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The influence of cutting parameters on the responses in face milling has been examined. Spindle speed, feed rate and depth of cut

have been considered as the influential factors. In accordance with the design of experiments (DOE) a series of experiments have

been carried out. The paper exemplifies on the optimizing the process parameters in milling through the application of Response

surface methodology (RSM), RSM-based Particle Swarm Optimization (PSO) technique and Desirability approach. These aforesaid

techniques have been applied to experimentally establish data of AA6061 aluminium material to study the effect of process parameters

on the responses such as cutting force, surface roughness and power consumption. By adopting the multiple regression techniques,

the interaction between the process parameters are acquired. The optimal parameters have been found by adopting the multi-response

optimization techniques, i.e. desirability approach and PSO. The performance capability of PSO and desirability approach is

investigated and found that the values obtained from PSO are comparable with the values of desirability approach.
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1. Introduction

Present scenario, aluminium alloys has expanded their attention of

many industrialists, researchers, engineers and designers as promising

structural materials for aerospace applications or the automotive

industry. Particularly, aluminium (6 series) alloys have been considered

widely because of their benefits such as medium strength, formability,

weldability, corrosion resistance, and low cost, comparing to other

aluminium alloys.1 Mithilesh2 combined RSM and teaching learning
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based algorithm to optimize surface roughness for milling aluminium

alloy Al2016-T6. Bhopalen3 applied the RSM to study the effect of

cutting parameters and inclination angle on the surface roughness for

milling Inconel 718. A considerable number of studies have researched

the effects of the spindle speed (A), feed rate (B) and depth of cut (C)

on responses, i.e. cutting force (FX), surface roughness (SR) and power

consumption. In recent research Tandon4,5 and Conceicao6 the models

have been developed and identified the outcome of some factors on the

SR and FX. A central task in science and engineering practice is to

develop models that give an adequate description of the physical

systems being observed. The main goal of this study is to attain a

mathematical model that relates the responses to the three cutting

parameters in face milling, precisely to the spindle speed, feed rate and

depth of cut. In this work two different approaches have been adopted

to attain the mathematical models. The first approach is DOE together

with analysis of variance (ANOVA) and regression analysis. The second

method is by means of the PSO technique. Generally, the machining

parameters are chosen based on the machine data hand book, trial and

error method or by literature. But adopting such trials is not a precise

way for selecting the appropriate machining parameter as it leads to

wastage of time and cost. Hence, to overcome the intricacy, it is

necessary to develop a technique to predict the appropriate machining

parameters. In the present study desirability and PSO techniques are

incorporated to identify the optimal process parameters.

2. Literature Survey

Though a lot of research in milling operation has been attempted by

a few researchers and papers relevant to optimization and the issues

related to milling operation have been discussed. Tandon4 implemented

particle swarm optimization for optimizing multiple machining

parameters and results indicated in a reduction in machining time by 35%.

Tandon5 incorporated the ANN approach to develop a comprehensive

model for critical machining parameters. The developed model was

tested and validated for specific pocket milling scenario originated in

the industry. From the testing and validation, it was concluded that there

was an excellent agreement between the experimental and simulated

forces. Jinhua7 developed integrated multi objective optimization

technique and applied to Inconel 718 in the milling process for to attain

minimum surface roughness and maximum compressive residual stress.

Conceicao6 developed model for the multi-pass cutting parameter in face

milling by incorporating the genetic search. Furthermore, the novel

approach based on substituting the depth of cut with a sequence of

depths of cut was developed. The performance of the developed model

was compared with rest of multi-pass models. Saffari8 used a Genetic

Algorithm (GA) to obtain a minimal tool deflection in the milling

process. In the study, the tool deflection was considered as the objective

while tool-life and surface roughness were the constraints. A comparative

study was made to validate the performance of the optimization, the

attained results illustrate that optimized parameters are proficient of

machining the workpiece more precisely with better surface finish.

Patwari9 illustrated mathematically the effect of machining parameters

on response surface roughness in the milling of Medium Carbon Steel

using the TiN tool in dry condition and included a genetic algorithm.

