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In this paper, we consider the problems of state estimation and parameter estimation. The goal is to consider Robust Unscented

Kalman filter, and demonstrate their successful application on a Coupled Tank system. Traditional unscented kalman filter have a

limitation to estimate the state and parameter of time-varying parameter system due to making use of fixed measurement covariance

without updating measurement error between measured data and estimated data. Proposed method is Robust Unscented Kalman filter

to perform the estimation of the changing parameter value. A structure of the Coupled Tank System consists of connected two tank

with basin. The other goal is to make use of the considered filtering method to compare between the other methods. Extensive

experiments by numerical simulations and experimentation using real hardware are performed. The study of the experimental results

shows a proposed method concern various aspects, such as estimation accuracy, convergence speed, and the accuracy of estimating

fixed parameter values. Overall, the proposed Unscented Kalman filter turned out the best of the other considered methods.
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1. Introduction

At the present time, there are many problems in science, here is a

need to surmise the values of certain state variables from some noisy

measurements. This is a universal problem of state estimation or

filtering, in the field of engineering, medical or economic applications.

For example, in a mechanical structure, we may need to estimate the

motion variables for its constituent parts from external position and/or

velocity measurements. Additionally, for an electric motor we can

estimate internal magnetic field components from measurements of the

current and the voltage, for the purpose of monitoring its condition.1 In

some applications the state is completely inaccessible, while in others

costly sensors are needed. Therefore, an efficient state estimation

algorithm could provide significant cost savings.

Typically, the system is described by a state equation that describes

its evolution with time, and whose form is known. A number of outputs

or measurements are observed, and from these we need to estimate the

states. The pioneering work of Kalman is to obtain a full analytical

solution for linear systems, recognizing that the majority of systems

encountered in practice is nonlinear. There are several approaches have

been developed for such systems. The Extended Kalman filter (EKF)

is based on using the nonlinear equations for some aspects of the

calculations and on using linearization for the other aspects. In that

respect, it is not entirely optimal because of the partial linearization,

NOMENCLATURE

A1 = cross-sectional areas of tank 1 (cm2)

A2 = cross-sectional areas of tank 2 (cm2)

c1   = orifice coefficient of tank 1

c2   = orifice coefficient of tank 2

qi   = pumping rate (Volts)

kflow   = flow constant ((cm2/sec)/volt)

εk    = Innovation matrix

Rk = updated measurement covariance
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even though it has a significant improvement over the basic Kalman

filter, when dealing with nonlinear systems. The Unscented Kalman

filter (UKF) attempts to tackle some of the limitations of EKF, especially

the fact that the covariance matrix is propagated through a linearization

of the system. The UKF is based on considering a number of sample

points around the value of the state estimate. These points are then

propagated through the non-linear functions, and the mean, also the

covariance matrix of the estimate is then estimated. An entirely different

approach based on Monte Carlo sampling, is a so-called Particle filter

approach (PF). It is based on a probabilistic formulation of the states

and the measurements. From these probability densities a number of

sample points or particles are generated and propagated according the

state equations, in order to model these densities. State estimates are then

obtained based on these particle values, which express the posterior

density of the states.

Another important problem encountered in many applications

involving state equations is a so-called parameter estimation problem.

Even though the form of the state equation is assumed to be known in

the filtering problem, however, some of their fixed parameters could be

unknown. For example, many of the mechanical and electrical systems

used in the current industry are represented by second-order dynamics

models comprised of mass, damper, spring, inductances, resistors, and

capacitors. These possess values are generally constant, but could be

unknown because, it is a possibility that, there values according to the

data sheets are missing or inaccurate. In addition to estimating the states

(such as velocity, angular velocity, acceleration, branch currents, etc.),

one also needs to be estimated, the fixed parameters. Even if the

parameter values are known beforehand, their values could drift slowly

with time. The motivation to estimate the value often stems from the

need to monitor the condition of the equipment. As it turns out the

parameter estimation problem is frequently the harder of the two

problems. This has because of the parameter values have an effect on

all states and measurements of all times combined.

In this paper, we are going to consider on two problems, state

estimation and parameter estimation. The goal of this study is as

following;

A. Apply the state and parameter estimation methods on real

mechanical system, with the aim of testing an ability to produce

accurate estimates for the structures.

