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High accuracy in joint angle prediction is very important in the development of devices based on myoelectric control. Joint angle

prediction based on a non-pattern recognition method is more preferred due to the robustness and the easiness to adapt to any subject.

This paper proposed a new method to predict an elbow joint angle based on electromyography (EMG) which used a time domain

feature, zero crossing, and Kalman filter. The EMG signals were collected from biceps muscle using Ag (AgCl) electrodes. To test the

proposed method, the subjects were asked to move the elbow in the flexion and extension motion at different periods of motion (12

seconds, 8 seconds and 6 seconds). The EMG features yielded from the feature extraction step were processed using a Kalman filter

which was used to predict an elbow joint angle. The performance of the proposed method was evaluated using root mean squared

error (RMSE) and the Pearson’s correlation coefficient (CC). In this study, the RMSE and CC values were ranged from 6.9o to 17.5o

and 0.93 to 0.99 respectively. The results of the experiment have demonstrated the effectiveness of the proposed method to predict

an elbow joint angle based on EMG signal.
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1. Introduction

Recently, electromyography (EMG) signals are widely used in a

device based on a myoelectric control such as a prosthetic device and

exoskeleton as an assistive or rehabilitative.1,2 In addition to EMG

signal, several studies used inertial,3 accelerometer and gyroscope

sensor4,5 to track the movement of human limb. However, those

mechanical sensors sensed only for current movement. Different to

those mentioned sensors, the EMG signal is detectable for intended

movement before the movement is executed.6,7 Therefore, EMG signal

is suitable to predict the position of the human limb. The accuracy of

a predicted joint angle depends on an algorithm used in a prediction

method. Some previous researchers8,9 preferred to use a time domain

features to extract the information in the EMG signals. Among the

features, zero crossing (ZC) is the preferred feature to use because ZC

could give frequency information. Dohony10 reported that the elbow

joint angle has a significant effect on the median frequency of the EMG

signal. In ZC feature, there is a parameter (a threshold voltage value)

that can be used to tune the accuracy of the predicted angle. Some

studies11–14 used ZC feature as an input for a classifier. Nevertheless,

the previous researchers occasionally explored more in deep to perform

the zero crossing feature. Feature extraction is commonly used as a pre-

data processing in a joint-angle prediction algorithm. A properly selected

feature determines the success of the classifier to predict a joint angle.

A joint prediction based on EMG signal is currently divided into two

category1 namely a pattern recognition and a non-pattern recognition

based. Usually, joint-angle prediction algorithm is performed using a

pattern recognition algorithm such as artificial neural network9 (ANN),

neuro-fuzzy15,16 (NF) and support vector machine17 (SVM). Although,

they report a good accuracy in the predicted angle but a pattern

recognition method needs a learning stage to train the network. A

learning stage should be applied for each different subject so the system

can recognize the EMG pattern. The learning stage would take time to

implement the algorithm in the real time application. In some literature,

a non-pattern recognition method is also applied to predict a joint angle.

Joint angle is proportionally predicted based on EMG amplitude using

a pre and post-processing with digital signal processing algorithm.

Jang8 studied a model for a relationship between shoulder motion

and the EMG signal. The model is performed using a spring damper

pendulum with root mean square (RMS) as a feature extraction and a
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low pass filter to cancel out the noise. However, the model needs to

improve to minimize the ripple in the predicted angle. Lenzi18 estimated

a human muscular torque based on a human intention which was

proportionally according to the EMG signal. Although he reported the

results as a rough estimation, the system is a robust and does not need

a calibration. To improve the performance of the prediction, some

literatures discuss the combination of the pattern recognition and another

method such as a Hill-based and a Kalman filter. Pau19 developed a

physiological model to predict an elbow joint angle. The prediction of

joint angle is optimized using a genetic algorithm. Even though the

model can predict the elbow joint angle with a low RMSE, the genetic

algorithm cannot identify for a local minimum for complex movement

trial. Kalman filter is commonly used by some previous studies20-22 as

a model to predict the force and the joint angle which is combined with

a pattern recognition and a Hill-based method. However, Kalman filter

used as an estimator model is not explored in depth.