The results indicated that the proposed model could efficiently describe

the performance indicators within the boundary of the factors that are

being considered in the study. Gupta10 anticipated a Hybrid Genetic

Algorithm (HGA) to optimize the non-productive tool path in which

the initial seed solution is generated by heuristic and collectively with

an initial solution created by a simple genetic algorithm (SGA). The

results were analyzed by using Relative percentage deviation (RPD)

and it was derived that the HGA is more superior compared to SGA for

a same computation time limit (stopping norm). Basker11 incorporated

Tabu search, GA, Ant Colony Algorithm and Particle swarm optimization

algorithm for optimizing machining parameters in the milling operation.

Mainly the work was concentrated on the development and utilization

of the mentioned optimization techniques and the optimization system

which helps in identifying the optimum machining parameters for milling

operation. Wang12 integrated Genetic simulated annealing (GSA) for

identifying the optimal machining parameter in case of multi-pass

milling. The comparative study was made and the results signified that

the GSA was effective over GA. Reddy13 implemented the mathematical

model, based on the concept of Response Surface Methodology (RSM)

to establish the cutting conditions and effect of tool geometry related to

machining performance and even optimize the surface roughness

response GA technique was utilized and the respective optimal condition

was determined. Savas14 used GA for optimization of surface roughness

and concluded that surface roughness increases with the increase of the

machining parameters feed rate and depth of cut. Abburi15 used RGA

(real-parameters Genetic Algorithm) in turning operation for optimal

process parameters, thus the concept leading in minimal product time,

which in turn acts as the base for the SQP (Sequential Quadratic

Programming) code and results in an increase in the performance. The

overall indication and suggestion were towards the usage of the

numerical approach for attaining the optimum solution in case of

unequal depth of cut involvement. Mukherjee16 addressed the proposed

a generic framework in metal cutting processes in order to opt and attain

an efficient approach and showed a path to identify the optimal cutting

conditions or near optimal cutting conditions in various categories of

metal cutting process. Onwubolu17 proposed an optimization concept

based on Tribes for determination of the machining parameters in multi-

pass plain milling and face milling operations. The machining parameters

are decided based on the strategy of maximizing and minimize the

production rate and derived that developed Tribes based approach is

efficient. Developed a model for predicting the surface roughness in

face milling for aluminium material by adopting the PSO technique.

The conclusion was made that PSO is in good agreement with current

surface roughness values. Ship-peng19 developed an adaptive fuzzy

interface system (AFIS) to predict the surface roughness in the milling

process and proved that greater prediction (nearly of 96%) accuracy

was achieved. Julie20 implemented Taguchi approach to optimize the

surface roughness in the milling operation. The authors analyzed the

experiments using analysis of variance (ANOVA) and concluded that the

Taguchi approach was successful in optimizing the surface roughness.

Xain21 considered and specified the significance of Artificial Neural

Network (ANN) for predicting the surface roughness in milling operation

and concluded a better surface finish is achieved at a high rake angle,

low feed rate and high speed. Astilturk22 developed full factorial design

of experimented (FFD). The FFD was adapted to reliability during
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turning operation and authors concluded that the ANN model yielded

better results as compared to the statistical model and even the results

indicated that by varying the number of layers and nodes in the hidden

layer the prediction accuracy of respective response can be increased.

Benardos23 developed an ANN model for predicting the surface

roughness in the milling process and indicated that the ANN model was

able to predict the surface roughness with a mean error of 1.86%.

A sufficient amount of research articles is available on identifying

the optimal machining parameters by incorporating the soft computing

techniques precisely fuzzy logic, GA, and ANN. A sufficient amount

of research articles is available for identifying the optimal machining

parameters by incorporating the soft computing techniques precisely

Fuzzy logic, GA, and ANN. Therefore, this work explores the feasibility

for multiobjective optimization with the RSM-PSO method. And it is

employed to optimize cutting force, surface roughness and power

consumption for milling AA6061. The paper gives the information

regarding conducting the experiments, performing RSM technique to

attain the response equations. Further, these response equations are

used as fitness function in PSO. The experimental results are compared

with RSM predicted results and later on the desirability and PSO

results are compared.

