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To improve the surface roughness of parts fabricated using fused deposition modeling, modeling of the surface roughness distribution

is used before the fabrication process to enable more precise planning of the additive manufacturing process. In this paper, a new

methodology based on radial basis function neural networks (RBFNNs) is proposed for estimation of the surface roughness based

on experimental results. The effective variables of the RBFNN are optimized using the imperialist competitive algorithm (ICA). The

RBFNN-ICA model outperforms considerably comparing to the RBFNN model. A specific test part capable of evaluating the surface

roughness distribution for varied surface build angles is built. To demonstrate the advantage of the recommended model, a

performance comparison of the most well-known analytical models is carried out. The results of the evaluation confirm the capability

of more fitted responses in the proposed modeling. The RBFNN and RBFNN-ICA models have mean absolute percentage error of

7.11% and 3.64%, respectively, and mean squared error of 7.48 and 2.27, respectively. The robustness of the network is studied based

on the RBFNN’s effective variables evaluation and sensitivity analysis assessment for the contribution of input parameters. Finally,

the comprehensive validity assessments confirm improved results using the recommended modeling.
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1. Introduction

Additive manufacturing (AM) is one of the most promising and

widely used technologies today, and it is used to reduce product

development time because the prototype component produced can be

used directly in assemblies, product testing or tooling for short or

medium run production. AM relates to a rapidly growing number of

automated machines or processes such as stereolithography (SL),

selective laser sintering (SLS), fused deposition modeling (FDM),

laminated object manufacturing (LOM) and shape deposition

manufacturing (SDM) which can automatically fabricate three

dimensional (3D) solid models from the computer-aided design (CAD)

data without use of tooling or human intervention.1-7

FDM is one of the AM processes that build parts of any geometry

by sequential deposition of material on a layer-by-layer basis. The

process uses heated thermoplastic filaments which are extruded from

the tip of the nozzle in a prescribed manner, in a semi-molten state, and

which solidify at chamber temperature. The part is fabricated by the

two-dimensional deposition of layers contoured in the x-y plane. The

third dimension (z) results from the stacking of single layers on top of

each other but not as a continuous z-coordinate.8

The surface finish of the completed part is excessively rough as a

consequence of the layered production method and this is unavoidable.

This is a problem that occurs widely in different industries that use the

FDM process. Poor surface finishing in AM processes is often affected

by the tessellation of the original CAD model and the slicing procedure

employed during the building process. Slicing a tessellated CAD model

causes a containment problem that results in the distortion of the original

CAD model of the part as designed. In addition to the containment

problem, deposition of the layers in slices results in another issue known

as the ‘staircase effect’ or the ‘stair-stepping effect’.9

A critical review of the literature suggests that the properties of AM

parts are the function of various process related parameters and can be

significantly improved with proper adjustment without incurring

additional expenses for changing hardware and software.10 In the context

of optimization of the AM process or process parameter selection for
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the improvement of performance characteristics of the prototype, the

formulation of mathematical models based on a physical understanding

of the AM processes plays a major role. Researchers have made several

attempts to improve the performance of prototypes via formulation of

theoretical models followed by optimization.11-15 Therefore, surface

roughness estimation models may be replaced by trial and error methods

to save money and time. Some studies, which focus directly on surface

roughness, can be divided into empirical and theoretical methods.

Among the empirical methods, Armillotta16 describes an experimental

investigation on the effects of process parameters such as layer thickness,

build orientation, road width and raster angle on surface roughness

value. Pandey et al.17,18 have developed a semi-empirical model of the

arithmetic-mean-surface roughness (Ra) which considers layer thickness

and build orientation as process variables; they approximate the layer

profile with a parabola assuming the mean surface to be in the middle.

Campbell et al.19 verified the empirical Ra value proposed by Reeves

and Cobb20 to identify a range of surface angles in which Ra can be

reasonably predicted; for FDM they attest that most part surfaces

displayed an experimental Ra that was much lower than the one

calculated. Ahn et al.11,21 introduced an equation to express Ra

distribution in terms of surface angle using measured Ra data and

interpolation. Among the theoretical works, Ahn et al.11,21 presented a

model to express average roughness by assuming that the filament profile

was an elliptical curve; cross-sectional shape, surface angle, layer

thickness and overlap between adjacent layers are considered to be the

main factors affecting surface quality. Luis Perez et al.22 characterized

the geometric roughness arising from a layered manufacturing process

and compared models using the SL manufacturing technique to establish

two different rapid production strategies for prototypes based on the Ra

value, manufacturing with an Ra within a given range of tolerances and

production with a constant layer height. Bordoni and Boschetto23

suggested that layer thickness and surface tilting were the main factors

influencing the average roughness. Ahn et al.24 and Thrimurthulu et al.15

used these models to determine the optimum part deposition orientation

for complex parts.

The model proposed in this study is able to estimate the surface

roughness distribution in an FDM processed part with the appropriate

process parameters. Accordingly, a reduction in surface roughness is

expected because the process parameters are optimized.

Most studies that focused on the surface roughness improvement9,13,15,

18-20,25-27 were not established with empirical data using a comprehensive

evaluation at the same time. So that the model estimates surface

roughness at all build angle ranges (the main factor of the staircase

effect that results in the creation of a rough surface), a specific test part

is necessary. Therefore, a specific experimental part was manufactured

so the surface roughness could be evaluated at various build angles.

