
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 19, No. 7, pp. 1019-1026 JULY 2018 / 1019

© KSPE and Springer 2018

Static and Dynamic Analyses of a 6-DOF Ultra-Precision
Parallel Mechanism

Hyun-Pyo Shin1,# and Jun-Hee Moon2

1 School of Robot and Automation Engineering, Dongyang Mirae University, 445, Gyeongin-ro, Guro-gu, Seoul, 08221, Republic of Korea
2 Department of Mechatronics Engineering, Yuhan University, 590, Gyeongin-ro, Bucheon-si, Gyeonggi-do, 14780, Republic of Korea

# Corresponding Author / E-mail: hpshin@dongyang.ac.kr, TEL: +82-2-2610-1816
ORCID: 0000-0002-1779-0577

KEYWORDS: Flexure hinge, Parallel mechanism, Lost motion, Modal analysis, Linear mapping matrix

Flexure-based ultra-precision parallel mechanisms have inherent difference between input and actual output. Lost motion that stems

from elasticity of flexure hinges in the parallel mechanism results in gain reduction of actuation. Therefore, static analysis is carried

out by calculating directional stiffness and lost motions of actuation units, and is verified by finite element analysis (FEA). Dynamic

analysis is performed based on modal analysis with linear mapping matrices to identify the dynamics of the parallel mechanism.

Theoretical modal analysis is carried out and then verified by FEA and experiment. The identified lost motion and dynamics are

expected to be exploited respectively for gain adjustment and dynamics enhancement for future studies on flexure-based precision

parallel mechanisms with 6-DOF.
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1. Introduction

Micro-positioning has become an essential issue in many fields,

such as biological cell manipulation, microsurgery operation, fiber

optic alignment, wafer alignment, and micromachining.1 Among these

applications, a main task is to manipulate micro-scale objects with

micro/nanometer precision. For these applications, high precision, large

motion range, multi-axis motion, high positioning stability, and

compact size are needed.2,3 Especially, wafer alignment and bonding

processes require both high precision and large force generation, which

are difficult to obtain simultaneously.

Conventional positioning stages based on servomotors, ball screws,

and rigid linkages have limited applicability in micro/nano-technology

areas due to their inherent problems of clearance, friction, and

backlash. In contrast, compliant mechanisms in which elastic

deformation is used to transfer motion are suitable for ultra-precision

applications because they offer good repeatability with no wear,

friction, and backlash.4 Moreover, it is well known that parallel

mechanisms offer benefits over serial mechanisms in terms of high

stiffness, low inertia, large payload capacity, and high precision,

whereas serial manipulators typically have larger workspaces and need

simple control system. Due to these advantages, many precision

positioning stages have adopted parallel mechanisms.5,6

Various structures and actuators are applied to the precision

positioning stages. Gao and Swei7 combined the in-plane (x, y-

translations, z-rotation) and out-of-plane (x, y-rotations, z-translation)

motions in a serial mechanism. The wafer stage of a 6-DOF (degrees-

of-freedom) compliant mechanism for single-step nano-imprint

lithography, consisting of an inner mechanism and outer mechanism, is

presented.8 A piezoelectrically actuated 6-DOF stage for micro-

positioning is developed by using orthogonal actuators and a lever

linkage.9

With regard to characterization of flexure-based positioning stages,

the effective stiffness, mass, and resonance frequency in the vertical

direction of a monolithic XY nanopositioning stage was derived by

theoretical analysis and the results were compared to FEA.10 A finite

element analysis-based response surface methodology was utilized to

solve the multi-objective optimization problems and thus the static and

dynamic characteristics of the positioning platform were improved.11

Control is critical concern for the design of precision mechanisms.

Hu et al.12 designed a 6-DOF hybrid series-parallel mechanism based

on PZT actuator and applied real-time feedback to reduce the effects of

calibration error, nonlinearity, thermal drift of structure, and sensor drift.

Choi et al.13 performed optimal design of the displacement amplification

mechanism and implemented precision motion by designing Preisach

model feed-forward and PID feedback controllers. Yue et al.14 proposed
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a new approach investigating the relationship among input-force,

payload, stiffness, and displacement (IPSD) of the 3-DOF perpendicular

parallel micro-manipulator to achieve highly accurate control. Kim et

al.5 presented an active vibration control system which is constructed

based on a novel three-DOF precision micro-stage.