3. Conditions of Experiment

 Test samples made up of AA6061 with dimensions: length of 100

mm length, 60 mm breadth and 12 mm thickness. The face milling

experiments were carried out by a tool SDMT 1205PDR-HQ-M IC28

as depicted in Fig. 1. The cutting tool has 5 inserts. The details of the

insert, it is square type insert, side clearance angle 15°, tolerance 0.08

mm, type T, cutting edge length 12 mm, thickness 5 mm, type of mount

90°, lead 15°, the radius of nose 0.4 mm. The tool holder selected is

having the BT 30 taper type (Tool Holder: F90SD D50, 2F2, 12)

produced by Iscar. The type of machine utilized for the milling test was

CNC Vertical Milling machine (Spark DTC 250) by AMS. The

experiments were performed with dry run machining condition of the

selected material. The cutting force was calculated via indirect approach

based on the current consumption by each axis. These current values

were fetched through Ethernet cable provided by FANUC as depicted

in Fig. 2. The SR values of finish - milled work pieces were measured

by the Mitutoyo Surface Roughness Tester. The SR values were acquired

at a minimum of three different locations, later on; the measured surface

roughness was obtained by averaging the surface roughness values. The

chemical composition of the selected material is depicted in Table 1. The

cutting parameters considered were spindle speed, feed rate, and depth

of cut. The experiments were designed and conducted based on the design

and analysis of the experiment. In the present study, Design of Experiment

(DOE), Response Surface Method (RSM) three factors of cutting

parameters and three levels have been considered as shown in Table 2.

4. Statistical and Optimization Concepts: Design of

Experiment, Desirability, and PSO 

In the current study, the design of the experiment was realized using

the central composite design (CCD). The main goal of this work is to

identify the mathematical models that describe the dependence of

responses on the three machining parameters: spindle speed (A) rpm,

feed rate (B) mm/min, depth of cut (C) mm. The CCD models the

responses by using the empirical second-order polynomial equation. In

the present study, the RSM technique was incorporated in the analysis

and design of the experiments. RSM technique helps with its strategies

to overcome the analysis quandaries thus leading to a better result. It

usually identifies the significance of the process parameters on the

responses and the main purpose of RSM is to optimize the response.

The Central Composite Face Centered Design (CCFCD) was used to

implement the response models using RSM. A total of 20 experiments

was performed which incorporates of 8 cube points, 6 centre points in

a cube, 6 Axial points, and the alpha value is 1. The range of the

process parameters was set by taking into consideration of the tool or

inserts specification and even by performing the trial experiments in

order to achieve the desired responses. RSM has been used for

mathematical modeling of Fx, SR and power consumption, The next

step is, the experiments were performed using the multiple regression

equations in order to identify the interaction effect between the process

parameters and the responses. Later on, The Desirability and PSO

Fig. 1 AA6061 material with the tool

Fig. 2 Data acquisition

Table 1 Composition of AA6061

Element Al Si Cu Mg Cr

Weight (%) 97.9 0.60 0.28 1.0 0.20

Table 2 The Cutting Parameters and their levels

Symbol Levels
Spindle Speed

(rpm)

Feed Rate

(mm/min)

Depth of Cut

(mm)

A L-I 1000 300 1

B L-II 2000 400 2

C L-III 3000 500 3
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techniques were employed to determine the optimal parameters. The

validation step is carried out by conducting the experiments in order to

verify the established model.

4.1 Methodology on desirability and PSO

The desirability Function approach is a multiple-response optimization

method. This approach was first introduced in 1980 by Suich and

Deringer. The method finds operating conditions “targeted” that the

most desirable response value. The general approach first converts each

response x1 into an individual desirability function di that varies over

the range 0 < di < 1.The desirability functions are categorized into three

sectors based on the response characteristics.

1. If the target for the response is a maximum value / “Higher is

Better”.

Where: ri* is the minimum adequate value of ri, ri' is the maximum

adequate value of ri and a describes

2. If the target for the response is a minimum value / “Smaller is

better”

Where: ri" is the minimum value of ri, ri* is the maximum adequate

value of ri

4.2 Concept of PSO

PSO was developed by Eberhart and Kennedy in the year 1995.