Meanwhile, an attempt was made to optimize the process variables of

the RBFNN model using imperialist competitive algorithm (ICA). The

most well-known analytical models were simulated and then the results

were compared with those obtained using the proposed models. The

RBFNN and RBFNN-ICA models were simulated for four test parts to

demonstrate the improvement achieved for more specific responses in

artificial neural network (ANN) modeling. A validity assessment

showed that the proposed approach gave the closest estimation to the

experimental data. The robustness of the network was studied considering

the effective parameters of the RBFNN model and the contribution of

the input parameters on output of the network. Altogether, all the

evaluations confirm that better results were obtained using the

recommended modeling.

2. Experimental Study

Empirical surface roughness (Ra) values were collected for four

truncheon test parts made with different FDM machines as follows:

- Two test parts were designed and fabricated with Lt values of

0.254 and 0.3302 mm.

- The reported Ra values of other two test parts were derived from

Campbell et al. (2002) with a layer thickness (Ltc) of 0.253 mm,

and Ahn et al. (2008) with a Lta of 0.254 mm [the updated values

were reported by Ref. 28].

2.1 Test part design

Campbell et al. (2002) and Ahn et al. (2008) presented a more

comprehensive test part for assessment of their analytical models. This

test part, called a truncheon, was first introduced by Ref. 29. As shown

in Fig. 1, the truncheon test part consists of several equivalent and

parallel cuboids in which the build angle of each cuboid is increasing

by a constant step angle with respect to a reference cuboid. Assuming

an upward build direction, the most right cuboid of truncheon is

selected as the reference cuboid, and it is designed so that the front side

of the reference cuboid has a surface build angle of zero degrees. With

this arrangement, as illustrated in Fig. 2(a), the front side of the

truncheon part spans build angles between 0 to 90o from the most right

Fig. 1 (a) Isolated view of the test part in CatalystEx, (b) The final test part after washing and assembly
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to the most left side; the top side of the truncheon part spans build

angles between 0 to 90o from the most left to the most right side; the

bottom side spans build angles between 90 to 180o from the most right

to the most left side; finally, the back side spans build angles between

90 to 180o from the most left to the most right side of the part. The

general surface roughness model parameters are illustrated in Fig. 2(b),

where θ is the build orientation (build angle), t the layer thickness and

θN the angle between vertical axis and normal to surface axis. The

truncheon part was fabricated considering the general surface

roughness model parameters by regarding a constant layer thickness

and varied build angles for each cuboid. This comprehensive design

enables the complete evaluation of the surface roughness distribution in

all build angle intervals which improves the defects of previews

designs.

Details of the process parameters of the reported truncheon test part

manufactured by an FDM apparatus is given in Ref. 19 which is as

follows: Ltc of 0.253 mm and an incremental surface build angle step

of θstep = 2 degrees (total cuboids: 90). In work by Ahn et al.,26 details

of the process parameters of the fabricated part are described as

follows: Lta of 0.254 mm and an incremental surface build angle step of

θstep = 3 degrees (total cuboids: 60). In the present study, an incremental

surface build angle (θstep = 5 degrees) was selected and the test part was

designed in CATIATM v5. For accurate measurement using a surface

scanner and a machine room size of 254 × 254 × 305 mm3, the

dimensions of each cuboid were set to 10 × 30 × 30 mm3, and the

dimensions of the entire truncheon are 220 × 30 × 30 mm3.

2.2 Test part fabrication and measurement process

The prototype was manufactured using a DimensionTM sst 1200es

3D printer (StratasysTM), in which the test part was sliced using

CatalystExTM software and acrylonitrile-butadiene-styrene (ABSplus)

material was used for manufacturing. The cost of each AM part had a

direct relationship with the building time of the part so the prototype

was fabricated horizontally. The model interior was solid and a sparse

support method was used for fabrication. The test part was solid and

fabricated with a sparse support method to reduce the final cost as

Fig. 2 (a) Front, back, top and bottom view of truncheon with corresponding build angles, (b) the general surface roughness model parameters30

Table 1 Empirical surface roughness (Ra) values for each build angle

Build

angle (°)

Ra-Report No.

Lt = 0.254 mm
Raave

(μm)

Ra-Report No.

