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The focus of this paper is to develop a semi-parallel control method using an inversion of identification model of a magneto-

rheological (MR) fluid damper along with a smart predictor controller (SPC) for a damping system using that damper and an electro-

hydraulic actuator (EHA) in order to realize the real time position/force control of the industrial task requiring interaction with the

environment. The inverse model of MR fluid damper is established base on a self-tuning Lyapunov-based fuzzy (STLF) model. This

STLF model is designed in the form of a center average fuzzy interference system, of which the fuzzy rules are planted based on the

Lyapunov stability condition. In addition, in order to optimize the STLF model, the back propagation learning rules are used to adjust

the fuzzy weighting net. Meanwhile, the SPC is constructed using a nonlinear PID controller (NPID) base on feedforward neural

network and a smart Grey-Markov predictor (SGMP). Here, the NPID controller is built to drive the system to desired targets.

Additionally, a learning mechanism with robust checking conditions is implemented into the NPID in order to optimize online its

parameters with respect to the control error minimization. Besides, the SGMP with self-tuning ability of the predictor step size takes

part in, first, estimating the system.
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1. Introduction

In the last decade, EHAs have shown significant advantages in

industrial robot applications where force or position control with high

accuracy is exceedingly necessary. In most cases, position control is

appropriate when the industrial robot application is not requiring a

compliant system to solve, but when any contact is made between the

industrial robot end-effector and the environment, such as grinding,

polishing, deburring, assembly and so on, position control might not

suffice. It is necessary to control not only the position of the robot but

also the contact force between the end-effector and the environment.1

In these kinds of applications, the ability of force control systems to

track varying desired signal is often required for the proper operation

of the technological process. In addition, the task of position control of

the hydraulic actuator is very important. Therefore, a new quality and

significant improvement in the functioning of the press can be obtained

with a simultaneous realization of position feedback, which is actually

a hybrid control algorithm. Besides the benefits, in contrast to the
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simplicity of EHAs, their control problem is very complicated due to

nonlinearities and large uncertainties. Furthermore, working

environments always contain unknown perturbations and disturbances

that affect the control performances, such as stability, frequency

response, or loading sensitivity. These problems cause many challenges

for the modeling and design of feedback controllers for EHA

applications. Numerous experimental systems using EHAs have been

then conducted for doing research on how to improve the system

performances.2-6 Additionally, in order to overcome the control

problems for these complex systems, several control strategies have

been proposed.7-10 In addition, the force control of hydraulics system

for contacting tasks have been developed and discussed in Ref. 11. The

comparison results by mean of real-time experiments proved

convincingly that the proposed controller can enhance the acceptable

performances. However, the force control strategies are to use force

sensors where the reliability and accuracy are limited since the work-

sites are filled with noise and thermal disturbances. Therefore, the

demand for sensorless control is necessary considering sensors’ cost

and reliability in real time control strategies.

In force damping control problems, MR fluid damper which is

capable of generating a force with magnitude sufficient for rapid

response in large-scale applications has recently received more

attention because they offer the adaptability of active control devices

without requiring the associated large power sources,12-17 while

requiring only a battery for power.17 Additionally, these devices offer

highly reliable operations and their performance is relatively insensitive

to temperature fluctuations or impurities in the fluid.18 However, a

major drawback that hinders its application rests with the nonlinear

force-displacement and hysteretic force-velocity characteristics.