This approach is an evolutionary computational method that has been

based on the swarm intelligence of a flock of birds. One difference from

other evolutionary algorithm is that the particle does not use selection

criterion in the iterative procedure. Therefore, population members will

survive from the beginning to the end in the optimization process. This

algorithm has been widely successfully applied to solve many engineering

problems,24-27 by imitating the seeking behavior of a swarm of birds,

the individual particles in an algorithm look for the overall best result

of the fitness function. The particles get updated with their momentum

and act as per the situation and particles usually update their momentum

based on the gained previous experience and global effort put up by

other particles in the search space. There are three constraints, social,

cognitive and inertia that are responsible for the updating of the

momentum of the particles.34-37 The social constraint is accountable to

move faster the particle to the best position followed by another swarm

so far, known as the gbest position. The cognitive factor rushes the

particle towards its individual best location proficient till then, known

as the pbest. The inertia factor is used to maintain the stability between

the current and overall investigation capabilities among the search space.

The gbest position is determined to be changed on progressive era. In

the progressive iteration if it is found that the pbest position is better

than gbest position, then the pbest position will be traded by the gbest

to renovate the overall best solution. The supplementing equations are

adopted to change the individual particle’s position to reach an overall

best possible solution in the search space.

(1)

Where:  = ‘mth’ particle momentum at ‘nth’ iteration, w = inertia

weight, c1, c2 = learning rates, Q1, Q2 = random numbers between 0-

1, pbestm = pbest position of mth particle, gbest = gbest position of

swarm,  = [ , , …, ], ‘mth’ particle current position at

‘oth’ iteration in N-dimensional search space.

Once the momentum is calculated, the next position of ‘mth’ particle

is calculated using the following Eq. (2).

(2)

Inertia weight can be selected any random value or it can be

determined by opting the following Eq. (3).

(3)

Where: wmax = upper limit inertia weight, wmin = lower limit inertia

weight, iterationcurrent = current iteration, iterationtotal = total number of

iteration.

5. Results and Discussion

Response surface methodology (RSM) is a collection of the

mathematical and statistical technique used for analyzing problems in

which several independent variables influence a dependent variable or

response and the goal is to optimize the response. Second-order

polynomial equation with interaction terms was fitted to the experimental

results to develop a mathematical model, which will help to predict the

extraction efficiency of different sets of combinations of four process

variables on the responses. Three empirical models were developed from

this study to predict the cutting force, surface roughness and power

consumption. The attained regression equations are depicted in Table 3.

The considered experiments with their respective input parameters and

outcome of the responses are shown in Table 4. The experimental V/

S predicted values for all the considered experiments are represented in

Table 4.

Generally, ANOVA comprises the sum of square, the degree of

freedom (DF), mean square, F-value, and P-value.38 The inclusion of

ANOVA is essential to find out the influential parameters on the

responses.39,40 The performance of the model was validated with

ANOVA. From the Tables 5-7, it can be observed that spindle speed

has a major contribution to all the responses followed by the feed rate

and depth of cut. As depicted in Table 5 spindle speed has 91.183%

contribution on the response FX, 6.299% of the feed rate and followed

by the depth of cut with a 0.89267% contribution. The remaining

contribution is contributed by the interaction of the process parameters.

Similarly, In Table 6, it can be identified that spindle speed plays a vital

role with the contribution of 40.526%, 14.210% of feed rate and

22.1053% of the depth of cut. The rest of the contributions are by the
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interactions of the process parameters. As depicted in Table 7, it can be

concluded that spindle speed has 55.737% major contribution, the feed

rate of 40.983% and followed by the depth of cut 0.6101%. The other

contributions are contributed by the interactions occurred among the

Table 3 Regression Equations

SL. No Responses Regression Equations

1 FX -81.78776 + 0.081353*A + 0.18242*B + 4.42441*C - 3.24420E-005*A*B - 5.91517E-006*A*A

2 SR
0.15850 - 2.80000E-005*A + 2.22000E-003*B + 0.13500*C - 2.50000E - 007*A*B + 2.00000E-005*A*C - 6.00000E-

004*B*C

3
Power

Consumption

-0.030842 + 4.72657E-005*A - 2.33913E-004*B + 6.10045E-003*C + 1.15949E-007*A*B -8.91940E-009*A*A +

6.31394E-007*B*B

Table 4 Experimental V/S RSM predicted results

SL

No.