Lt = 0.3302 mm
Raave

(μm)
Ra-A Ra-B Ra-A Ra-B

0 17.56 17.82 17.69 16.21 19.27 17.74

5 17.72 19.1 18.41 18.54 24.5 21.52

10 20.37 19.33 19.85 18.21 21.99 20.1

15 21.94 20.56 21.25 19.75 20.01 19.88

20 20.06 22.82 21.44 17.01 17.29 17.15

25 26.98 20.32 23.65 20.35 23.73 22.04

30 24.48 25.32 24.9 22.12 22.4 22.26

35 27.43 27.63 27.53 24.32 23.44 23.88

40 28.56 29.52 29.04 22.36 29.94 26.15

45 32.52 28.74 30.63 30.14 31.54 30.84

50 31.92 32.54 32.23 29.11 28.99 29.05

55 34.52 34.4 34.46 31.66 31.76 31.71

60 39.26 40.1 39.68 35.01 35.57 35.29

65 42.01 39.55 40.78 30.11 36.29 33.2

70 38.42 42.5 40.46 35.12 24.62 29.87

75 31.3 31.4 31.35 35.54 34.68 35.11

80 23.08 20.38 21.73 24.51 24.73 24.62

85 18.27 17.59 17.93 21.04 22.04 21.54

90 1.4 2.72 2.06 3.45 10.03 6.74

95 18.55 17.77 18.16 19.66 19.78 19.72

100 18.2 17.56 17.88 18.92 18.58 18.75

105 18.68 18.4 18.54 18.24 20.16 19.2

110 19.14 20.02 19.58 20.15 21.35 20.75

115 17.14 23.54 20.34 20.04 21.18 20.61

120 21.1 21.22 21.16 25.34 18.92 22.13

125 22.55 22.63 22.59 22.8 22.88 22.84

130 24.63 23.37 24 24.72 23.64 24.18

135 24.66 26.92 25.79 29.35 23.35 26.35

140 26.63 25.45 26.04 30.01 26.29 28.15

145 21.86 26.22 24.04 25.7 25.76 25.73

150 27.83 30.11 28.97 32.24 33.76 33

155 29.61 30.45 30.03 37.77 39.65 38.71

160 32.5 30.82 31.66 41.11 42.75 41.93

165 33.21 35.63 34.42 26.34 24.54 25.44

170 20.22 20.74 20.48 19.28 18.98 19.13

175 18.78 17.92 18.35 14.11 11.41 12.76

180 9.41 9.47 9.44 3.22 3.24 3.23



1592 / DECEMBER 2016 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 17, No. 12

shown in Fig. 1(a) (the blue color denotes the sliced support and the red

color denotes the sliced part). In the final stage, the test part was immersed

in a chemical solution for one day to thoroughly dissolve the support

material. In order that Ra may be assessed, no finishing operation was

implemented, as shown in Fig. 1(b). The test part surface was measured

using a MahrSurfTM MFW250 surface scanner for subsequent data

analysis. The Ra values measured by the scanner for test parts with an

Lt of 0.254 mm and 0.3302 mm are shown in Table 1. Two separate

roughness measurements were made on the test parts on the same surface

for each build angle. Raave denotes the average value between the Ra-

A and Ra-B values, which was the Ra value used in the evaluation

procedure.

3. Methodology

3.1 Artificial neural networks

A neural network is a massively parallel distributed processor made

up of simple processing units that have a natural tendency for storing

experiential knowledge and making it available for us.31 ANNs can be

grouped into two major categories: feedforward and feedback (recurrent)

networks. In the former network, no loops are formed by the network

connections, whereas one or more loops may exist in the latter. The

most commonly used family of feedforward networks is a layered

network in which neurons are organized into layers with connections

strictly in one direction from one layer to another.32

3.1.1 Radial basis function (RBF)

RBF neural networks (RBFNN) were independently proposed by

many researchers and are a popular alternative to the multi-layer

perceptron (MLP). RBFNN are also good at modeling non-linear data

and can be trained in one stage rather than using an iterative process as

in MLP and also learn the given application quickly. The structure of

the RBFNN is similar to that of MLP. It consists of a layer of neurons.

The main distinction is that RBF has a hidden layer which contains

nodes called RBF units. Each RBF has two key parameters that describe

the location of the function’s center and its deviation or width. The

hidden unit measures the distance between an input data vector and the

center of its RBF. The RBF has its peak when the distance between its

center and that of the input data vector is zero and declines gradually

as this distance increases. There is only a single hidden layer in a

RBFNN and there are only two sets of weights, one connecting the

hidden layer to the input layer and the other connecting the hidden layer

to the output layer. Those weights connected to the input layer contain

the parameters of the basis functions. The weights connecting the hidden

layer to the output layer are used to form linear combinations of the

activations of the basis functions (hidden units) to generate the network

outputs. Because the hidden units are non-linear, the outputs of the

hidden layer may be combined linearly and so processing is rapid.33 The

hidden neurons are processing units that perform the RBF. Each unit is

mathematically defined as in Eq. (1):34

 (1)

In Fig. 3, the neuron in the input layer just propagates input features

to the next layer. Each neuron in the hidden layer is associated with a

kernel function ϕ j(x), characterized by a center xj and a width σ j (spread).

Each output neuron, y, computes a simple weighted summation over the

responses of the hidden neurons for a given input pattern, x.

The jth input data point xj denotes the center of the RBF, and the

vector x is the pattern applied to input layer. Selecting the basis function

is not crucial to the performance of the network and the most common

one used being the Gaussian basis function which is used in this study.

It is defined in Eq. (2):34

, (2)

The output neuron is a summing unit to produce the output as a

ϕ x xj–( ), j 1 2 … n, , ,=

ϕ j x( ) 1/2σ i

2
x xj–

2( )–( )exp=  j 1 2 … n, , ,=

Fig. 3 Structure of an RBFNN31
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weighted sum of the hidden layer outputs as shown in Eq. (3):34

(3)

where ϕ j(x) is the response of the jth hidden node resulting from all

input data, wj is the connecting weight between the jth hidden node and

output node, and n is the number of hidden nodes. The center vectors,

, the output weights wj and the width parameter xj are adjusted

adaptively during the training of RBFNN in order for the data to fit well.

The weights are optimized using least mean square (LMS) algorithm

once the centers of the RBF units are determined. The centers can be

chosen randomly or clustering algorithms can be used. In this study,

centers were randomly selected from the data set.

In order to explain the above mentioned procedure in software

platform, the total process of the RBFNN is described as below:

The proposed modeling was coded in MATLAB® (v.R2014b)

software. The radial basis function neural network (RBFNN) was coded

using newrb function, where it creates a two-layer network. The first

layer has radbas neurons, and calculates its weighted inputs with dist

and its net input with netprod. The radbas transfer function uses Gaussian

basis function to find the optimum centers. Therefore, the proposed

model applied the Gaussian function due to the radbas transfer

function’s default configuration.31,35,36 The RBFNN conventionally

uses the Gaussian function as the RBF. It is notable to indicate that the

commonly suggested function in the approximation scope of RBFNN

is Gaussian basis function which have been investigated and discussed

in the literature.31,35 The second layer has purelin neurons, and calculates

its weighted input with dotprod and its net inputs with netsum. Both

layers have biases. Initially the radbas layer has no neurons. The

following steps are repeated until the network's mean squared error

falls below desired goal: 1) The network is simulated. 2) The input

vector with the greatest error is found. 3) A radbas neuron is added

with weights equal to that vector. 4) The purelin layer weights are

redesigned to minimize error.36

To use an RBFNN, an intelligent training algorithm is absolutely

necessary for determining the network parameters. ICA was used to

optimize the effective process variables accurately.