Theoretical modellings and their application to early stage design

were discussed in several previous works. Awtar and Sen15 presented a

highly generalized and accurate closed-form parametric load-

displacement model for two-dimensional beam flexures. A symbolic

formulation for analytical compliance analysis and synthesis of flexure

mechanisms was developed based on the screw theory that

characterizes flexure deformations with motion twists and loadings with

force wrenches.16 Lu and Peng17 derived an accurate model of the multi-

leaf spring based nano-stage by incorporating the effect of cross axis

input force.

This paper describes static and dynamic analyses for a novel 6-DOF

ultra-precision parallel mechanism that utilize flexure hinges and PZT

actuators. The precision mechanism was designed for wafer level lens

bonding.18 Our previous research has recognized the need to clearly

identify the issues related to precise control. So it is the purpose of this

study to analyze and characterize the issues. The followings are

detailed purposes.

First, it is necessary to identify lost motions as an obstacle to

accurate positioning. Flexure-based parallel mechanism with PZT

actuators are under two major detrimental effects against precise

positioning: piezoelectric material effect and elasticity-inducing effect.

Since the piezoelectric material effect including hysteresis and creep

has been extensively studied, we just focus on the identification of the

elasticity-inducing effect, which produces so-called ‘lost motion’,

which results in inaccurate positioning.

Second, it is essential to identify dynamics of the 6-DOF ultra-

precision parallel mechanism to check control bandwidth. For this,

theoretical modal analysis is attempted to find the possibility to identify

the influences of design variable, which can be useful when

specification alteration. The results are compared with FEA and

experiment for verification.

This paper is organized as follows. In Section 2, design issues and

structural features of the precision parallel mechanism are explained.

Static analyses on the horizontal and vertical actuation units are

performed in Section 3. Dynamic analysis and related experimental

results are presented in Section 4. Finally, some concluding remarks are

provided in Section 5.

2. Structure of 6-DOF Ultra-Precision Parallel Mechanism

2.1 Double triangular configuration of actuators 

The 6-DOF ultra-precision mechanism is shown in Fig. 1. This 6-

DOF precision mechanism is designed to minimize overall size, to

share payload equally transmitted to each actuation unit, and to

maximize tilt motion ranges (x-, y-rotations). For these features, the

horizontal and vertical actuation units which take charge of in-plane

and out-of-plane motions respectively are configured to have double

triangular structure. By configuring the horizontal actuation units as

inner triangle and the vertical actuation units as outer triangle, z-

rotation range and x-, y-rotation sensitivities are maximized while

stably supporting vertical payload such as wafer bonding pressure.

Moreover, the double triangular structure can be applied to equip

optical projection modules through the center square hole.

To implement precision motions, PZT actuators (B1, B2, B3: PSt

1000/10/150 VS18 - maximum stroke of 150 µm, maximum load of

5000 N, resonance frequency of 5 kHz, and stiffness of 17 N/µm / B4,

B5, B6: PSt 1000/16/200 VS25 - maximum stroke of 200 µm, maximum

load of 15000 N, resonance frequency of 4 kHz, and stiffness of 35 N/

µm, Piezomechnik) which have high resolution and fast response with

no backlash are applied. Capacitive gap sensors (C36 - sensing range

of 500 µm and resolution of 10 nm, Lion Precision) with sensing

resolution of nano level are used. Six actuation units and capacitive gap

sensors are positioned as in Fig. 2. The three sensors are positioned to

parallel to the bottom plate of precision mechanism for sensing the in-

plane motion while the other sensors are positioned to perpendicular to

the bottom plate for sensing the out-of-plane motion. All the surfaces

of opposite parts to the sensors are processed to have fine surface

Fig. 1 6-DOF ultra-precision parallel mechanism (upper parts are

removed for understanding)

Fig. 2 Double triangular structure and positions of sensors and

actuators
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roughness. By sensing the motion of precision mechanism with six

capacitive gap sensors, closed-loop control is realized. Material used

for all hinges are stainless steel SUS420 (yield stress: 1360 MN/m2).