Experimental RSM Prediction Error (%)

Spindle

speed

(rpm)

Feed rate

(mm/min)

Depth

of cut

(mm)

FX

(N)

SR

(μm)

Power

consumption

(kW)

FX

predicted

(N)

SR

predicted

(μm)

Power

consumption

predicted (kW)

FX

error

(%)

SR

error

(%)

Power

consumption

error (%)

1 1000 300 1 45.49 0.7 0.037 43.068 0.697 0.035 5.325 0.500 6.438

2 3000 300 1 143.3 0.52 0.132 138.987 0.531 0.128 3.003 -2.019 3.184

3 1000 500 1 73.26 0.96 0.108 73.063 0.971 0.112 0.268 -1.094 -4.035

4 3000 500 1 158.3 0.71 0.249 156.006 0.705 0.252 1.443 0.775 -0.902

5 1000 300 3 56.69 0.63 0.048 51.971 0.647 0.047 8.420 -2.619 2.037

6 3000 300 3 150.5 0.56 0.139 147.836 0.561 0.140 1.777 -0.089 -0.976

7 1000 500 3 83.56 0.68 0.125 81.912 0.681 0.125 1.972 -0.074 0.645

8 3000 500 3 164.2 0.48 0.262 164.855 0.495 0.264 -0.399 -3.021 -0.705

9 1000 400 2 63.42 0.76 0.074 64.290 0.749 0.074 1.466 1.513 0.219

10 3000 400 2 153.3 0.58 0.191 151.921 0.573 0.189 0.893 1.293 0.655

11 2000 300 2 100 0.61 0.090 101.367 0.609 0.096 -1.357 0.246 -6.919

12 2000 500 2 134.2 0.71 0.205 124.874 0.713 0.197 6.963 -0.352 3.737

13 2000 400 1 110.2 0.73 0.134 108.696 0.726 0.134 1.373 0.616 -0.297

14 2000 400 3 119.8 0.62 0.148 117.545 0.596 0.147 1.907 3.952 0.685

15 2000 400 2 115 0.66 0.141 113.121 0.661 0.140 1.651 -0.076 0.224

16 2000 400 2 115 0.66 0.141 113.121 0.661 0.140 1.651 -0.076 0.224

17 2000 400 2 114.8 0.65 0.139 113.121 0.661 0.140 1.480 -1.615 -1.388

18 2000 400 2 113 0.67 0.143 113.121 0.661 0.140 -0.089 1.418 1.622

19 2000 400 2 115 0.66 0.141 113.121 0.661 0.140 1.651 -0.076 0.224

20 2000 400 2 114 0.66 0.137 113.121 0.661 0.140 0.789 -0.076 -2.448

Fig. 3 Normal Probability plots of residuals for (a) FX, (b) SR, (c)

power Consumption for AA6061

Fig. 4 Plot of residuals v/s predicted: (a) FX, (b) SR, and (c) power

consumption
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process parameters. From the Tables 5-7, in the remarks column, the

process parameters and interactions of process parameters are assigned

significant, this assigning of the values is entirely based on the condition

of “Prob > f <5% or 0.05”.28 If the aforesaid condition is satisfied, then

the values are assigned as significant else not significant. The significance

of the regression fitted model is determined by incorporating the R2

coefficient correlation. The attained R-sq and R-sq (adj) for the model

is 99.65 and 99.33 respectively. From the Fig. 3, it can be observed that

there is a normal distribution of errors takes place as residuals for all

the models falls on the straight line. Fig. 4 exhibits the plot of residuals

v/s predicted values of responses. From Fig 4, it can be observed that

all the points of the experimental runs were spotted randomly inside the

reliable range of residuals over the graph.

5.1 Effect of Process Parameters on responses SR, FX and Power

consumption

Fig. 5(a) represents that the SR value decreases as the spindle speed

increases this is due to vanishing of the formed built up edge at the

cutting edge tip leading to better surface finish.41 On the other side as

the feed rate increases the value of SR increases this is due to increase

in axial movement of the cutting tool as it will not completely remove

the required material because of alteration of the tool to a new position.

In the case of influence of depth of cut on SR the value of SR decreases

as the depth of cut reduces this is due to the rigidity effect of the

machine occurred during the machining process.