Therefore, to fill the gap that has mentioned in the previous

researchers, a new method needs to introduce to solve the problem in

RMSE when the multiple cycles of movement are performed. Using a

non-pattern recognition method will solve the problem in calibration

when the subjects are changed. The aim of the proposed method is to

predict an elbow joint angle using a zero crossing feature. To optimize

the predicted angle, an estimator model is introduced using Kalman

filter. The proposed method will not need a calibration procedure and

training for the network.

2. Materials and Methods

2.1 Experiment protocol

In this study, four healthy male subjects were involved in the

experiment. The subjects had no neuromuscular problem. Two

disposable electrodes (Ag/AgCl, size: 57 × 48 mm, Ambu, Blue Sensor

R, Malaysia) are placed at the biceps muscle in a differential

configuration and one dry electrode as a common ground. The position

of the electrode placement was according to Surface Electromyography

for the Non-Invasive Assessment of Muscles (SENIAM) guidelines.23

Biceps and triceps are related to flexion and extension motion

respectively.24 However, in the sagittal plane motion (flexion and

extension), Lenzi proved that EMG signal collected from triceps

muscle showed insignificant activities than that from biceps muscle.18

Therefore in this study, the EMG signal was only collected from biceps

muscle. As shown in Fig. 1 the subject wore an exoskeleton which

consisted of two aluminum beam with a bearing in the elbow joint

position. At the tip of the beam, a burden of two kg of load was placed.

The subjects moved the elbow in flexion and extension direction of 0º

to 150º (Fig. 2). The motion of the elbow was synchronized using a

metronome application. The period of motion of the metronome was

adjusted of 12 sec, 8 sec and 6 sec.

2.2 Data processing

The positions of the elbow joint were measured using a potentiometer

(WX110-203, Bonens, China). The measured angle and EMG signal

were sampled at frequency of 1,000 Hz. This rate has followed a

Nyquist requirement.25 Data acquisition consisted of a bio-amplifier, an

internal A/D converter of ARM STM32 microcontroller, and a personal

computer (Intel Core i3-3217U CPU at 1.80 GHz, 8 GB of RAM,

Windows 8) for data processing. The bio-amplifier consisted of main

instrumentation amplifier AD620 which is a low cost, a low power, a

high accuracy amplifier and a high CMRR of 100 dB. ARMSTM32F429

was a high-speed microcontroller with 180 MHz clock which is fit for

the requirement of the system. Data processing was conducted offline

using a computer (Intel Core i3-3217U CPU at 1.80 GHz, 8 GB of RAM,

Windows 8) and a Borland Delphi programming (Version 7.0, Borland

Software Corporation, Scotts Valley, California, USA).

As shown in Fig. 3, the EMG signals were extracted using a zero

crossing feature. Vthreshold was used to tune the output of the feature

extraction. Kalman filter was used to estimate the best state of the

predicted angle of the elbow joint. Kalman filter depended on some

parameter which needed to be initialized in the modeling of Kalman

filter. Those parameters were a noise measurement (R-parameter) and

a noise process (Q-parameter).

2.2.1 Feature extraction

Zero crossing feature is one of many time-domain features extraction

used in an EMG signal analysis. Zero crossing is a number of time that

Fig. 1 Setup of data acquisition. The experimental setup consists of a

bio-amplifier, a microcontroller and a standard personal computer

Fig. 2 Range of motion of the elbow joint angle in sagittal plane
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the EMG signal crossed a baseline or a threshold value. The zero

crossing can describe a frequency information in the EMG signal based

on time domain. The previous researcher10 has mentioned that the

position of a joint such as an elbow and a knee affected the content of

frequency of the EMG signals. Zero crossing feature was described as

follow:14,26-28

(1)

where xi is the i-th sample, N is the number of sample in each segment,

threshold is the level of amplitude limitation and sgn is the sign function

used to detect the position of the sample whether the sample is lower

or higher than the threshold. The process of the feature extraction is

shown in the Fig. 4. The explanation of Eq. (1) is implemented in the

Algorithm 1.

