's static and moving conditions. In other words, the

driving state of a platform does not affect terrain height measurements.

The above experiments indicate that the primary factors underlying

range bias errors are sensors and terrain types.

In order to calibrate the bias errors, the proposed method in section

2 was applied in static conditions. The robot in this experiment was

Tetra-DS. Two different Lidars were used to scan the terrain. The bias

error of each Lidar beam was estimated by Eq. (3). The calibrated range

measurements were derived by adding the bias to the range measurement.

The coordinates of the scanned points were calculated by the calibrated

range. The height measurements of the ground after bias calibration is

shown in Fig. 7. Compared with Figs. 5(b), 5(d), and 5(f), these results

imply that each scanned point of Lidars can measure the true height of

a flat terrain surface (z = 0), after applying the proposed bias calibration

method.

The advantage of applying the bias calibration method is apparent

from a case of detecting small obstacles. We conducted a simple

experiment to detect an 1cm obstacle in Fig. 8(a). Measurement points

were accumulated and projected to y-z plane of the robot coordinate

while a robot navigated toward the obstacle. Figs. 8(b) and 8(c) show

the projected scanned points before and after calibration, respectively.

Fig. 5 The means of the height measurements of the flat terrain

surface in driving conditions; (a) Robor: ISR-M1, sensor:

URG-04lx, (b) Robot: Tetra-DS, sensor: URG-04lx, (c) Robot:

ISR-M1, sensor: XV-11, (d) Robot: Tetra-DS, sensor: XV-11,

(e) Robot: ISR-M1, sensor: LMS-111, (f) Robot: Tetra-DS,

sensor: LMS-111

Fig. 6 Difference between the floor height measurements (a) by

different robots and (b) in the static and driving conditions:

comb-IU (robot: ISR-M1, sensor: URG-04lx), comb-TU

(robot: Tetra-DS, sensor: URG-04lx), comb-IN (robot: ISR-

M1, sensor: XV-11), comb-TN (robot: Tetra-DS, sensor: XV-

11), comb-IL (robot: ISR-M1, sensor: LMS-111), comb-TL

(robot: ISR-M1, sensor: LMS-111)
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The obstacle was located within the range of -0.15 cm ≤ y ≤ -0.05 cm

in both graphs. Before the bias calibration, the points of the obstacle

were visually indistinguishable from those of the terrain surface, as

shown in Fig. 8(b). On the other hand, after applying the proposed

method, the scanned points are distributed around the height of zero,

which corresponds to the flat terrain, as shown in Fig. 8(c). In addition,

the obstacle within the range of -0.15cm ≤ y ≤ -0.05 cm is visually

identifiable by the measurement points in the vicinity of 1cm height.

The result implies that there is a strong possibility to detect obstacles

as small as 1 cm in height by using the proposed method.

4.3 SVDD training results

To train a classification boundary for traversable region, training

data were collected from the traversed region when a mobile robot was

manually steered in a target environment. In such a way, the positive

labeled data, which corresponds to traversable region, could be collected

much easier without hand-labeling. In our approach, SVDD, which can

handle only positive-labeled data, was exploited to learn the classification

boundaries. In other words, there is no need to accumulate negative-

labeled data that cannot be traversed by a robot. For improving the

classification accuracy, our approach adopted different classification

boundaries when operational conditions were changed. Fig. 9 shows

the learned boundaries for training data set for different operational

conditions, where different platforms, different sensors, and different

terrain types were considered. The distributions of these training data

depend on individual operational conditions. In this context, the shapes

of the learned SVDD boundaries were different according to different

operational conditions. Therefore, we conclude that classification

boundaries should be redefined when operational conditions are changed.

4.4 Terrain classification in indoor environment

The experimental environment was a well-structured indoor

environment that consists of a flat floor, vertical walls, and stairs. We

used the Tetra-DS platform, which was not able to traverse across

obstacles taller than 1 cm in height. Therefore, we constructed an

experimental environment by placing arbitrary obstacles that were

taller than 1 cm. We steered the robot manually through the test scene

to encounter all obstacles. For terrain classification, Hokuyo URG-04lx

was tilted toward the floor, with a fixed angle of 70°. Because the

indoor robot navigates with a low speed, the robot only has to detect

obstacles that are in its vicinity. Therefore, we limited the field of view

to ±35°. The classified obstacles were mapped onto the local map,

according to the localization results. To estimate the robot’s pose, we

used Monte Carlo-based localization (MCL) with an additional planar

2D Lidar.30

From the results in section 4.3, we verified that the classification

boundary should be defined according to individual condition changes.

The changes in operating condition include terrain types as well as

sensors and platforms. In this experiment, the test scene consists of two

different floor materials (PVC and granite), which means that two

individual operating conditions exist in the environment. Hence, we

trained the two SVDD boundaries for each material type, and these

boundaries were used to classify the laser scan points. In order to apply

the appropriate boundary to the measured points, the information of the

floor material was given in the global map.