B. Utilize the proposed structures as a vehicle for comparing

between the nonlinear state and parameter estimation methods,

that are EKF, UKF, PF and proposed filter.

C. Apply the algorithms for a model using real hardware. This is for

the purposed method can be improvement in estimating state and

parameter of system better than the other considered method.

The proposed method is Robust Unscented Kalman filter (RUKF)

with updating the measurement covariance in this paper. RUKF can be

adaptively adjusted on various environment or external noise due to its

updating characteristics related with priori measurement and real

measurement. We consider that the mechanical system is a coupled

tank system. The coupled tank system is widely used in a diversity of

industrial field such as steel, nuclear, chemistry among others. Therefore,

the state and parameter estimation of coupled tank system is exceedingly

meaningful. In the proposed comparison, we consider several aspects

of performance, such as steady state estimation accuracy, parameter

estimation accuracy, transient behavior, and convergence speed. On most

counts, the RUKF is the best as of the other considered algorithms,

followed by PF, UKF then EKF. The details of the findings are given

in the next sections.

The paper is organized as follows. We begin in Section II with a

literature review, followed in Section III with a description of Robust

Unscented Kalman filter. Section IV describes the coupled tank, which

is the non-linear systems handled in this paper. Also in Section V, the

state equations are derived and the state equation is modified to the state

space matrix for the simulation. The computer simulation, experiments,

and results are outlined in Section V. Finally, in Section VI provides a

discussion and gives a conclusion for this work.

2. Literature Review

Filtering, or state estimation has been applied to numerous

applications, in domains that include aerospace, electrical engineering,

economics, and biological systems. The area concerned in this work is,

state estimation for mechanical structures, such as a pendulum-based

and coupled water tanks, has also seen some application in the literature.

For example, Lichter and Dubowsky2 applied a Kalman filter for the

estimation of motions, positions, and deformations of large interacting

mechanical structures. This could be a useful application for space

missions, where robots are expected to inspect and maintain large space

structures in orbit. Roffel and Narasimhan3 apply the extended Kalman

filter for the estimation of parameters and states of structures called

Pendulum tuned mass dampers (PTMDs). These are employed in several

applications for the purpose of attenuating excessive structural motions,

which are mostly due to wind. Xie and Fang4 apply the unscented

Kalman filter, and its modification, called iterated unscented Kalman

filter, to the problem of estimation of a nonlinear structural system.

Matta et al.5 apply the UKF to the problem of identification of a new

prototype of rolling-pendulum tuned vibration absorber. They show that

the proposed UKF is effective in identifying the structural parameters

of the new device. Alkay6 compared the EKF with UKF for the problem

of state estimation for an inverted pendulum. Some novel techniques

such as neural networks have also been applied to mechanical structures

and pendulum-type systems. For example, Mori, Nishihara, and Furuta7

consider a problem of the pendulum-cart system, and developed the

methods for state estimation and control. Orlowska-Kowalska and

Szabat8 consider the use of neural networks for the state estimation of

a two-mass drive system with elastic joints. Other applications to

mechanical structures include the work of Parlos, Menon, and Atiya,1,9

An, Atkeson, and Hollerbach,10 Swevers et al.,11 Oh et al.12 Aksoy,

Muhurcu, and Kizmaz,13 and Zheng, Ikeda, Shimomura.14

Concerning coupled water tanks, Geetha, Jerome, and Devatha15

applied EKF to the state estimation of a structure consisting of two

interacting tanks. They have used the state estimation technique to

develop a model predictive control scheme. Villez et al.16 has proposed

the use of both, the Kalman filter and the extended Kalman filter for the

problem of state estimation of a nonlinear buffer tank system. They have

shown the superiority of EKF. Moreover, they have used their estimator

for actuator and sensor fault detection and identification. Bharath Kumar,

Muthumari, and Jayalalitha17 have applied the EKF for the estimation of
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a four tank system. It is a nonlinear system that follows the law of mass

balance and energy equations. Following the state estimation, they

applied model predictive control technique.

Several studies set out to compare between different filtering methods.