Therefore, one of the challenges involved in creating high performance

MR fluid damper in force damping control applications is the

development of accurate models that can take full advantage of the

unique features of the MR device. Both parametric and nonparametric

models have been built by researchers to describe the behavior of MR

fluid dampers.19-25 However, these techniques demanded high

computational cost to generate and optimize the model parameters and/

or the model architectures and the training methods were complex.26 

Base on the above analyses, a position/force damping test rig for the

EHA using MR fluid damper named the electro-hydraulics damping

system (EHDS) is developed in this paper in order to investigate the

simultaneous position and force control performances. In this system,

the EHA is used to support the position of the loading system as a

guiding motion part while the MR fluid damper is used to support force

as punch tool. Furthermore, for the purpose of improving force and

position control performance with high precision of hybrid hydraulic

systems, a semi-parallel position/force-sensorless control strategy is

proposed in this paper for application of EHDS. The proposed control

method is a combination of the smart predictive control (SPC), and MR

fluid damper identification techniques using a self-tuning Lyapunov-

based fuzzy approach (STLF). Here, the SPC is constructed using a

nonlinear PID (NPID) and a smart Grey-Markov predictor (SGMP),

which is developed from the typical single variable first order grey

model GM (1,1) and Markov chain forecasting technique. First, the

NPID is to drive the system to follow desired targets. To improve the

control quality, the parameters of PID controller are online optimized

with respect to the control error minimization by using a neural

network-based learning mechanism under robust checking conditions

which are theoretically designed to ensure the robust stability and

disturbance rejection capability. Second, the SGMP bases on only a

few historical system data to enhance two tasks: to estimate the system

output in advance which is then used for deriving the control input and

optimizing the control parameters; to compensate effectively the

influences noises and disturbances on the system. Besides, the

prediction step size, p, is online regulated by fuzzy inferences to reduce

the settle time and overshoot problems of the control response. As a

result, the overall control performance is significantly improved.

Meanwhile, to obtain force-sensorless control ability, an inversion

model of the MR fluid damper is implemented based on a developed

STLFM model.26 The STLFM model is constructed in form of a center

average fuzzy inferences system, of which the fuzzy rules are designed

based on the Lyapunov stability condition to estimate directly the MR

damping force output which respect to the MR characteristics. In

addition, the back propagation learning rules are used to adjust the

fuzzy weighting net to optimize the STLFM model. In order to verify

ability of a controller applied to the EHDS as in real working

conditions, the electrical noise is also added to the feedback sensor

signals of the control system. Experiments are carried out to show the

high accuracy of both force and position control of the EHDS using the

proposed semi-parallel control strategy, even in the varying external

disturbance of the working environment.

2. Experimental set up of EHDS

To develop the suggested parallel control strategy as well as to

investigate its applicability, an experimental system using a commercial

EHA and MR fluid damper has been set up. The system configuration

is depicted in Fig. 1. In this system, an EHA (Bosch Rexroth

C1620S153) which includes a gear pump, a supplementary valves

system driven by a proper driver was installed to adjust the movement

of the main cylinder (D × d × L = 35 × 14 × 500 mm). The speed of

the motor is driven by a Devantech MD03 DC motor driver. To

generate the load for the system, a MR fluid damper (Lord RD-1005-

3) was then attached to the end-effector of the hydraulic cylinder. In the

Fig. 1 Structure of experiment EHDS
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presence of an applied current (as well as magnetic field inside the MR

fluid damper), the iron particles acquire a dipole moment aligned with

the external field which causes particles to form linear chains parallel

to the field, as described in Fig. 2. This phenomenon can solidify the

suspended iron particles and restrict the fluid movement. Consequently,

yield strength is developed within the fluid. The degree of change is

related to the magnitude of the applied magnetic field, and can occur

only in a few milliseconds. By employing the MR damper with ability

to change its viscosity corresponding to the applied current through a

voltage/current converter (Rheonetic Wonder Kit), any desired loading

profile could be achieved. A linear variable differential transformer

(LVDT WTB 5-0500MM) was employed to measure the piston-rod

displacement of the cylinder (which is sent to the SPC control to

perform the position control part) while a compatible load cell with

2000N capacity made by Bongshin Corp. was attached in series with

the cylinder rod to measure the loading force (which is used to

compared with the force estimated by the STLFM model as well as to

investigate the force-sensorless control performance).

For the control part, a compatible PC a 12-bit A/D PCI board

(Advantech, PCI 1711 card), a D/A PCI board (Advantech, PCI 1720

card) and a 32-bit Computing Measurement counter board, PCI Quad-

04, were used to convert in turn the LVDT and load cell signals to

position and force data which are used for the further investigations,

and developments of the control system. Here, a software control

algorithm for the system was coded in C-mex programming language

combined with Real-Time Windows Target of Matlab/Simulink

environment with 0.01s of sampling period to perform the control

verification. Finially, the experimental apparatus is set up and displayed

in Fig. 3.

3. Semi-Parallel Position and Force-Sensorless Controller

Design

As introduced above, the proposed semi-parallel control method is

presented in Fig. 4. Here, the controller consists of two main parts

which respect to the force and position generators. First the two

position and force-sensorless controllers are used to compute the

control signal iest and uSPC that are sent to the position and force

generator by using the SPC and ISTLFM1, respectively. Furthermore,

the predicted displacement error obtained by the SPC is then used to

estimate the additive compensated control signal, Di, using ISTLFM2

which is added to the applied current to improve the control

performance. Finally, the control signal i for the force generator, which

is ensure the force control performance, is increase with an amount

equal to the additional control signal, Di, to compensate the position

and force-sensorless control performance with the position generator.