where EMG[k] is the-k sample of the EMG signal, EMGZC is the ZC

feature extraction from 200 samples, sgn is a sign detection function and

diff is a difference function which subtracts between two consecutive of

samples EMG[k] and EMG[k+1].

In this study, the width of the window sampling was 200 samples

and the threshold was selected between 80 and 200 mV based on

experiment. This was due to each subject had different EMG

characteristics.29 Several studies had different threshold for the ZC

feature. Hudgin26 used threshold of 10 mV with a system gain of 5000

and Du et al.30 applied threshold of 20 mV. Zardoshti et al.31 predefined

threshold between 50 and 100 mV.

2.2.2 Kalman filter

Kalman filter was first introduced by Rudolf Kalman32 to solve the

problem of the Winner work in a matter of filtering of the additive

noise in the signals. Currently, Kalman filtering is used a lot in the field

of navigation to predict the position of the object according to the last

data information. Kalman filter is still a practical solution for digital

signal processing problems. Kalman filter can perform an estimation33

of the next state based on the previous state of the system and some

parameters. The Kalman filter parameters, such as a process noise Q

and a measurement noise R, need to be initialized with a certain value

so the Kalman filter can perform with a good estimation.

Determination of the R and Q values was crucial which determined

the performance of the Kalman filter. Practically, the R and Q values

could be selected from any constant value which resulted an optimal

prediction in the Kalman filter. Siswantoro et al.34 selected the R and Q

value in such way that it could improve the performance of the system.

In this work, the R and Q values were selected based on experimental

by choosing a positive real number. These parameters (R and Q) were

needed to define for each subject during a tuning process to obtain the

best performance of the prediction. This was due to the variability of

the EMG signal that depended on the subjects.

In this paper, Kalman Filter estimated the predicted angle from the

result of ZC feature extraction. The Kalman filter process is shown in

Fig. 5. Assume the xk is the result of Kalman Filter prediction and zk is

the resulted feature which can be expressed in a model of Eqs. (2) and

(3).

Algorithm 1: Algorithm of the ZC feature

1.

2.

3.

4.

5.

Init: N = 200; threshold = 0.12; EMGZC = 0; 

Input: EMG[k] 

Output: EMGZC

FOR k → 0 TO N-1 DO

 sgn = EMG[k] * EMG[k+1]

 diff = ABS (EMG[k] - EMG[k+1])

 IF (sgn> = threshold AND diff > = threshold)

 THEN EMGZC = EMGZC + 1

End

ZC sgn x
i
x
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Fig. 3 Prediction algorithm of the elbow joint angle. Prediction

algorithm is conducted off-line in a computer using a Delphi

programming. Data processing consists of buffering data, a

feature extraction and Kalman filter

Fig. 4 Illustration of the feature extraction process of the EMG

signals. (a) An EMG signals recording for one cycle of motion.

(b) The EMG signals are extracted for every 200 sample (200

msec). (c) Feature extraction for 1000 msec. The red line is

measured angles
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(2)

(3)

where xk is a linear addition from the previous estimation xk-1 plus a

control input uk and a process noise wk. A is a transition matrix which

relates current xk and previous estimation xk-1. B is a matrix which relates

the current estimation xk and control input uk. As shown in the Eq. (3),

H is a transition matrix which relates input measurement zk and

estimation xk and vk is measurement noise.