Size of the precision mechanism is 380 mm × 380 mm × 115 mm (W

× L × H). In addition, the x-, y-translational strokes of the precision

stage is ±50 µm and the z-translational stroke is ±150 µm, the x-, y-

rotational strokes is ±733 µrad (±0.042o) and the z-rotational stroke is

±244 µrad (±0.014o).

2.2 Structure of actuation units

Horizontal and vertical actuation units are shown in Figs. 3 and 4

respectively. Arrows mean motion directions. The horizontal actuation

unit is composed of one PZT actuator and two 2-D flexure hinges (2-

D hinge moves along 2-dimensional motion axes) attached front and

back of the actuator as in Fig. 3. Through this configuration of hinges,

the horizontal actuation unit can realize high motion DOF. Moreover,

the actuator can be protected from sudden external impact. Thickness

of the 2-D front and back hinges are 1.54 mm.

The vertical actuation unit shown in Fig. 4 is composed of one PZT

actuator, two 1-D flexure hinges (1-D hinge moves along 1-

dimensional motion axis) attached front and back of the actuator, one

pole hinge with two 2-D flexure hinges which one side is connected to

the end-effector, and one 1-D flexure lever hinge which changes the

motion direction by 90 degrees. Especially, the vertical actuation unit

has novel overlapping structure. To minimize occupation space and to

lower the height of the precision mechanism for high stiffness, each

hinge block is designed to envelop the entire actuator. In addition, a

through hole is processed in the middle of pole hinge block for actuator

placement. By virtue of applying lever mechanism, z-translation and x-

, y-rotations are amplified by the amount of amplification ratio (= r2/r1).

In this study, the amplification ratio is set as three. All the hinges are

aligned in horizontal and vertical directions to minimize parasitic

motions. The vertical actuation unit has original structure optimized to

implement precision performance, long translation range with minimum

size. Thickness of the 1-D front and back hinges are 0.85 mm, 1-D

lever hinge is 1 mm, and two 2-D hinge of the pole hinge block are

2.37 mm respectively.

3. Static Analysis of 6-DOF Ultra-Precision Parallel

Mechanism

3.1 Horizontal stiffness non-directionality by the triangular

configuration of horizontal actuation units

To make the parallel mechanism have non-directional horizontal

stiffness, we devised the triangular configuration of the horizontal

actuation units as shown in Fig. 5. The non-directionality can be

justified by the following theoretical derivation. In Fig. 5, each

horizontal actuation unit have the same axial stiffness Ka,h and lateral

stiffness Kl,h. If a force F is applied to the moving part of the parallel

mechanism at an angle of θ from x-axis (x'-axis in Fig. 5), a

deformation d is generated in the same direction. Since the three

horizontal actuation units are placed with angular spacing of 120

degrees, the applied force F can be expressed as Eq. (1).

(1)

According to basic rules for trigonometric functions, the equivalent

horizontal stiffness Keq,h is obtained from Eq. (1) as follows.

(2)

Eq. (2) shows that the equivalent horizontal stiffness Keq,h has no

directionality since the terms with the angle θ are all vanished. The

horizontal stiffness of Table 1 calculated by FEA (refer to Fig. 6)
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Fig. 3 Horizontal actuation unit

Fig. 4 Vertical actuation unit

Fig. 5 Schematic diagram of the horizontal actuation units in the

triangular configuration
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proves that the strategic triangular configuration of the horizontal

actuation units is successful in achieving even horizontal stiffness in

every in-plane direction. The force (F) applied here is 100 N. Ka,h and

Kl,h are 10.30 N/µm and 0.0012 N/µm, respectively, which were obtain

from FEA for the individual horizontal actuation unit.

3.2 Lost motion of vertical actuation units

Lost motion is considered to be generated when the displacement of

actuator is not delivered completely to the end-effector because of the

elasticity of flexure hinge. Consequently, it is required to compute

amount of lost motion to compensate the motion or to decide

appropriate control method for precision positioning.

To compute the lost motion of the vertical actuation unit, we

simplified the vertical actuation unit of Fig. 4 to the one of Fig. 7 where

the hinges and actuator are substituted to the springs and displacement.

When the actuator generates displacement u, the lever hinge rotates by

θ and the pole hinge block which corresponds to end-effector moves

along vertical direction as much as amplified displacement. (3r1=r2)

Applying the moment equilibrium condition at the center of the lever

hinge, Eq. (3) is derived.