As a result, the design control algorithm has enough control ability for

the application for the EHDS with the desirable position and force

performance.

3.1 Design of force-sensorless control system

As described in Introduction, the force-sensorless control system is

implemented base on the developed STLFM model. The designed

Fig. 2 The working principle of MR fluid

Fig. 3 Experimental set up of EHDS

Fig. 4 Structure of semi-parallel position/Force-sensorless damping

control system
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STLFM model contains two parts: one is the Lyapunov-fuzzy inference

(LFI) to estimate the damping force caused by the displacement of the

damper rod, and the other is the gain fuzzy inference (GFI) to switch

between the damping force levels with respect to the current supplied

for the damper coil. In this STLFM model, the stability condition by

using Lyapunov are determined to design the fuzzy inference and

guarantee the relationship between the model input (piston displacement

and velocity) and the output (estimated damping force). By analyzing

the relation between the MR damper displacement, velocity, acceleration

and damping force, as one experiment shown in Fig. 5, it can be seen

that the MR damping behavior which respect to a fixed supply current

could satisfy the sufficient robust condition.

(1)

where, V(x) is the Lyapunov function candidate, x is the input of the

system. The fuzzy rules are finally established based on the damping

behavior to hold the condition (1). Besides, a damping system using

this damper was also setup to investigate the design model and

experimental was carried out to evaluate the effectiveness of the

STLFM model.

Based on the advantages of the direct modeling method for the MR

damper using the STLFM model, the inverse model, ISTLFM1, has

been derived as the damping force controller. The optimized STLFM

has been used to set initial parameters for the ISTLFM1. The ISTLFM1

model estimates current levels should be applied to the damper to create

desired damping forces. The key idea in this proposed control method

is to control the damping force without using any force sensor. As a

result, the optimized STLFM model is combined in the control system

as a virtual force sensor to predict the actual damping force. This

predicted force with the desired force are fed back to the ISTLFM1

controller to generate the control signal to MR fluid damper and, hence,

to perform closed-loop damping control.

Consequently, the force-sensorless control system is described as in

Fig. 6. From this figure, the ISTLFM1 model contains two parts. The

first part is a Lyapunov-based fuzzy inference (LFI’), which was

derived from LFI system of the optimized STLFM model, to estimate

the damping force (u) of the MR fluid damper. The second part is an

inverse gain fuzzy inference (IGFI) which was developed from GFI

system of the optimized STLFM model. The IGFI provides the current

(IMR_est) level needed to supply for the MR damper to generate the

damping force level (k). This damping force level can be computed

from the damping force (fMR_est) estimated by using the STLFM and the

estimated damping force (u) caused by the damper rod displacement/

velocity.

(2)

For improving the ISTLFM1 control accuracy, an error function (E')

was derived from the difference between the damping force (fMR_est)

measured by the STLFM and the desired force (fMR_ref) as

(3)

(4)

V
·

0<

x x· 0> x·· x;–<, ,

x x· 0< x·· x;–>, ,

x 0> x· 0< x·· x;–>, ,

x 0< x· 0> x·· x;–<, ,

⇔

Fig. 5 Experimental investigation: displacement, velocity and

acceleration vs. force at a sinusoidal exc. (2.5 Hz and 5 mm)

Fig. 6 General view of force-sensorless control system design
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where η 'a, η 'b and η 'w are the learning rates. The factor  in Eq.

(4) can be calculated as

(5)

where:

(6)

(7)

(8)

(9)

(10)

The next factors  in Eq. (4) can be computed by:

, where:  is calculated by using

Eqs. (6)~(9).

(11)

(12)

The final factor  in Eq. (4) can be found by:

(13)

where:  and  are calculated by using Eqs. (10)-(13),

and (14), respectively.

(14)

By using the above self-learning algorithm (Eqs. (4)-(14)), the LFI’

can work more precisely in estimating the damping force (u) with

respect to the displacement/velocity.

Additionally, another inverse model, ISTLFM2, is constructed with

the same principle of ISTLFM1 to estimate the additive control signal

of the MR fluid damper based on the predicted displacement error

information given by the SPC controller. This additive signal is then

sent to the force control system to balance the position and force

control performance through a conversion gain kc.

(15)

3.2 Design of smart predictive controller (SPC)

As described in the Introduction, the SPC is constructed using a

nonlinear PID controller based on feedforward neural network and a

SGMP as shown in Fig. 7.