3.1.2 Imperialist Competitive Algorithm (ICA)

Imperialist competitive algorithm (ICA) is a new evolutionary

algorithm in the evolutionary computation field based on human being's

sociopolitical evolution that was proposed by Atashpaz-Gargari and

Lucas (2007).37 In ICA, the countries can be viewed as population

individuals and basically divided into two groups based on their power,

i.e., colonies and imperialists. Also, one empire is formed by one

imperialist with its colonies. Furthermore, two operators called

assimilation and revolution and one strategy called imperialistic

competition are the main building blocks that employed in ICA. The

implementation procedures are described as below:37

A) Initializing phase:

A.1. Like other optimization algorithms, ICA requires some initial

population to be created. Each solution (i.e., country) that in form of an

array can be defined via Eq. (4):37

(4)

where Pis represents different variables based on various socio-political

characteristics (such as culture, language, and economical policy), and

Nvar denotes the total number of the characteristics (i.e., n-dimension of

the problems) to be optimized. Corresponding to the word country in

imperialist competitive algorithm is “chromosome” in genetic algorithm

(GA) terminology.

A.2. Creating the cost function: In order to evaluate the cost of

countries, the cost function can be defined via Eq. (5):37

(5)

A.3. Initializing the empires: Based on cost values, a certain number

of countries that have the lowest cost are selected as imperialist (Nimp)

and the rest, known as colonies (Ncol), are divided among these

imperialists. Each imperialist and its allocated colonies form an empire.

The power of an empire assigns the initial number of its colonies.

Therefore the colonies should be divided among imperialists based on

the imperialist's power. For this purpose the normalized cost of an

imperialist is defined as follows:

(6)

In the above equation, cn is the cost of n-th imperialist and Cn is its

normalized cost. Normally, two methods can be used to divide colonies

among imperialist: (1) from the imperialists’ point of view which based

on the power of each imperialist; (2) from the colonies’ point of view

which based on the relationship with the imperialist (i.e., the colonies

should be possessed by the imperialist according to the power). Both

methods are given via Eqs. (7) and (8), respectively.37

(7)

(8)

where Pn is the normalized power of each imperialist, Ncol and Nimp

represent the number of all colonies and imperialists, respectively, and

N.Cn is the initial number of colonies of n-th empire.

B) Moving phase:

B.1. Assimilation: The imperialist countries try to absorb their

colonies toward themselves. For this purpose the assimilation policy is

considered in ICA. In this process the colonies move toward their

proper imperialist along different optimization axis. The direction of

the movement is the vector from the colony to the imperialist in which

the colony moves toward the imperialist by x units. The distance between

the initial position of colony and imperialist is defined by d and the

position of colony after movement is defined by a random parameter

with uniform distribution (x). By considering the assimilation coefficient

(β) as a number greater than one, x can be formulated as:

(9)

In assimilation policy it is not necessary to move colonies along the

vector from colony to the imperialist and the movements in this direct

path without any deviation just increase the exploitation ability of the

algorithm. Also the lack of diversity often leads to stagnation, as the

model finds itself trapped in local optima. Therefore, it is vital to

increase the search area around the imperialist by adding a random

F x( ) Σj=1

n
wjϕj x( )=

x

Country P
1

P
2

P
3

… PNvar
, , , ,[ ]=

Cost f Country( ) f P
1

P
2

P
3

… PNvar
, , , ,[ ]( )= =

Cn cn maxi ci{ }–=

Pn
cn

Σi=1

nimp
ci

---------------=

N Cn⋅ round Pn Ncol⋅{ }=

X~U 0 β d×,( )
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amount of deviation to the direction of movement. This new direction

defined by a deviation angle (θ) which is a random number with

uniform distribution as follows:

(10)

where γ is a parameter that adjusts the deviation from the original

direction. Nevertheless, the values of β and γ are arbitrary; in most of

the implementations a value of about 2 for β and about π/4 (rad) for γ

results in good convergence of countries to the global minimum.

B.2. Revolution: In addition to assimilation policy, the revolution

policy is considered that is a sudden change in the position of countries.

The revolution increases the exploration of the algorithm and prevents

the early convergence of countries to local minimums.37

C) Exchanging phase: Based on the cost function, when the new

position of a colony is better than that of the corresponding imperialist,

the imperialist and the colony change their positions and the new

location with lower cost becomes the imperialist.

D) Imperialistic competition phase:

D.1. The total power of an empire: It is influenced by the power of

imperialist country and the colonies of an empire via Eq. (11):37

(11)

where T.Cn is the total cost of the n-th empire and ξ is a positive small

number that is considered to be less than 1.