Similarly, as represented in Figs. 5(b) and 5(c) the influence of

spindle speed, feed rate and depth of cut on FX and power consumption

signify the directly proportional relationship, i.e., as the spindle speed,

feed rate and depth of cut increase the responses FX and power

consumption increases. This direct proportional relationship occurs due

to the higher chip tool interface area.42 From the Fig. 6, it can be

recognized that the optimal values attained for all the responses by the

influence of process parameters through the desirability approach are as

follows: spindle speed (3000 rpm), feed rate (500 mm/min) and depth

Table 5 ANOVA analysis for cutting forces (FX)

Sources Sum of squares DF Mean square F-value p-value Prob > F Remarks P (%)

Model 21831.51 5 4366.3 630.33 < 0.0001

A-A 19995.16 1 19995.2 2886.56 < 0.0001 significant 91.1835

B-B 1381.45 1 1381.45 199.43 < 0.0001 significant 6.2998

C-C 195.75 1 195.75 28.26 0.0001 significant 0.89267

AB 84.2 1 84.2 12.16 0.0036 significant 0.00384

A2 174.95 1 174.95 25.26 0.0002 significant 0.79782

Residual 96.98 14 6.93

Lack of fit 93.64 9 10.4 15.61 0.0037

Pure error 3.33 5 0.67

Cor total 21928.49 19

Table 6 ANOVA analysis for surface roughness (SR)

Sources Sum of squares DF Mean square F-value p-value Prob > F Remarks P (%)

Model 0.18 6 0.031 225.54 < 0.0001

A-A 0.077 1 0.077 570.38 < 0.0001 significant 40.5263

B-B 0.027 1 0.027 199.16 < 0.0001 significant 14.2105

C-C 0.042 1 0.042 311.19 < 0.0001 significant 22.1053

AB 5.00E-03 1 5.00E-03 36.83 < 0.0001 significant 2.63158

AC 3.20E-03 1 3.20E-03 23.57 0.0003 significant 1.68421

BC 0.029 1 0.029 212.12 < 0.0001 significant 15.2632

Residual 177E-03 13 1.36E-04

Lack of fit 1.57E-03 8 1.96E-04 4.89 0.0485

Pure error 2.00E-04 5 4.00E-05

Cor total 0.19 19

Table 7 ANOVA analysis for Power Consumption

Sources Sum of squares DF Mean square F-value p-value Prob > F Remarks P (%)

Model 0.061 6 0.01 749.4 < 0.0001

A-A 0.034 1 0.034 2492.41 < 0.0001 significant 55.7377

B-B 0.025 1 0.025 1877.39 < 0.0001 significant 40.9836

C-C 3.72E-04 1 3.72E-04 27.6 0.0002 significant 0.61016

AB 1.08E-03 1 1.08E-03 79.78 < 0.0001 significant 1.76393

A2 2.55E-04 1 2.55E-04 18.88 0.0008 significant 0.41738

B2 1.28E-04 1 1.28E-04 9.46 0.0088 significant 0.20918

Residual 1.75E-04 13 1.35E-05

Lack of fit 1.55E-04 8 1.94E-05 4.87 0.0489

Pure error 1.99E-05 5 3.99E-06

Cor total 0.061 19
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of cut (3 mm) on the responses 0.4945 (m), 166.85 (N) and 0.263

(kW).

5.2 Desirability approach

Table 8 represents the experiments carried out by using the RSM

technique for validation purpose and also it can be observed that the %

of error attained between the experimental and predicted values carried

out by using RSM technique. The RSM technique to predict individual

response it needs an individual equation, thus at a single go only one

response from its respective equation can be predicted, thus the multi

objective optimization technique is suitable if more than one response

is incorporated. Table 9 clearly indicates projected model and signifies

the parameters that play a vital role in obtaining finer convergence

characteristics of PSO and indicates the best operating parameters

recommended for milling process of AA6061. These parameters play

a significant role in obtaining good convergence characteristics of PSO.

If the number of parameters increases, the learning rate increases. In turn,

the number of iterations increases in the search space. The outcome

leads to a probability of getting a global optimum solution and leading

the convergence to be accomplished in a smaller number of iterations.

Table 10 summarizes the optimal parameters attained through adopting

different techniques. The deviations between the PSO predicted results

and experimental results are marginal. However, the experimental error

is quite considerable and lies within the acceptable range of ±5%.