Fig. 10 shows the terrain classification results of the experimental

environment. The blue dotted line represents the robot trajectory that

was estimated by the MCL. The traversable area is represented with

black dots, and the detected obstacles are marked with red dots. The

obstacles below the height of a horizontal 2D laser were detected

correctly. Moreover, our algorithm successfully detected the obstacles

as small as 1 cm in height, which Tetra-DS was unable to traverse. The

braille block near the stairs was 0.5 cm in height. Because this height

is within the measurement error of the laser sensors, in the strict sense

it cannot be detected. In this experiment, the braille blocks were detected

owing to their reflective material (stainless steel) that yielded range

measurement errors. With all things considered, our algorithm was able

to detect the obstacles taller than 1 cm as well as the negative obstacle

(stairs) in the structured indoor environment, which could not be

traversed by the robot.

Fig. 7 Height measurements of ground after bias calibration; (a)

Robot: Tetra-DS, sensor: URG-04lx, (b) Robot: Tetra-DS,

sensor: XV-11, (c) Robot: Tetra-DS, sensor: LMS-111

Fig. 8 Raw measurements of an 1-cm-tall obstacle. (a) an obstacle.

(b) Before bias calibration. (c) After bias calibration
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In order to evaluate the classification results, we marked the

misclassified points manually. Table 1 shows the confusion matrix of

the classification results. Among 758,632 points in total, 706,263 were

traversable and 52,369 corresponded to obstacles. The precision, recall,

Fig. 9 SVDD boundary and training data, for different operational conditions; (a) Robot: ISR-M1, sensor: URG-04lx, floor material: PVC, (b)

Robot: Tetra-DS, sensor: URG-04lx, floor material: PVC, (c) Robot: ISR-M1, sensor: XV-11, floor material: PVC, (d) Robot: ISR-M1,

sensor: URG-04lx, floor material: granite, (e) Robot: ISR-M1, sensor: LMS-111, floor material: granite, (f) Robot: ISR-M1, sensor: LMS-

111, floor material: cement brick

Fig. 10 Terrain classification results for the indoor environment
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and specificity values were 0.9999, 0.9963, and 0.9982 respectively.

These results indicate that the obstacles, as well as the traversable

regions, were classified with high accuracy.

The effectiveness of our approach can be verified by a comparative

result when an inappropriate boundary is used for terrain classification.

Fig. 11 presents the classification results for an obstacle, which was

conducted by the use of two different boundaries. Fig. 11(a) shows an

1-cm-tall obstacle on the floor of a PVC material. In Fig. 11(b), the

obstacle was detected by the classification boundary for wood material,

which is inappropriate for this operating condition. The specificity was

0.2895 (55/190 points). Since the result shows a large type I error, the

inappropriate boundary could hardly detect the obstacle. Consequently,

the robot has a strong possibility to collide with the obstacle. The

classification result by the boundary for the PVC material is shown in

Fig. 11(c). In this case, specificity was 0.9632 (183/190 points). This

result implies that most of the obstacle points could be detected by the

use of the appropriate boundary. Therefore, in order to classify the

terrain with high accuracy, an SVDD boundary should be designated

properly with regard to a given operational condition.

Without bias calibration, obstacles taller than 3 cm were only visible

in the cumulated data. However, with our approach, the geometry of

terrains could be measured precisely, and the obstacles taller than 1 cm

were detected with high resolution by applying an appropriate SVDD

boundary.

4.5 Terrain classification in outdoor environment

Using the same approach, we conducted an experiment in an outdoor

environment. In this experiment, we validated the effectiveness of our

algorithm by using different sensors and different robots. We steered an

ISR-M1 platform across the campus environment. SICK LMS-111 was

tilted to 55o toward the ground for the terrain detection. For

computational efficiency, we used the terrain data for classification

within the field of view of 180o and the range of 8 m. An additional

GPS system was attached for estimating the robot pose in the campus

environment. The robot pose was estimated by GPS-IMU based EKF

localization. Travel distance of the robot was about 556 m. The

environment consists of five ground material types (granite, wood,

cement, asphalt, and vegetation). It means there were five different

operating condition in this environment. The experimental environment

was comprised of protruding obstacles such as boundary stones of

flower gardens, trees, benches, and walls. Negative obstacles, such as

stairs, ponds, drains, and curbs also exist.

In the experiment that was conducted in the structured indoor

environment, the indoor robot is not able to move over obstacles as

small as 1 cm in height. Accordingly, when the proposed bias calibration

was applied to the terrain classification, the minimum height of the

obstacle that could be detected by the proposed method was 1 cm. On

the other hand, As ISR-M1 is capable of traversing obstacles up to 4

cm, it is sufficient to detect obstacles of 4 cm or more in height.

Therefore, the bias calibration method was not used in this experiment.