(3)

(4)

(5)

In Eq. (4), K1 is a stiffness including the stiffness of PZT actuator

(KPZT) and stiffness of front and back hinges (Ka,1). Kθ,2 and K3 are

stiffness of lever hinge and pole hinge block respectively. r1 is distance

between the centers of front and lever hinges. r2 is distance between the

centers of lever hinge and lower pole hinge of pole hinge block. z is

vertical displacement of the pole hinge block. By rearranging Eq. (4)

with respect to θ we get Eq. (6).

(6)

The z and K3 are replaced with F3 in Fig. 7 to display θ with respect

to force. The relationship between F3 and K3 is expressed as Eq. (7) and

it is transformed into Eq. (8) with respect to θ.

(7)

(8)

As a result, Eq. (3) is simplified to Eq. (9).

(9)

By rearranging Eq. (9) with respect to θ we get Eq. (10).

(10)

Therefore, the displacement of end-effector generated by the

displacement of PZT actuator u is shown in Eqs. (11) and (12).

(11)

(12)

In Eq. (11), the denominator of the first term of right side indicates

that lost motion is generated by the stiffness of flexure hinges. The

second term shows that dead deflection is consistently generated by the

self-load of the end-effector.

Result of lost motion analysis obtained from FEA is shown in Fig. 8.

Moreover, the amount of lost motion obtained from theoretical analysis

and FEA is listed in Table 2. It is found that they closely coincide with

each other by 1% error. In FEA result, difference between the
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Fig. 6 Applied forces and their directions for stiffness analysis in FEA

software (red colored part is moving part which is end-effector)

Table 1 Horizontal stiffness of the moving part according to the angle

from x-axis (reflecting symmetry, stiffness data from 0 to 90

degrees is listed)

Angle from x-axis (degree) Displacement (µm) Stiffness (N/µm)

0 41.9 2.39

15 44.0 2.27

30 45.2 2.21

45 45.5 2.20

60 45.0 2.22

75 43.9 2.28

90 41.7 2.40

Fig. 7 Schematic diagram of vertical actuation unit for displacement

input
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commanded and resulting displacements is about 3%. The analysis

results show that lost motion is linearly proportional to commanded

displacement. The one of objectives of this study is to find out and

compensate the lost motion. In the case of this precision mechanism,

the amount of lost motion is relatively small and it can be sufficiently

compensated by close-loop control. However, it is noticed from this

study that lost motion analysis is the necessary procedure in order to

design controller prior to the decision of appropriate control strategy,

especially, when the system is susceptible to generating large lost motion.

4. Dynamic Analysis of 6-DOF Ultra-Precision Parallel

Mechanism

4.1 Linear mapping matrices for coordinate transformation

Dynamic modes or vibration modes reveal the dynamic characteristic

of a system. The modal analysis of the flexure-based parallel mechanism

started from linear mapping matrices, which is derived from forward

and backward kinematics of the mechanism.

The linear mapping matrices, Ra and Rs, transform coordinates in

the control loop for the developed parallel mechanism, as shown in Fig.

9. When a reference command x* is given, Ra produces actuator

displacements a. The inverse of Rs computes the real movement of the

precision parallel mechanism x from the sensor signal s. Eqs. (13) and

(14) represent the sensitivity of the i -th output variable to the j -th input

variable.

(13)

(14)

The derivation of Eqs. (13) and (14) can be found in our previous

research.18

4.2 Theoretical modal analysis

In this Section, we introduce modal analysis by applying the Euler-

Lagrange equation and linear mapping matrices. Moreover, FEA result

and experimental verification for the analysis are shown.

In a multiple degrees-of-freedom system, Euler-Lagrange’s equations

can be used to establish the dynamic model and to calculate the natural

frequencies of vibration. The non-conservative forces such as friction

force can be neglected in flexure-based parallel mechanism. As a result,

the Euler-Lagrange equation is given as Eq. (15),

(15)

(16)

In Eqs. (15) and (16), T represents the total kinetic energy of the

systems, V denotes the potential energy which includes both strain

energy and the potential of any conservative external forces, qi

represent linearly independent generalized coordinates, and n is the

number of generalized coordinates, which is also equal to the degree-

of-freedom of a system.