For example, Kim et al.18 compared the performance of the extended

Kalman filter, the unscented Kalman filter, and the PF. In addition, a

hybrid Rao-Blackwellized PF approach by combining the EKF with the

PF is also considered. They have applied the comparison to the problem

of estimating the state for some ballistic missile problem. St Pierre and

Gingras19 compared the performance of the EKF and the UKF in the

context of position estimation for a navigation system. Daum20 has

presented an analysis and comparison between the EKF, the UKF and

the PF. In particular, they have discussed the effect of the curse of

dimensionality, and suggest ways to improve the PF by using quasi-

Monte Carlo approaches. Chatzi and Smyth21 also compared between

the UKF and the PF for the problem of identification of non-collocated

measurements, which is a three degree of freedom system, involving a

hysteretic component.

3. Robust Algorithm based on UKF

The traditional UKF is developed to overcome some of the drawbacks

of the EKF, especially the fact that in some aspects linearization was

performed rather than taking into account the true nonlinear relation.10

Specifically, the covariance matrix is propagated through a linearized

version of the nonlinear model, and this can lead to an error. The UKF

uses the unscented transform (UT), which is based on propagating a

number of selected points through the nonlinear model, based on the

spread of the points after the transformation, one can estimate the

covariance matrix.

(1)

(2)

where,  is the n × 1 state vector,  is the m × 1 observation

vector, the process noise and measurement noise are denoted by wk~

N(0, Qk) and vk~N(0, Rk) respectively. The functions f, h represents the

non-linear state update function and the measurement equation,

respectively.

Unscented transform (UT) consisting of Two steps, is described as

follows:

Step 1. Calculation of sigma points:

(3)

(4)

(5)

χk is the sigma points of . Pk|k is the state error covariance.

 is the i-th row of the matrix square root.

Step 2. Calculation of weighting coefficients:

(6)

(7)

(8)

λ = α2(n + κ) − n is a scaling parameter, α determines the spread of

the sigma points around x and is usually set to a small positive value

(e.g., 1 ≤ α ≤10-4). κ is a secondary scaling parameter that is usually set

to 0, and β is used to incorporate prior knowledge of the distribution

of x (for Gaussian distributions, β = 2 is the optimal choice).  and

 denote the i-th weights of mean and covariance, respectively.

Initialize with:

(9)

(10)

Calculate sigma points using Eqs. (3)-(8):

(11)

State Propagation:

(12)

(13)

(14)

Each sigma point Zi is obtained by non-linearity transformation Zi =

f(χi).

Observation Propagation:

(15)

(16)

(17)

(18)

The mean  and covariance  are determined by the new sigma

points Zk.

Update:

(19)

(20)

(21)

where Pk is state error covariance,  is correlation error covariance,

,  are the weights calculated by Eqs. (6)-(8).

xk 1+
f xx uk,( ) wk+=

zk h xk uk,( ) vk+=

xk ℜ
n

∈ zk ℜ
n

∈

χ
k k

0
x̂
k k

=

χ
k k

i
x̂
k k

n λ+( )P
k k

( )
i

+=

χ
k k

i n+
x̂
k k

n λ+( )P
k k

( )
i n+

–=

x̂
k k

n λ+( )Pk k( )
i

w
0

m( )
λ / n λ+( )=

w
0

c( )
λ / n λ+( ) 1 α

2
– β+( )+=

wi

m( ) c( )
1/ 2 n l+( ){ }=

wi

m( )

wi

c( )

x̂
0

E x
0

[ ]=

P
0

E x
0

x̂
0

–( ) x
0

x̂
0

–( )
T

[ ]= k 1 … ∞, ,{ }∈

χ k 1–

i
x̂k 1–

x̂k 1–
n λ+( )Pk 1–

+ x̂k 1–
n λ+( )Pk 1–

–, ,[ ]=

χ k k 1–

i
f χ k 1–

i
( )=

x̂k k 1–
wi

m( )
χ k k 1–

i

i=0

2n

∑=

Pk k 1–
wi

c( )
χ k k 1–

i
x̂k k 1–

–[ ] χ k k 1–

i
x̂k k 1–

–[ ]
T

Qk+
i=0

2n

∑=

Zk k 1–

i
h χ k k 1–

i
( )=
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ẑk k 1–

–[ ]
T

×=
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Robust Rule:

(22)

(23)

(24)

As it is mentioned, the RUKF is the estimation method that

recursively calculates the state of the system based on UT and real-time

update of measurement covariance by innovation matrix ε. It has

similarities with the conventional Unscented Kalman filter. However,

RUKF can apply to time-varying system although obtaining high noised

measurement data. This means that RUKF has an advantage of applying

to the nonlinear system.