The steps in Kalman Filter implementation are as follows:

Step 1. A prediction process consists of initial of a prior estimation

and a prior error covariance.  is a prior estimate, which  is a

temporary estimate before the correction step. Temporary error

covariance  is a linear addition between prior error covariance Pk-1

and a process noise Q, as written in the following equation:

(4)

(5)

Step 2. A Kalman gain Kk was calculated from a temporary error

covariance  and a measurement noise R as written in the following

equation.

(6)

Step 3. An update estimation  consists of a combination of a

previous prior estimate  and differences between input measurement

zk and a prior previous estimation  written as follow:

(7)

Step 4. An update error covariance Pk is a multiplication of a prior

error covariance  and Kalman gain Kk written as follow:

(8)

The next step is iteration process which is the previous estimates and

previous error covariance will be an input of the prediction stage, as

shown in Fig. 5.

An illustration that describes a Kalman filter process is shown in

Fig. 6. The features (EMGZC) which are yielded from the feature

extraction process show some random values but the feature follows

the measured angle. Kalman filter used EMGZC as input of the Kalman

filter (zk) to update a new estimation which was assigned as  In a

modeling Kalman filter, the output of the Kalman filter, the predicted

angle, depended on a process noise (Q) in the prediction step and a

measurement noise (R) in gain computation step.

2.3 Proposed method

Assuming a Kalman filter is used to predict an elbow joint angle as

in Fig. 7. EMG features EMGZC resulted from feature extraction process

are used as input of Kalman filter zk.

The proposed method consists of two processes, which is a feature

extraction and a prediction process. The processes of the feature

extraction are as follows (Fig. 7): defining a certain threshold value,

extracting EMG signal for each 200 number of sample point using zero

crossing feature. The processes of the prediction are as follows: defining

a constant value for Q and R parameters, expressing an initial estimate

 and initial error covariance Pk-1, calculating the prediction of a

prior state and an error covariance, computing the Kalman gain,

updating the estimation state according to current measurement zk.

Since the state of the signal does not change from time to time, the

element matrix of A, B and H is thus assumed as a constant and equal

to one. According to Eqs. (2) and (3), a linear model of Kalman filter

is modified as follow:

(9)
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Fig. 5 Kalman filtering process

Fig. 6 Illustration of an elbow joint angle prediction using Kalman

filter. The black line is the measured angle, the red line is the

predicted angle and the thin line is the EMG features (EMGZC)

Fig. 7 The proposed method to predict an elbow joint angle. A

combination algorithm of zero crossing feature and Kalman

filter
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(10)

where, xk is current estimation, xk-1 is prior estimation, wk is a process

noise with covariance Q and vk is a measurement noise with covariance

R. Since, there is no control parameter uk in the EMG signal therefore

Eq. (9) can be expressed as follow:

(11)

A linear model Kalman filter for one dimensional based on previous

equation Eqs. (4) to (8) is written as follow:

Step 1. A prediction stage

(12)

(13)

Step 2. Kalman gain computation

(14)

Step 3. Update estimation

(15)

Step 4. Update error covariance

(16)

In this study, the algorithm of the proposed method was implemented

using Delphi programming (Version 7.0, Borland Software Corporation,

Scotts Valley, California, USA). Flowchart of the proposed method is

shown in the Fig. 8. The collected EMG data, which contain a time

series of the EMG signal and the measured angle, were opened and

plotted in a chart to visualize the pattern of the signal and the real angle.

Before calculating the feature extraction and Kalman filtering, some

parameter needed to be defined such as, threshold voltage, number of

sample, R and Q parameters.

2.4 Statistical analysis

The statistical analysis was performed using Microsoft Excel with

an add-insert toolbox (real statistics) from real-statistics.com. The

performance of the prediction was evaluated using the root mean

square error (RMSE) as mentioned in some literatures.9,19,22,35,36 The

RMSE value could describe the accuracy of the prediction algorithm.

Some previous researchers9,14,22,36 used the Pearson’s correlation

coefficient to measure the strength of a linear relationship between the

predicted angles and the measured angles. Variability of the RMSE

between and within the subjects was described using a boxplot diagram.