D.2. Imperialistic competition: all empires try to take the possession

of the colonies of other empires and control them. This imperialistic

competition gradually brings about a decrease in the power of weaker

empires and an increase in the power of more powerful ones. This

imperialistic challenge is approached by just selecting some (usually

one) of the weakest colonies of the weakest empire and making a

competition among all empires to possess colonies (or colony). The

possession probability (Pp) of each empire is related to their total power

in the competition process. Based on this theory, these colonies will not

definitely be possessed by the most powerful empires, but these empires

will be more likely to possess them. The normalized total cost of an

empire is determined as follows:37

(12)

where N.T.Cn and T.Cn are the total cost and the normalized total cost

of n-th empire, respectively. Having the normalized total cost, the

possession probability of each empire is obtained by the following

equation:37

(13)

To distribute the mentioned colonies among empires vector P is

formed as follows:

(14)

Then, vector R with random numbers and uniform distribution is

created which has the same size as P as follows:37

(15)

After that, by subtracting R from P vector D is formed:

(16)

Referring to vector D, the mentioned colony (colonies) is controlled

to an empire whose corresponding index in D is maximized.37

E) Eliminating phase: When an empire loses all its colonies (i.e.,

their colonies will be divided among other empires), it is assumed to be

collapsed and will be eliminated.

F) Convergence phase: At the end, all the empires except the most

powerful one will be collapsed and the colonies will be handled by this

unique empire. It should be noted that imperialist and colonies have the

same position and power in this stage.

Taking into account the key phases described above, the steps of

implementing ICA can be summarized as follows:37

• Step 1: Defining the optimization problem.

• Step 2: Generating initial empires by pick some random points

on the function.

• Step 3: Move the colonies towards imperialist states in different

directions (i.e., assimilation).

• Step 4: Random changes occur in the characteristics of some

countries (i.e., revolution).

• Step 5: Position exchange between a colony and imperialist.

• Step 6: Compute the total cost of all empires.

• Step 7: Use imperialistic competition and pick the weakest

colony from the weakest empire.

• Step 8: Eliminate the powerless empires.

• Step 9: Check if maximum iteration is reached; go to Step 3 for

new beginning. If a specified termination criterion is

satisfied stop and return the best solution.

3.2 Selection of input and output parameters

In developing an RBFNN model prediction of surface roughness

distribution in an FDM built part, one should consider the main factors

involved in the creation of the rough surface. Based on former research,

it was assumed that the variables of build orientation (angle), and layer

thickness were the inputs, and the arithmetic mean surface roughness

(Ra) was the output. The important reasons for selecting appropriate

input parameters are:

(1) In an FDM process, five parameters (layer thickness, build angle

(or build orientation), the raster angle, the raster width and the air gap)

are known to be important to the creation of roughness. Previous studies

have concluded that according to the evaluation of the most well-

known models, layer thickness and the build angle have a significant

effect on surface roughness and varying the other parameters slightly

modifies the output.11,17,19-21,25

(2) Because of the specific way in which it functions, the ANN must

be trained with empirical data derived from identical test parts under

the same experimental conditions. Only two studies investigated identical

test parts and different designs to express surface roughness estimation

using analytical modeling.19,26

(3) To more effectively demonstrate the advancement achieved by

the model proposed in this paper, the ANN model was established in

the same way as the most frequently cited estimation models.9,13,19,26,27,38

3.3 Training and test data

θ ~U γ– γ,( )

T Cn⋅ Cost imperialstn( ) ξmean Cost colony of empiren( ){ }+=

N T Cn⋅ ⋅ T Cn⋅ maxi T Ci⋅{ }–=

PPn

N T Cn⋅ ⋅

Σi=1

Nimp
N T Ci⋅ ⋅
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The research reported in this paper uses experimental data from two

fabricated test parts (74 data sets) and two other test parts (32 data sets)

from reported data. The input data were normalized in the interval of

[0, 1]. The performance of the RBFNN is heavily affected by the centers

and widths of the kernel functions in the hidden layer. The RBFNN was

developed initially to model the surface roughness distribution using

important process parameters which were studied in the experiments.

The principle is that newrb creates neurons one at a time. At each

iteration, the input vector that results in lowering the network error the

most, is used to create a radbas neuron. The error of the new network

is checked, and if it is low enough, newrb is finished. Otherwise the

next neuron is added. This procedure is repeated until the error goal is

met, or the maximum number of neurons is reached.36

The added neuron is a radially symmetric Gaussian with specified

spread centered at the training vector that maximizes the correlation

between the hidden nodes and the output layer targets.

It was assumed that the desired approximation goal error is an MSE

= 0 and the training process increases the number of hidden neurons

from 1 to 74 (by steps equal to one). The network tries to converge to

the predefined value (MSE = 0) without getting over-trained. Several

trials have to be carried out to determine the process variables of the

RBFNN properly. Therefore, an optimization method was implemented

to apply the smart training algorithm for determining the network

parameters. ICA optimizes the effective variables including connection

weights, biases, maximum neuron numbers, spread, and the precise

data division. For each network parameter considering the MSE, MAE,

MAPE, and R values, the iteration number is greater than 40. The main

process variables of RBFNN and the optimized values after ICA

implementation are represented in Table 2. Considering the relevant

literature to ICA,37 it is extremely vital to assign the used parameters

of ICA, accurately. Initializing of the ICA parameters is represented in

Table 3.

Number of weight element indicates the number of weight and bias

values in the network. It is the sum of the number of elements in the

matrices stored in these three cell arrays of matrices which comprised

of IW, LW, and b. IW that defines the weight matrices of weights going

to layers from network inputs, LW which defines the weight matrices

of weights going to layers from other layers, and b which denotes

biases.36 As depicted in Fig. 4, after 27 decades the value of the cost

reaches to minimum cost and remains constant. Note that the mean

squared error (MSE) of training data was implemented as a cost function

in the ICA.