Fig. 1 is structure of the RUKF algorithm. In chapter 5, we consider

the estimation methods of EKF, UKF and PF to compare the results of

parameter estimation.

4. Coupled Tank System

The dynamic system is utilized, described and derived in this section

to estimate the state and parameter which is then realized in order to

obtain the measurement data from the dynamic system. The derived

equation is transformed into the form of a state space equation. The

system is a coupled tank system. The coupled tank system is relatively

simple with a second-order ODE but its orifice coefficient is important

for the stability and control of the system.

4.1 System

The coupled tank system consists of two tanks, a pump and a water

basin. The two tanks are mounted in such a way so that water from the

first tank flows into the second while the outflow from the second tank

goes into the water basin. Rubber tubing with appropriate couplings is

used to pump in water into any one of the tanks. The output rate of the

pump controls the output flow ratio of the two tanks. The performance

of the control system is a function of the orifice coefficient of the two

tanks and the output rate of the pump. A 3D modelling with block

diagram of the system utilized are shown in Fig. 2.

4.2 Modelling

The mathematical model of the coupled tank can be written as:

(25)

(26)

where, h1, and h2 are the water level heights of tank 1 and tank 2

respectively, and qi1, qi2 are the water flow rates into tanks 1 and 2.

The tank heights can be obtained by calculating the difference

between inflow and outflow. Each outflow rate of the tanks is given by:

, (27)

where, c1 and c2 are the orifice coefficients.

Since the inflow rate of tank 2 is the same as the outflow rate of tank

1, the total rate of change including the input from the pump can be

derived as follows:

(28)

where, kflow is a constant in (cm2/sec)/volt, vi is the pump input, also A1

and A2 denote the inside areas of the tanks.

4.3 System transformation

 and  is defined in order to transform

the equation into a form that can be applicable for filters. Eqs. (26) and

(27) are then rearranged following Eq. (29) into:

(29)

The following state space form is obtained:
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Fig. 1 Schematic diagram of proposed algorithm

Fig. 2 (a) 3D modelling (b) block diagram of coupled tank system
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(30)

Finally, we get the state space equation including unknown parameter

is as follows:

(31)

4.4 Data acquisition system

The equipment description and specification for the experiments is

given in Table 1. The following conditions are set for the coupled tank

system: (i) the pump supplies a fixed amount of water into tank 1, (ii)

the amount of water in tank 2 depends on the outflow from it. This is

a continuing process until tank 1 is full. The measured variables are the

height of the tanks while the sampling rate for measuring the data of

voltage level is set at 100 Hz. The heights of the tanks are measured by

a DAQ Board that is transmitted to MATLAB Simulink. The measuring

equipment is calibrated based on the initial values of the system before

running them. Fig. 3 gives the block diagram for the data acquisition

process.

5. Identification of Unknown Parameter

Before implementation, initial values of coupled system are define

following its data sheets. The parameter description of the dynamic

system is given in Table 2. The real-world experiments to compare the

performances of EKF, UKF, PF and RUKF on coupled-tank system are

presented in this section. To handle with estimating the state and

parameter of system, we make a test system as Fig. 4. Parameter

estimation is considered in addition to state estimation. The orifice

coefficients of the tanks are unknown parameters that need to be

estimated for precise control of a coupled tank system.

The different filtering algorithms are tested in this section using actual

hardware setups in a physical setting of a coupled tank. The initial value

for the test system is x0 = [0 0] and the system is continues to operate

until the tank 1 is full. A fixed amount of water flows into tank 1 via

a pump and the outflow from tank 1 goes into tank 2 by gravity. A

critical element has to be estimated is the covariance matrix of the noise

using a priori measurement and measurement obtained by test system.

The initial filter settings for estimating the state and the parameters in
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Table 1 Setup of data acquisition system

Name Specifications

Hewlett Packard

6253A

Regulation: 0.01%

Ripple: 200 μV

BNC-2120

Connector Block

Analog I/O

Digital I/O

NI PXI

8145-RT

Real-time Embedded Controller.