Here, the NPID controller is built to drive the system to desired

targets. Additionally, a learning mechanism with robust checking

conditions is implemented into the NPID in order to optimize online its

parameters with respect to the control error minimization. Meanwhile,

the SGMP with self-tuning ability of the predictor step size takes part

in, first, estimating the system output in the near future to optimize the

controller parameters in advance and, second, creating a compensating

control signal accordingly to the system perturbations and, consequently,

improving the control performance.

3.3 Nonlinear PID controller design

As mentioned before, the NPID controller consists of the neural

network-based PID control block and robust learning mechanism.

According to the control error, e(t), the proper driving command,

uNPID(t), is produced using the NPID algorithm. Synchronously, the PID

gains, Kp, Ki, and Kd, are tuned by the robust learning mechanism

which is based on back propagation method and robust constrains.

Since, the superb mixture of conventional PID controller and neural

network has the powerful capability of learning, adaptation and

tackling nonlinearity and, consequently, provides a good tracking

performance. The procedure to design this control module is as the

followings.

First, the control problem is taken into account in a single input and

single output system. The main control signal of the system can be

obtained in the time domain as bellow:

(16)

where: uNPID(t) and u(t–1) are in turn control signal in t and (t–1); uNN(t)

is the output of the feedforward neural network structure. The uNN(t)

can be described as follows:

(17)

where, Yg is the parameter which determines the shape of the sigmoid

function; x is the input of the sigmoid function which is computed

using the PID algorithm:

∂E′/∂wk

∂E′/∂aji

∂E′
∂aji

--------
∂E′
∂u
--------

∂u

∂μ j xi( )
----------------

∂μ j xi( )
∂aji

----------------= ∂E′/∂u

∂E′/∂bji

∂E′/∂u ∂u/∂μ j xi( )

i iest iΔ+=

uNPID t( ) u t 1–( ) uNN t( )+=

Fig. 7 General structure of SPC controller
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(18)

where, ep(t) is the error between the desired set point and the estimated

system output; ed(t) is the derivation of error e(t); ei(t) is the integral of

error e(t); uPID(t) is the PID control signal; Kp, Ki, and Kd are the

proportional gain, integral gain, and derivative gain, respectively.

Second, these PID gains, Kp, Ki, and Kd are tuned using back

propagation learning algorithm as:

(19)

where ηp, η i, and ηd are the learning rates determining the convergence

speeds of updated control gains; E(t) is an error function which is

defined as

(20)

where, yref(t) and  are the desired set point output and the

estimated output, respectively.

From Eqs. (17), (19) and (20), it leads to the following equation:

(21)

Third, in order to stabilize the control system, the robust updating

rule is implemented into the learning mechanism to refine the PID

gains. For robust control approach, there are two control objectives:

closed-loop robust stability which must be checked with reasonable

margins; and closed-loop disturbance attenuation.27 From Eq. (18), the

transfer functions of the PID controller, system open-loop and

sensitivity function are expressed as followings:

(22)

(23)

(24)

For the robust stability, an approximately minimal value of M = 1.4

(3 dB) gain margin for the closed-loop system is given by:

(25)

For the disturbance rejection requirement, the general upper bound

of the sensitivity is set to limit the peak value of disturbance

amplification as

, (26)

Finally, for each working step, the PID control gains are robustly

updated to satisfy the robustness requirements as the following rule:

(27)

3.4 SGMP predictor design

In the most ideal situation, feedforward control can totally eliminate

the effect of the measured disturbance on the system. However, the use

of feedforward control depends on whether the degree of improvement

in response to the measured disturbance justifies the added costs of

implementation and maintenance.28 Besides, this use leads to many

requirements such as a mathematical model of the system, knowing

control signal and/or effect of the system output to the load.29 To

overcome these weaknesses, grey predictor is a proper tool to provide

knowledge of the system process and disturbances as well.30-35 Since

the control of EHDS system is affected by variant random factors, highly

complex nonlinearities and large uncertainties in the systems, etc., the

prediction performance could not be always enhanced by single grey

model.36-38 The more the characteristics that relate to the system

dynamics are considered, the better prediction performance could be

achieved. Therefore, Markov chain forecasting method39-41 combined

with the GM (1,1) is then developed to further achieve the predicted

accuracy.