3.4 Training process

As shown in Figs. 5(a) to 5(d) and 6(a) to 6(d), prediction

performance and correlation (R) plots of the RBFNN and RBFNN-ICA

models for training and testing data demonstrates that the accuracy of

the RBFNN model for desired outputs is in good accordance with the

actual data. Meanwhile, the accuracy of the RBFNN-ICA model for

train and test data performs better than the RBFNN model. Table 4

represents the proposed approaches prediction performance representing

with different criteria. Regarding the results in Table 4, it is concluded

that the accuracy of both the RBFNN and RBFNN-ICA models in

training, testing, and all data sets is reasonably acceptable. However,

the RBFNN-ICA model outperforms in training, testing, and all data sets

due to the intelligent optimization of the process variables. Altogether,

all assessments confirm the strength of the recommended methods in

surface roughness prediction.

It is noteworthy to describe that the correlation coefficient (R value)

determines the association among outputs and target values of the model

- an R value of 1 and 0 indicates a strong and random association,

Table 2 Selected parameters

RBFNN

Transfer function Radbas-Purelin

Number of Layers 2

Number of Weight Elements 341

Maximum Neuron Number 74

Data Division Random

Performance Goal 0

Spread 1

Optimized parameters of RBFNN by ICA

Number of Weight Elements 297

Maximum Neuron Number 55

Spread 0.3913

Data Division Determination
Train 80%

Test 20%

Table 3 Parameters of ICA approach

Parameter Value

Number of initial countries 80

Number of initial imperialists 20

Number of decades 40

Revolution rate 0.3

Assimilation Coefficient (β) 2

Assimilation Angle (γ) 0.02

Fig. 4 Convergence of the ICA to the best cost

Table 4 Performance of the RBFNN and RBFNN-ICA for the training,

testing, and all data sets

Data set Model MSE MAE MAPE (%) R

Training
RBFNN 2.31 1.12 6.30 0.9822

RBFNN-ICA 0.28 0.27 2.62 0.9978

Testing
RBFNN 28.39 3.54 10.41 0.9036

RBFNN-ICA 8.87 2.01 7.19 0.9325

All
RBFNN 7.48 1.60 7.11 0.9507

RBFNN-ICA 2.27 0.67 3.64 0.9851
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respectively. A perfect fit indicates that the data should fall along a line

with a slope close to 1 (45 degrees), meaning that the network output

tries to be converged to the desired target values which denotes the

minimum prediction error. The R value was 0.9507 and 0.9851 for the

RBFNN and RBFNN-ICA, respectively (all data set), indicating that

each model can predict an Ra value close to the measured values.

3.4.1 Error criteria

The different criteria used in this study are: MSE, MAE, MAPE, R,

and R2.

The regression index (R) which denotes the correlation between

outputs and targets. R2 is the coefficient of determination which

indicates the model accuracy and the MAPE which both of these criteria

were used for network simulation assessments. The MAPE gives a

normalized error, which allows an efficient comparison of nets derived

from different data sets, as shown by Eq. (17):

(17)

The coefficient of determination, R2 is calculated using Eq. (18):

(18)

The MSE at the end of each epoch taken from all the patterns is

calculated using Eq. (19):

(19)

The training process is terminated when the specified MSE or the

maximum number of epochs is achieved.

The mean absolute error (MAE) is a quantity used to measure how

close outputs of the model or predictions are to the actual values. The

mean absolute error is given by Eq. (20)

(20)

As the name suggests, the mean absolute error is an average of the

absolute errors , where ti is the target which denotes the

actual value of the Ra, oi is the output denoting the network estimation

value of the Ra, and N is the number of training patterns.
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Fig. 5 the accuracy of the models for training data in surface roughness prediction, (a) the performance of the RBFNN, (b) the correlation of the

RBFNN, (c) the performance of the RBFNN-ICA, (d) the correlation of the RBFNN-ICA
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4. Results and Discussion

4.1 Model performance

To represent the progress achieved with the recommended models,

the most well-known analytical models, which were evaluated in a

recent paper,30 are compared with the RBFNN model. Table 5 shows

the model performances (MAPE criteria) calculated at four build angle

ranges in MATLAB® (v.R2014b) software, including 0° to 45°, 45° to

90°, 90° to 135° and 135° to 180°, which provide more details about

the estimation error for different build angles.

It is concluded that a significant improvement was achieved using

this method for surface roughness estimation in comparison with other

analytical models. In test parts with Lt of 0.3302 mm, 0.254 mm, 0.253

(Ltc), and 0.254 (Lta) the RBFNN modeling reached the minimum

estimation error when compared to other models in all build angle

intervals. Moreover, the intelligent RBFNN based on ICA, improves

the overall performance of (MAPE) the network remarkably. Therefore,

this assessment displays the advantage of neural networks and intelligent

modeling application in surface roughness prediction.

4.2 Validity

Two different assessments were performed for the RBFNN and

RBFNN-ICA models validation which are the simulation of the proposed

models for truncheon test parts and 3D general parts.

4.2.1 Simulation for truncheon test part

The RBFNN and RBFNN-ICA models were simulated for four

distinct parts as illustrated in Figs. 7(a) to 7(d). The MAPE and R2

values for the network for each of the four different parts are shown in

Table 6. Figs. 7(a) to 7(d), indicate that, for test parts with Lt of 0.254

mm, 0.3302 mm, 0.253 mm (Ltc), and 0.254 (Lta) the RBFNN-ICA

gave the closest estimations to the actual values.

According to Figs. 7(a) to 7(d), Table 5, and Table 6 it is concluded

that the proposed models has an acceptable error close to that of the

actual data and it also shows a significant predictability of the fitted

surface roughness; thus, allowing process parameter optimization in the

process planning stage. Consequently, the capability of this modeling to

remedy the defects of analytical models has been validated.