Processor: 266 MHz low-power Intel Pentium MMX

Interface: Serial, CAN, MXI-3 chassis expansion

NI PCI 6064E

DAQ Board

Resolution: 12, 16 bit

1 Channel: 500 ks/s

Multichannel: 250 ks/s

NI PXI

1031-Chassis

Accuracy: ±25 ppm

Maximum Clock: 250 ps

Table 2 Parameter specifications of coupled tank system

Description Val. Unit

Cross-sectional areas of tank 1 15.5179 cm2

Cross-sectional areas of tank 2 15.5179 cm2

Pumping rate 5 volt

Flow constant 6 (cm2/sec)/volt

Orifice coefficient of tank 1 5

Orifice coefficient of tank 2 5

Fig. 3 Diagram of data acquisition system

Fig. 4 Experimental system
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experimental are assumed to be the same environments.

5.1 State estimation

The initial value and covariance of filters for system is defined as: 

, (32)

The RUKF and UKF algorithm’s parameters are set as follows: α

= 10 and β = 2, while the number of particles for the PF is selected as

1000.

Fig. 5 shows the state estimation result using the different algorithms

of EKF, UKF, PF and RUKF. In Fig. 5(b), we observe in the first part

of the states’ trajectory a bump in the height due to an initial rush ofx
0

0
1 4×= P

0
I

4 4×=

Fig. 5 (a) Result of state estimation (b) detail view of estimation results of sample 0 to 100

Fig. 6 (a) Trajectory of parameter estimation for orifice coefficient C1, (b) Trajectory of parameter estimation for orifice coefficient C2
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water from the pump until approximately sample 10 to 60. This bump

is magnified in order to closely check the tracking behavior of such state

trajectory. It can be observed that the proposed algorithms converge

very well without that bump, but the three algorithms except proposed

algorithm, however fails to catch the initial bump while EKF is a bit off.

5.1.2 Parameter estimation

The state and parameter estimation of test system are performed

simultaneously to estimate the orifice coefficients of Tanks 1, 2,

respectively. The trajectories of the parameter estimation of the different

algorithms with time are shown in Fig. 6 while the steady state RMS

errors are given in Table 3. Figs. 6(a) and (b) show that the proposed

method converges fairly and quickly to the raw parameter values. One

reason for the fast convergence is the efficient and speedy update of the

error covariance P with robust rule (22-24). The convergence time to

the true reference has been slow in the case of PF and the estimate

fluctuates somewhat more and compared with that of other algorithms.

It also can be observed that proposed estimation algorithm converges

close to the true value quite well and faster than three algorithms. The

EKF and UKF have the drawback of producing a large and problematic

overshoot. There is no clear superior method in terms of the steady

state error due to the mixed results. Overall, proposed algorithm RUKF

seems to be generally the better of the algorithms from the point of

view of convergence characteristics and tracking errors.

5.1.3 Comments of the results

By observing the results from the experiments, one can conclude

that RUKF has high performance to estimate the state and parameter of

Coupled Tank system. It generally produces a better state estimation,

and better parameter estimation in both respects, the convergence speed

and steady state error. One could see, for example, how successful it was

in tracking the bump in the test system experiment. The performance of

proposed method, is the experiment, where the steady state parameter

estimation was better than UKF, EKF and PF. The EKF was generally

in the middle of the pack, and should therefore be skipped in favor of

RUKF. The PF algorithm could often obtain good or best steady state

parameter estimates, but its parameter tracking speed is generally slower

than the other competing methods in Table 4. Table 4 is performed in

offline. This is due to the fact that RUKF is deterministic in nature, and

therefore takes a direct approach towards obtaining the estimates. On

the other hand, PF is a Monte Carlo type method, and therefore takes

its time for estimates to emerge out of the data statistics.

6. Conclusion

In this paper, we proposed a robust estimation method based on

unscented kalman filter by updating measurement covariance. And we

considered the state and parameter estimation problems and a comparison

has presented between the EKF, the UKF, the PF and the RUKF. The

RUKF-proposed estimation algorithm-overcomes the limitation of

traditional unscented kalman filter making use of updating measurement

error between measured data and estimated data is derived in Section

3. We also considered the real mechanical system as the test bed for the

comparison, namely coupled tank system. We have applied set of

experiment: the water flow environments from tank 1 to tank 2 based

on their equations and experiments were performed for consequently

estimating the true states and parameters that are observed in the

experiment. The comparison of estimation results shows that RUKF

has more accuracy estimation performance than other methods. Both

experiments confirm that RUKF is the best of the four methods. RUKF

should therefore be the preferred model for state and parameter

estimation for similar mechanical systems.
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