In grey prediction theory, GM (n, m) denotes a grey model, where

n, m are the order of the difference equation and the number of

variables. GM (1,1), the most popular grey model, is then used to

develop the SGMP of which the structure is shown in Fig. 8. As seen

in this figure, the FGP contains two inputs – the historical data of

desired output, yr(t), and actual response, y(t), and two outputs, 

and Du(t). Based on the observation of system responses, the first

Grey-Markov model, GMM1 (1,1), with dynamic FPSS estimates the

system response in the near future, , which is sent to the main

control unit to perform the control signal. At the same time, the GMM1

(1,1) also carries out the predicted system response at present which is

sent to the second grey model, GM2 (1,1), to estimate the effect of

noises and disturbances on the system response and, consequently, to

produce the correspondingly compensating control signal, Du(t). The

two outputs are then sent to the proposed control scheme to perform the

ŷ t p+( )

GPID Kp Ki

1

s
--- Kds+ +=

L s( ) P s( )GPID s( )=

S s( ) 1

1 L s( )+
------------------=

L s( )
1 L s( )+
------------------ M≤ 1.4=

L s( )
1 L s( )+
------------------ MD≤ MD 1>

ŷ t p+( )

ŷ t p+( )

Fig. 8 The structure of SGMP model
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closed-control loop (see Fig. 7).

3.4.1 The first Grey-Markov prediction model GMM1 (1,1)

As presented in Ref. 28, the grey prediction procedure of GM (1,1)

model is as follows:

Step 1: At least four output data points are needed to approximate

a system. For a nonnegative time series, n raw data is collected as:

(28)

Step 2: Use the accumulated generating operation (AGO) to obtain

y(1) from y(0)

(29)

Step 3: Apply a consecutive neighbor generation z(1) from y(1) by the

following mean generating operation (MGO):

(30)

Step 4: Establish grey differential equation of GM (1,1):

(31)

In which, parameter [a, b] can be obtained by using the least square

method as follows:

(32)

Where

(33)

Step 5: Set up the prediction model GM (1,1) as:

(34)

(35)

Step 6: Calculate the predictive output at (t+p)th step, : (p

is the prediction step size)

(36)

(37)

3.4.2 Partition of states by Markov chain forecasting model

As mentioned before, in the SGMP predictor, Markov chain

combined with the GM (1,1) is developed to further achieve the

predicted accuracy. The predicted output value  is obtained by GM

(1,1) model causes the residual error e(i) = y(0)− . Then the Markov

state transition matrix can be established in which the states are defined

for each time step. The residual errors are partitioned in to equal

portions, each state interval whose width is equal to a fixed portion of

the residual error. Finally, the actual error can be classified into those

states. The Markov chain is determined as follows:

(38)

where, qn, qn, …, qn, …, qn+k take discrete values in a state set ηq = {Θ1,

Θ2, …, Θn}.

A k-step transition probability for the Markov chain of Xn with N

states is represented as in Eq. (39):

(39)

The transition probability of state is defined as:

(40)

In Eq. (40)  represents the number of state Ei transferred into

state Ej by k steps and Mi introduces to number of appearances of state

Ei. Then, the transition probability matrix of state can be written as:

(41)

Since the future state transistion of system is determined, the

determination of grey elements E1i and E2i the changing intervals of the

estimation value is between E1i and E2i.

where, , , i = (1, 2, …, S) S is the amount of

states and , .

The most probable predicted value of the system is obtained as:

(42)

where,  is the average value of the historical data.

3.4.3 Improvement of designed prediction model

According to the complexity of the system, a forecasting model

produces random error and bad data in every prediction. The relative

error is considered as an indicator of prediction accuracy:

(43)

From Eq. (34) the prediction function can be obtained as:

(44)

(45)

where, , 

Denote
 

, one has:

ŷ
0( )

t p+( )

ŷ
0( )

t p+( ) y
1( )

t p+( ) ŷ
1( )

t p 1–+( )–=

ŷ
0( )

ŷ
0( )

mij

k( )

Ei E
1i E

2i,[ ]= Êi Ei∈

Ê
1i ŷ

0( )
t p+( ) Ai+= Ê

2i ŷ
0( )

t p+( ) Bi+=

Y
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To minimize the relation error that is dZ(Ψ)/dΨ = 0. It leads to the

following equations:

(46)

Then, Ψ can be determined as bellows:

(47)

Then the prediction function can be obtained as:

(48)

(49)

In addition, in a control system using grey predictor, the predictor

step affects directly on the system working performance. In case of

using a fixed step size, the predictor with a small step size speeds up

the system response but causes large overshoot or oscillation.