4.2.2 Simulation for 3D general parts

In order to extend the ability of the proposed model to the 3D

general components, a comprehensive validation on 3D parts with

various conditions was carried out. The verification has been performed

over the specimens from the literature25,39 in this scope which were

manufactured with different process parameters, shapes, production

systems, and material. The required data for surface roughness

Fig. 6 the accuracy of the models for testing data in surface roughness prediction, (a) the performance of the RBFNN, (b) the correlation of the

RBFNN, (c) the performance of the RBFNN-ICA, (d) the correlation of the RBFNN-ICA
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assessment were derived from the literature.25,39 This assessment permits

to extend the capability of the model to most diffused material and to

different apparatuses. Fig. 8(a) shows the specimens that were fabricated

with ABS (FDM machine’s specification: Stratasys, Dimension BST

768), ABSplus (FDM machine’s specification: Stratasys, Fortus 400),

ULTEM 9085 (FDM machine’s specification: Stratasys, Fortus 400), and

Polycarbonate (FDM machine’s specification: Stratasys, Fortus 360)

with Lt of 0.254 mm.25 Fig. 8(b) shows the specimen with Lt of 0.254

mm, fabricated (FDM machine’s specification: Stratasys, Fortus 400)

for surface roughness evaluation in 19 different build angles of ABS

material (named as PS in the following assessments).39

Figs. 9(a) to 9(e) represent the surface roughness estimation

capability of RBFNN and RBFNN-ICA models for different parts

fabricated in varied conditions. As observed, a good accordance

between empirical data and the results of the proposed models is

obtained. This is confirmed by performance criteria; in particular, the

MAPE values of RBFNN and RBFNN-ICA models which are around

or lower than 10% for all components. As represented in Table 7,

regarding the MAPE, MSE, and MAE criteria, the overall performance

of the RBFNN-ICA is better than the RBFNN which confirms the

general strength of the ICA for proper optimization of the RBFNN

parameters. However, it is noteworthy to indicate that the performance

of RBFNN-ICA model can be further improved for general approaches

by changing the algorithm’s variables. Therefore, the proposed models

can be efficiently used to predict the surface quality of a prototype, in

an early stage of process planning. Altogether, these assessments

demonstrate the strength of the recommended approaches for

roughness estimation in varied conditions.

4.3 Robustness of networks

In order to evaluate the robustness of the proposed models, the

effective parameters of the RBFNN were studied. Moreover, the input

variables contribution on the output of the network was derived to

determine the most dominant input variable in the rough surface creation.

Fig. 7 Simulation results of the RBFNN and RBFNN-ICA models in different truncheon parts; (a) truncheon part with Lt=0.254 mm, (b)

truncheon part with Lt=0.3302 mm, (c) truncheon part with Ltc = 0.253 mm, and (d) truncheon part with Lta = 0.254 mm
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4.3.1 Sensitivity analysis

Sensitivity Analysis is used to determine how “sensitive” a model

is with respect to the changes in the parameter values and to the

changes in the model structure. The sensitivity coefficients describe the

change in the system outputs due to variations in the parameters that

affect the system. The weights method (Garson’s algorithm) is used in

Table 5 MAPE values of surface roughness prediction for different models

Model Lt (mm)
Build angle (o)

0 ≤ θ ≤ 45 45 < θ ≤ 90 90 < θ ≤ 135 135 < θ ≤ 180

Pandey

0.3302

20.78 118.22 48.75 275.97

Campbell 1683.25 65.64 70.13 2221.69

Byun 70.15 150.85 244.09 47.20

Ahn 226.85 645.07 563.52 122.85

Mason 188.83 629.43 589.98 115.63

RBFNN 3.20 21.19 4.66 7.25

RBFNN-ICA 1.71 13.25 0.98 0.35

Pandey

0.254

13.56 183.03 16.54 99.49

Campbell 1279.15 67.88 59.28 1299.83

Byun 39.88 96.13 175.93 45.57

Ahn 138.33 950.35 434.21 76.30

Mason 112.91 932.79 451.24 89.29

RBFNN 5.04 9.43 2.30 6.82

RBFNN-ICA 4.87 8.22 1.29 4.05

Pandey

0.253

(Ltc)

29.49 87.69 26.48 60.44

Campbell 723.36 64.16 56.51 648.42

Byun 47.69 158.48 195.88 52.52

Ahn 107.56 498.97 468.61 69.52

Mason 91.37 482.11 491.76 90.59

RBFNN 5.28 5.06 5.36 5.63

RBFNN-ICA 4.80 4.09 5.04 1.19

Pandey

0.254

(Lta)

45.66 98.93 33.91 121.43

Campbell 252.29 61.19 48.97 485.68

Byun 62.98 165.46 205.53 61.65

Ahn 88.42 568.92 488.19 19.86

Mason 90.45 550.59 511.09 43.39

RBFNN 14.85 1.90 7.64 5.62

RBFNN-ICA 5.73 0.12 7.927e-05 2.8121e-05

Table 6 Estimation of the performance of the network for different test parts

Network
Lt = 0.254 mm Lt = 0.3302 mm Ltc = 0.253 mm Lta = 0.254 mm

MAPE (%) R2 MAPE (%) R2 MAPE (%) R2 MAPE (%) R2

RBFNN 9.05 0.9375 5.89 0.9402 5.33 94.18 7.50 0.9385

RBFNN-ICA 4.08 0.9852 4.61 0.9808 3.78 97.04 1.79 0.9828

Fig. 8 Specimens for model verification, (a) different materials with complex shapes,25 (b) the part with different slopes39
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Fig. 9 Simulation of the RBFNN and RBFNN-ICA models for general 3D parts; (a) part built with ULTEM 9085, (b) part built with ABS, (c) part

built with Polycarbonate, (d) part built with ABSPLUS, (e) part built with different slopes

Fig. 10 Relative importance of (a) RBFNN-ICA and (b) RBFNN
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this study as a procedure for partitioning the connection weights to

calculate the relative importance of the various inputs and was first

proposed by Garson et al.40 and repeated by Goh et al..41 The input

variables that do not have a significant effect on the ANN performance

can be excluded from the input variables. The relative importance (RI)

of the input variables can be written as Eq. (21).