Kinetic energy T is represented with respect to the six kinds of

motions in the space which is shown as (17),

(17)

where m is mass and I is moment of inertia of the end-effector.

Potential energy V is composed of the strain energy induced by

displacements of six actuators which is shown as (18),

(18)

where Kh and Kv represent the stiffness of the horizontal and vertical

actuation units respectively. The analysis model presented in this study

is based on the assumption that every body of the 6-DOF ultra-

precision parallel mechanism is rotating around an axis at a time and

contemporarily its inertia matrix is purely diagonal. Therefore, only the

axial stiffness is considered. ai is the displacement of ith actuator. By

chain rule, partial derivative of the L with respect to the qi is

represented as,

(19)

Partial derivative of V with respect to xi is,
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Fig. 8 Amount of lost motion occurred in vertical actuation unit

Table 2 Comparison between theoretical and finite element analysis

evaluations for vertical actuation unit

Command (µm) Theoretical (µm) FEA (µm)

0 0 0

120 117 116.3

240 234 232.5

360 351 348.8

480 468 465.0

600 585 581.3

Fig. 9 Control Loop of 6-DOF ultra-precision parallel mechanism
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(20)

where, x=[x, y, z, θx, θy, θz].

Eq. (20) is expressed in another form as Eq. (21)

(21)

By substituting Eq. (21) into Eq. (15), we get the following

relationship.

(22)

Accordingly, the Euler-Lagrange equation becomes Eq. (23).

(23)

(24)

(25)

Eq. (23) is represented in matrix form,

(26)

By applying Laplace transformation to Eq. (26), following equation

is obtained.

(27)

Moreover, by substituting s with jw and finding wi, we can obtain

natural frequency.

(28)

4.3 Verification of dynamic modes by FEA and experiment

To verify the theoretical analysis of previous Section, we performed

the modal analysis with FEA software. First six mode shapes coincide

with the fundamental six DOF motions. Corresponding natural

frequencies of vibration and mode shapes are depicted in Fig. 10.

Arrows shown in modes 3, 5, and 6 imply directions of deformation.

Modes 1, 2, and 3 are related to out-of-plane motion whereas modes 4,

5, and 6 are related to in-plane motion.

In addition, by applying the white noise to the precision parallel

mechanism, six natural frequencies are obtained as shown in Fig. 11.

The experimental transmissibility Tij is obtained using Eq. (29)

(29)

where the first subscript i of the spectral density Gij represents the i-th

input signal for actuation and the second subscript j represents the j-th

sensor signal. (See Fig. 2. Actuator 1, 2, and 3 are related to in-plane

motion and actuator 4, 5, and 6 are related to out-of-plane motion

respectively). Note that the relationships between the input from the

sensors and the output to the motions of the precision mechanism are

included in the previous research.18

In Fig. 12, two kinds of analyses (theoretical analysis and FEA

simulation) and the experimental result are compared. Although the

theoretical analysis and experiments were conducted without damping

factor, which can make the natural frequency lower in some measure,

the theoretical modal analysis is useful in identifying the effects of design

variables in the initial design phase of precision parallel mechanisms

and enabling them to respond to specification alteration.
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Fig. 10 Modal FEA results for the first six modes
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5. Conclusions

A 6-DOF ultra-precision parallel mechanism was designed in order

to facilitate new precision processes such as wafer level bonding, nano-

imprinting, and micro-bonding. Lost motion is one of the inherent

drawbacks of the flexure-based parallel mechanisms. The analytic

investigation for the stiffness directionality and lost motions in the

horizontal and vertical actuation units, which were tactically designed

for the precision positioning, was carried out in this research. The

analysis results proved that the lost motion was linearly proportional to

commanded displacement and that the stiffness on the horizontal plane

was not directional. Experimental dynamic modes of the parallel

mechanism coincided with the modes calculated from the linear

mapping matrices, which were derived from forward and backward

kinematics of the mechanism. Physical meanings of elements of the

linear mapping matrices played an important role in mathematical

manipulation for modal analysis. The developed methodologies to

analyze the lost motion and modal analysis of 6-DOF precision

positioner is expected to be useful for succeeding researches on flexure-

based precision parallel mechanisms with 6-DOF.
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