For each terrain type, the classification boundaries were trained using

the footprint data by the application of the same approach in section

4.4. Because the local map of the campus scene was not available, we

divided the area that consists of different materials in accordance with

the GPS coordinates. Classification was conducted using the SVDD

boundary, which corresponded to the current robot pose.

Fig. 12 shows the classification results, which are mapped according

to the EKF localization results. Traversable points are represented in

green dots, and obstacles, which are non-traversable for ISM-M1, are

shown as gray dots. Several hazardous regions are represented by

magnified views. The proposed terrain classification shows accurate and

reliable performances in various environmental conditions. To evaluate

our algorithm, we hand-labeled the scan points as positive and negative

ground truth, considering that ISR-M1 was not able to traverse over

obstacles taller than 4 cm. The ground truth was used to evaluate our

algorithm. The precision and recall values were 0.9903 and 0.9977,

respectively. The traversable points were classified as traversable points

with high accuracy. In terrain classification, one of the most important

factors is specificity that implies the classification accuracy of the

obstacle data. In this experiment, the specificity factor was 0.9378,

which was relatively low compared with the result of the indoor

experiment. However, considering that the measurement accuracy of

the laser sensor is 3 cm, the proposed method could detect protruding

obstacles larger than 4 cm in height, as well as negative obstacles, with

high accuracy.

In order to demonstrate the robustness of the proposed method, the

conventional method31 was applied to the indoor and outdoor data set

for comparison with the proposed method. The conventional method

used two Lidar sensors, which is tilted down toward the ground. In order

to extract traversable terrains, the conventional method uses the cascade

of filters that considers the height of each scan point and the neighboring

points.

Fig. 13 shows a qualitative comparison between the conventional

method and the proposed method for the outdoor dataset. Fig. 13(a)

presents the classification results of traversable region by the

conventional method. Compared with the hand labeled ground truth in

Fig. 13(c), there are many points that were misclassified as obstacles in

Table 1 Confusion matrix for the indoor experiment

Classification results
Subtotal

traversable obstacle

Actual
traversable

703,666
(99.63%)

2,597
(0.37%)

706,263

obstacle
95

(0.18%)
52,274

(99.82%)
52,369

Subtotal 703,761 54,871 758,632

Fig. 11 Detection of a 1-cm-tall obstacle; (a) The obstacle on the

surface of PVC material, (b) Detected by inappropriate

boundary (SVDD boundary: wood), (c) Detected by

appropriate boundary (SVDD boundary: PVC)
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the middle of the traversable terrain. On the other hand, the classification

result of the proposed method was similar to the ground truth, as shown

in Fig. 13(b). The quantified evaluation for the classification results is

shown in Table 2. For the indoor data set, the proposed method shows

slightly better performance than the conventional method in terms of

precision and specificity. On the other hand, the proposed method

outperforms the conventional method for the outdoor data set. Especially,

the specificity of the conventional method was 0.5183, which means

that 48.17% of the obstacles were missing. Considering that specificity

of the proposed method is 0.9378, most of these missing obstacle could be detected by our proposed method.

Fig. 12 Classification results in urban outdoor environments with magnified view of area of the test scene

Fig. 13 Classification results for the outdoor data set., (a) the conventional method, (b) the proposed method, (c) hand-labeled ground truth

Table 2 Evaluation for the proposed and the conventional method

Data set Method Precision Recall Specificity

Indoor
proposed 0.9999 0.9963 0.9982

conventional 0.9987 0.9975 0.9831

Outdoor
proposed 0.9903 0.9977 0.9378

conventional 0.9200 0.8715 0.5183

Both
proposed 0.9917 0.9975 0.9424

conventional 0.9321 0.8899 0.5541
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5. Conclusion

In this paper, we suggest a method for terrain classification on the

basis of a supervised learning approach. First, we proposed a method

for calibrating the range bias error of 2D laser sensors to measure a

terrain with high accuracy. By applying the bias calibration method, the

terrain surface could be measured with high accuracy in a geometric

manner.

We used a novel terrain feature that was calculated based on rolling

windows, to complement the sparse data set of the 2D laser sensors

with a single scan. Our approach for terrain classification used only

positively labeled training data. The classification criteria were learned

on the basis of SVDD, which is appropriate for this type of training

data. With our approach, the classification criteria were easily obtained

by steering a robot in target site, even when different sensors and robots

were used.

In order to validate our approach, we operated the platforms that

consists of different sensors and robots, on diverse terrain types. In the

indoor experiment, the proposed method was able to detect protruding

obstacles taller than 1 cm, as well as negative obstacles. The same

techniques were applied to the outdoor experiment, with a different

platform setup. With our approach, we were able to classify the terrain

data into the traversable region and obstacles, with high accuracy.

Consequently, the robustness of our algorithm was verified in

experiments that were conducted under different operational conditions

in the indoor and outdoor environments.
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