Moreover, the comparative results presented in Table 10 have indicated

that PSO predicted values have good agreement with the experimental

Fig. 5 Effect of process parameters on (a) SR (b) FX (c) Power

Fig. 6 Results of Desirability Approach: (a) All power consumption

Responses-Desirability Approach

Table 8 RSM Experimented V/S Predicted (Validation Data sets)

Test

No.

Spindle

speed

(rpm)

Feed rate

(mm/min)

Depth

of cut

(mm)

FX

(N)

SR

(μm)

Power

consumption

(kW)

FX

predicted

(N)

SR

predicted

(μm)

Power

consumption

predicted (kW)

FX

error

(%)

SR

error

(%)

Power

consumption

error (%)

1 1200 340 1.2 47.62 0.69 0.038 48.41 0.72 0.06 -1.67 -4.88 -5.26

2 1800 340 1.8 103.28 0.57 0.094 98.61 0.6 0.1 4.52 -5.26 1.1

3 2400 340 2.6 108.44 0.59 0.103 113.44 0.59 0.14 -1.61 0.42 -0.97

4 1200 390 1.2 59.96 0.88 0.082 55.59 0.82 0.08 7.29 6.4 -3.66

5 1800 390 1.8 114.38 0.67 0.14 104.82 0.69 0.12 8.36 -2.24 7.14

6 2400 390 2.6 120.23 0.63 0.148 128.85 0.59 0.16 -7.17 6.27 -1.35

7 1200 460 1.2 74.26 0.97 0.109 69.63 0.93 0.11 6.23 4.36 -0.92

8 1800 460 1.8 136.32 0.72 0.21 139.5 0.73 0.16 -2.33 -1.85 -4.76

9 2400 460 2.6 140.87 0.61 0.23 134.99 0.59 0.2 4.17 2.51 4.35

10 2800 340 1.2 144.22 0.51 0.14 140.07 0.51 0.14 2.88 -0.59 0.71

11 2800 390 1.8 152.93 0.6 0.18 146.31 0.6 0.17 4.33 0.75 0.56

12 2800 460 2.6 163.96 0.49 0.28 164.13 0.5 0.22 -0.11 -2.45 3.57

13 1200 340 1.8 52.27 0.65 0.039 51.07 0.7 0.06 2.3 -7.18 -2.56

14 1200 390 1.2 57.86 0.87 0.069 55.59 0.89 0.08 3.93 -2.72 -1.45

15 2800 460 1.8 160.02 0.58 0.27 149.72 0.58 0.06 6.44 0.59 3.7
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results. It can be concluded that PSO technique gives fairly accurate

values as compared to that of the desirability approach and thus PSO

has a better computational efficiency.

5.3 Numerical elucidation of PSO

6. Conclusions

The optimization issue of machining parameters is dealt with as a

multi-objective optimization problem. Keeping in mind the end goal to

influence manufacturing engineers to have more control on the machining

operations, the optimization strategy is to simultaneously reduce

production time and decrease production cost and enhance profitability

in the interim subject of fulfilling the imperatives on the spindle speed,

feedrate, depth of cut, cutting force, surface roughness and power

consumption. A proficient multi-objective PSO to optimize the

machining parameters is developed to solve such multi-objective

optimization problem in optimization of face milling. The proposed

PSO algorithm does not have any difficulty in accomplishing optimal

solutions with good convergence for multi-objective optimization

problems and the significant upgrades are made in contrast with the

outcomes by desirability approach.

Based on the experimental studies the following findings are found:

• The developed second order equation has shown good co-relation

between the predicted and experimental values.

• The results of ANOVA has revealed that the effect of spindle

speed is much more pronounced than the effects of feed rate and

depth of cut, on the surface roughness, power consumption and

cutting force. The validation test of RSM model has shown ±7%

of error.

• The results procured through PSO are likewise compared with the

customary desirability approach and it was found that PSO

technique displays extensive favorable position contrasted with

outcomes accomplished with the desirability approach.

• Test data set demonstrate that the anticipated PSO model results

matches well with experimental results. The verification experiments

show that the optimal level combination of machining parameters

with the PSO yields better results compared to that of desirability

and are in good concurrence with the experimental results.
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