A single-factor analysis of variance (ANOVA)37 was conducted to test

the null hypothesis. In this study, the null hypothesis was there were no

differences of RMSE between the subjects. The analysis was used to

see whether there were no differences of the mean RMSE between

subjects. An F-value was used as a threshold value to decide if the null

hypothesis is rejected or fail to reject. When the F-value is less than a

Fcritical-value then we accept the null hypothesis. The significant

difference of the mean RMSE between subjects (subject: A, B, C and

D) was tested using a p-value with the level of confident of 95% (alpha

= 0.05). When the p-value is higher than an alpha value, then it indicates

that there is no significant difference of mean RMSE between the

subjects.

3. Results

The results have demonstrated the effectiveness of the proposed

method to predict an elbow joint angle using EMG signal. The accuracy

of the predicted angle was varied with ranged from 6.9o to 17.5o and

there was a high relationship between the predicted angle and the

measured angle which the Pearson’s correlation coefficients were 0.93

to 0.99.

The EMG signals (Fig. 9(a)) were recorded from biceps muscle.

The real positions of the elbow joint were measured using a linear

potentiometer sensor. The range of motion of the elbow joint (in flexion

and extension) was approximately 0 to 150 degrees as shown in Fig.

9(a). The elbow was moved in the flexion and extension continuously

for 5 cycles. Each 200 sample of point (sampling frequency of 1,000

Hz), the EMG signals were extracted using a zero crossing feature (Fig.

9(b)). A threshold voltage value was set to a certain value (0.08-0.2 V)

as shown in Eq. (1). A threshold value was adjusted according to the
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Fig. 8 Flow chart of proposed method for feature extraction and

Kalman filtering process. Performed offline using Delphi

programming
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nature of the EMG signal which depends on subjects. In Fig. 9(b), the

features of the EMG signals were expressed as a cross symbol. The

pattern of the features almost coincided with the measured angle but the

RMSE value was large enough at 31.42o and the correlation coefficient

at 0.84. The proposed method was used to reduce the error in the

prediction that resulted from the feature extraction step and to increase

the linear relationship between the predicted and the measured angle.

Fig. 9(c) shows the predicted angle denoted by the black line. The

predicted angles are improved after processing the feature extraction

using the Kalman filter algorithm.

Some parameters of the Kalman filter, such as a measurement noise

(R) and a process noise (Q), were needed to be initialized with a certain

value. Those parameters were very important to determine the accuracy

of the prediction. The predicted angles showed in the Fig. 9 (c) are that

used Q and R value of 0.04 and 0.6 respectively.

The proposed method was tested with a different period of motion

(12 sec, 8 sec and 6 sec) to verify that the system could perform well

in the different speed of motion (Fig. 10). The effectiveness of the

proposed method was tested using root mean square error and Pearson’s

correlation coefficient. The RMSE values were calculated each cycle

during five continuous cycles for each subject (A, B, C and D) to

observe the variance between subjects. As shown in Fig. 11 and Table

1, for all subjects (A, B, C and D), the average of the mean RMSE for

periods of motion 12 sec, 8 sec and 6 sec were 12.95 1.99, 11.86 1.86

and 12.96 1.60 respectively. The average of the maximum RMSE for

periods of motion 12 sec, 8 sec and 6 sec were 16.46 2.25, 15.29 2.32

and 17.26 0.67 respectively. The average of the minimum RMSE for

periods of motion 12 sec, 8 sec and 6 sec were 9.57 2.03, 8.19 1.06,

and 8.67 2.36 respectively. The average of the Pearson’s correlation

coefficient between the predicted angle and the measured angle was

Fig. 9 (a) The raw EMG signal. The right axes is the position of the

measured angle. The left axes is the EMG amplitude (b)

Feature extraction. (c) Predicted angle. The red line is the

measured angle and the black line is the predicted angle.