(21)

where ni and nh are the number of neurons in the input and the hidden

layers, respectively. Whi is the absolute value of connection weights

between the input and the hidden layers and Who is the absolute value

of the connection weights between the hidden layers and the output

layers. The RI of input variables in the RBFNN and RBFNN-ICA

models are illustrated in Fig. 10. Fig. 10 shows that the input parameter

build angle has the significant effect on the output of the RBFNN and

RBFNN-ICA models with 56.78% and 60.59% of RI, respectively.

This outcome reveals the dominant effect of build angle variation in

rough surface creation.

4.3.2 Network parameters analysis

According to the literature,31,35,42 the performance of the RBFNN is

highly sensitive to the size of neuron number and the value of the

spread variables. Therefore, the effect of the number of neurons and

spread variables were studied on the proposed networks performances

(performance was determined by MSE criterion in training data sets).

In order to further study the influence of the number of maximum

neurons on robustness of the RBF network, the performance (MSE) of

the RBFNN and RBFN-ICA models were illustrated against the variation

of neuron number. The RBFNN was trained with the optimized data

division determined by ICA which was defined as the training and

testing data percentage of 80% and 20%, respectively. As observed in

Fig. 11(a), the general trend for the prediction error of training data sets

increases by decreasing the number of neurons. This could be interpreted

as the RBF network wanting to allocate one neuron for each input data

in the early stages. The RBFNN and RBFNN-ICA models reached to

the optimum goal by using 74 and 55 neurons, respectively. This attempt

gave the performance (MSE) of 2.31 and 0.28 for RBFNN and RBFNN-

ICA models, respectively. Fig. 11(b) shows the performance of the

RBFNN-ICA in finding the optimum spread value where this parameter’s

default value was set to 1 in the RBFNN. It is notable to indicate that

the RBFNN model performs well in the spread value of around 1 and

the optimum values cannot be determined without a large number of

trials, so this duty was performed by intelligent algorithm. Therefore,

for this variable, the parameter analysis includes only the determination

of the optimum values for RBFNN-ICA model. As depicted in Fig.

11(b), the general trend for this parameter represents that the prediction
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Table 7 The performance of the RBFNN and RBFNN-ICA models for different parts

Test parts Model MSE MAE MAPE (%)

ABSPLUS
RBFNN 9.02 2.44 7.68

RBFNN-ICA 6.86 1.97 6.21

Polycarbonate
RBFNN 3.29 1.42 5.09

RBFNN-ICA 1.85 0.60 1.88

ABS
RBFNN 10.80 2.63 9.60

RBFNN-ICA 8.66 2.14 7.82

ULTEM9085
RBFNN 24.54 3.61 12.46

RBFNN-ICA 18.52 3.20 11.05

PS
RBFNN 9.05 2.23 9.92

RBFNN-ICA 7.97 2.11 8.97

Fig. 11 (a) The effect of the number of neurons on the RBFNN and RBFNN-ICA performance (MSE versus the maximum neuron), (b) the effect

of the spread parameter on the RBFNN-ICA performance (MSE versus spread)
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error increases by increasing the spread value. Therefore, it is concluded

that the best spread value is 0.3913. Altogether, the ICA optimization

can effectively improve the performance of the RBFNN by improving

the maximum neuron size and spread variables.

5. Conclusion

The limiting aspect of FDM is the surface quality of the fabricated

parts which is initiated from the layered manufacturing principle. To

improve the surface roughness of the part fabricated by FDM, modeling

of the surface roughness distribution for optimizing the effective

parameters before the fabrication process is used for more precise

planning of the AM process. Analytical estimation of surface roughness

distribution has been applied to improve the surface quality. However,

such estimates may often not accurately predict the surface roughness

for all the ranges of the surface build angles. Therefore, in this paper,

an RBFNN was applied using empirical data derived from a specific

test part. Precise adjustment of the process variables (such as weight

connections, biases, spread, and the number of neurons of the RBFNN

model) is the most important part of the intelligent training algorithm.

ICA is one of the optimization algorithms with high performance of

convergence, fast speed and limited number of parameters. In this

direction, Using ICA the effective parameters were optimized

accordingly. The RBFNN-ICA model had the best accuracy and

precision in estimating the surface roughness of the FDM built parts.

The MAPE values of the RBFNN and RBFNN-ICA models were 7.11%

and 3.64%, respectively, and the MSE were 7.48 and 2.27, respectively.

The comparison of the proposed models with analytical models

demonstrated the improvement achieved in the performance of the

estimation. The significant improvement in the estimation of surface

roughness was achieved at all ranges. The results of the simulation

confirmed the accuracy of more fitted responses in the RBFNN-ICA

model. The robustness of the RBF network was studied using an

assessment over effective variables of RBFNN model and the sensitivity

analysis evaluation of the input parameters, where the proposed models

showed the best performance at the optimum values of 55 for maximum

neuron number and the spread value of 0.3913. The proposed neural

network model based on intelligent optimization is the best and most

appropriate method to predict surface roughness because it uses

empirical data that simultaneously contains all of the factors that affect

surface roughness, such as roughness from the staircase effect, support

burrs, material properties and other factors.
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