Sample from subject B

Fig. 10 The predicted and measured angles of five continuous cycles.

Movement of the elbow joint on the period of motion at (a) 12

second. (b) 8 second and (c) 6 second. The black line is the

predicted angles which are the result of our proposed method

and the red line is the measured angles. Sample from subject B

Table 1 Summary of mean and standard deviation of RMSE and

Pearson’s correlation coefficient (CC) for subjects A, B, C

and D at different period of motion

Period of

Motion [sec]
Subject

RMSE [deg]

(Mean ± SD)

CC

(Mean ± SD)

12 

A 11.510 ± 3.307 0.983 ± 0.01

B 13.505 ± 4.177 0.967 ± 0.03

C 14.267 ± 1.969 0.973 ± 0.004

D 11.010 ± 2.193 0.986 ± 0.004

8 

A 13.086 ± 3.119 0.978 ± 0.005

B 9.414 ± 2.530 0.991 ± 0.004

C 13.507 ± 3.385 0.971 ± 0.015

D 11.430 ± 2.825 0.985 ± 0.005

6 

A 13.114 ± 4.160 0.971 ± 0.015

B 11.169 ± 4.422 0.986 ± 0.007

C 12.517 ± 3.791 0.984 ± 0.008

D 15.027 ± 2.137 0.959 ± 0.013
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0.978 0.003 for all of the period of motion and all of the subjects.

ANOVA was used to examine whether there is significant difference

or not between the subjects for the same period. Table 2 shows that all

of the F values are lower than the F-critical (F-critical > F) and all of

the p-values are higher than the alpha (p-value > alpha).

The performance of the proposed method depended on Kalman filter

initialization. In this study, we performed an experiment on the Kalman

filter parameters, those are a process noise (Q) and a measurement noise

(R). Fig. 12(a) shows the accuracy (RMSE) of the predicted angle which

was tested with several Q-parameter values in the range of 0.01 to 0.2.

As shown in Fig. 12(a), when the Q-parameter is equal to 0.03 then the

RMSE is the lowest value (RMSE = 7.00o) on the period of motion of

8 seconds. The accuracy of Kalman filter model was also tested with

some values of a parameter of R within the range of 0.2 to 2. As shown

in Fig. 12(b), the lowest value of the RMSE is when the R parameter

is equal to 0.7 (RMSE = 6.9o). According to Figs. 12(a) and (b), the

RMSE value is the lowest when the flexion and extension motion are

in the period of 8 seconds.

4. Discussion

Our proposed method has demonstrated the effectiveness of the

Kalman Filter to predict an elbow joint angle. We found that the

Pearson’s correlation coefficient average is 0.978 0.003 which means

there is a high relationship between the predicted and measured angles

for three different periods of motion and subjects. The average of the

mean RMSE for a period of motion of 12 sec, 8 sec and 6 sec is 12.95o

1.99o, 11.86o 1.86o and 12.96o 1.60o respectively. Similar results are also

reported by Tang9 that the RMSE for three different periods of 8 sec,

4 sec and 2 sec are 12.42o, 9.67o and 10.70o respectively. He developed

the model using an artificial neural network and tested for a single

subject. The model proposed by Pau19 reported that the RMSE is 22.00o

± 6.6o for five continuous cycles but he found the accuracy of 6.53o for

a single cycle. Koo38 reported that the average RMSE is 34.64 ± 7.79o.

Lee39 estimated a joint angle trajectory using total co-contraction level

or joint stiffness for four different kinds of lifting speed. He measured

the predicted angle using correlation coefficient, which were ranged

from 0.698 ± 0.03 to 0.92 ± 0.018.

A minimal number of the EMG channel used to predict an elbow

joint angle is essential for feasibility to apply in the real life. In this

study, EMG signal from a biceps muscle is used to perform an elbow

Fig. 11 The comparison of the RMSE boxplot during continuous

cycles for periods of motion at (a) 12 sec, (b) 8 sec and (c) 6

sec. Each subject (A, B, C and D) performs the motion in the

three different periods. The left axes indicate the RMSE

values in degrees

Table 2 Summary of F-values and p-values of ANOVA from the

period of motion of 12 sec, 8 sec and 6 sec. Each period of

motion is conducted by subject A, B, C and D. Level of

confidence in 95% (alpha = 0.05)

Period of motion F F-critical p-value

12 sec (subject A, B, C, D) 1.314 3.239 0.304

8 sec (subject A, B, C, D) 1.946 3.239 0.163

6 sec (subject A, B, C, D) 0.920 3.239 0.453

Note: H0 = µA = µB = µC = µD (There is no significant different between

subjects and periods)

Fig. 12 The effect of (a) Q and (b) R parameter in the RMSE. The

dotted line denotes the trend line of the fourth order of

polynomial function
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joint angle prediction with good accuracy as mentioned in Table 1.

Previous researchers used two muscles (biceps and triceps) to predict

an elbow joint angle and the others used more than two muscles.

According to the physiology and anatomy literature24 the biceps muscle

is only responsible for the action of the elbow flexion. In accordance

with the flexion and extension motion in this study, while the elbow in

an extension motion the biceps muscle may still retain the force of the

gravity, therefore EMG signal still exists in the extension motion.

According to Table 2 (F < F-critical and p-value > alpha), the statistic

suggests that we fail to reject the null hypotheses and there are no

significant differences of the RMSE between the period of motion and

subjects. This demonstrates that the proposed method works well for all

of the subjects and periods of motion.

Q and R parameters in the Kalman filter affect the performance of

the proposed method. For the three different periods of motion (subject

B), we found that the RMSE is lowest when the Q-value and the R-

value are 0.03 and 0.7 respectively (Fig. 12). Q and R parameters are

not a linear function to affect the performance of the proposed method

but approach to a fourth-order polynomial function. We suggest that the

Q-value and the R-value for the Kalman filter parameters can be

adjusted according to Fig. 12 to get the best RMSE.

The results obtained from this study are very promising to be applied

in the same research area, such as exoskeleton devices and prosthetic

devices. The proposed method is categorized as a non-pattern recognition

method therefore it does not need time for learning the process. The

adaptation to this system is adjusting the Q and R parameters which are

defined in the Kalman filter algorithm.

There are many factors that may affect the EMG signal which are

not considered in this study such as muscle fatigue, electrode position

and acceleration of motion. It is a common problem in daily life when

the part of our body does an intensive and repetitive activity then we

will experience a fatigue condition since the muscle cannot maintain the

force. According to Basmajian and De Luca,40 the mean power frequency

of the EMG signal will shift to the left (decreasing) and EMG amplitude

tends to increase when the muscle fatigue is induced. In conjunction

with this study, the muscle fatigue will change the output of the feature

extraction and affect the prediction algorithm. In the next work, it needs

a new algorithm to compensate the muscle fatigue effect so that the

performance of the proposed method can be maintained.

5. Conclusion

In this study, we prove the effectiveness of the proposed method to

predict an elbow joint angle using a zero crossing feature and optimize

the feature using a Kalman filter. A single channel of EMG signal,

generated from biceps muscle, is used to predict an elbow joint angle.

The proposed method is tested using four subjects and three different

periods of motion to evaluate the reliability of the system. The results

show that there are no significant differences of the mean RMSE for

different periods and subjects. The Q and R Parameters of the Kalman

filter affect the RMSE of the proposed method, therefore the right choice

of the parameter values is needed. Many factors may affect the EMG

signal such as muscle fatigue, the speed of motion and the electrode

position, therefore in the next work, this factors need to be considered.

Ethical approval: “All procedures performed in studies involving

human participants were in accordance with the ethical standards of the

institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical

standards.
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