Otherwise, the predictor with a large step reduces the overshoot but

increases the rising time. To enlarge the efficiency of using this

prediction for control design, in this study, this step is self-adjusted

accordingly to the control error. In addition, an evaluating factor is used

to define the current predictor step size based on the last step and the

currently intended step to evaluate whether the predicted value is

suitable for the control target or not. The grey predictor step size p in

Eq. (37) at a time sequence (t+1)th is, therefore, modified as follows:

(50)

Here, two fuzzy sets, named fuzzy prediction step (FPS) and fuzzy

evaluation factor (FEF), are used to in turn generate the factors in Eq.

(49): FPS p and fuzzy evaluating factor γ (t). For these fuzzy designs,

triangle-type membership function is used as presented as (see Ref. 35

for more detail):

(51)

3.4.4 The second grey prediction model GM2 (1,1)

The purpose of using the GM2 (1,1) model is to predict the effect of

the noises and disturbances to the system at the coming step in order

to create the corresponding compensated control signal. Therefore, the

process to set up the GM2 (1,1) model is similar as that of the GM1 (1,1)

model shown in the previous section, except the input raw data

sequence. Here, the data sequence is the system response, , caused

by the noises and disturbances as:

(52)

By using the second grey model, GM2 (1,1), the estimated system

response affected by the perturbations at the coming step of time,

(n+1)th, is given

(53)

Finally, the compensated control signal with respect to the estimated

perturbation affecting to the system at the coming step of time, (n+1)th,

is obtained:

(54)

4. Experimental Results

The ability of the proposed control strategy applied to the force and

position control of the EHDS is verified in this section by a series of

experiments in the comparison with the other semi-parallel controllers.

Here, the control system is built in MATLAB/Simulink with with Real-

time Windows Target Toolbox of Matlab. To make the perturbed

movement, a large noise source containing the band-limited white noises

and the sine wave noise is generated real time from the PC during the

system operation as given:

(55)

where, A and ω are the amplitude and frequency of the sinusoidal

noise; Rnd(t) is the white noise signal with power density pwn. These

eff
0( )

Dis t( ) A ωt( )sin Rnd t( )+=
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parameters, A, ω and pwn, were changed randomly within ranges [0, 1],

[0.2p, p], and [0.001, 0.02], respectively, to generate the random

disturbances. The noise signal generated in Eq. (55) is continuously added

to the feedback displacement signal from the control system output with

a chosen gain to make a challenge for the position control problem.

Firstly, as the descriptions for the proposed force-sensorless control

method, the designed ISTLFM1 controller was firstly examined by

simulations before its application to the real-time semi-parallel control.

Therefore, a simulating scheme for the ISTLFM1 controller validation

was built as in Fig. 9. As seen in this figure, the validating force control

system contains three main blocks. The two blocks labeled as

‘STLFM1’ and ‘STLFM1*’ are similar and represent for the optimized

STLFM model. These blocks then function as the actual MR fluid

dampers. The remained block is the ISTLFM1 controller which was

designed from section 3.1.

The goal of the validation process is using the ISTLFM1 model to

control the second damper model, STLFM1*, to create the damping

force to follow the reference force given from the first damper model,

STLFM1. Therefore, a displacement/velocity signal was generated and

input into both the two damper models and the force controller. A

current command signal was applied to the first damper model,

STLFM1. The output of this model, called the first simulated damping

force, was used as a reference force signal for the damping system

based on the second damper model, STLFM1*, and the ISTLFM1

controller. Hence, corresponding to a force command sent from the

STLFM1, the ISTLFM1 generated a simulated current command to

control the damper model STLFM1*. This simulated current was then

fed into the STLFM1* together with the applied displacement/velocity

to produce the second simulated damping force. As a result, the

validation process carried out the comparison between the reference

current command and simulated current command obtained from the

ISTLFM1, and the comparison between the first and second simulated

damping forces. Consequently, the validating simulation results for the

force-sensorless damping control system based on the STLFM and

ISTLFM1 corresponding to the sinusoidal signal is shown in Fig. 10.

The figures show the system using the ISTLFM1 controller with the

virtual sensor STLFM tracked the desired damping force well.

Secondly, experiments on the EHDS were carried out to prove the

effectiveness of designed SPC controller with position control problem.

In this case, the motion generator will be controlled by the SPC

controller to track the desired target, while the force generator works as

a ‘disturbance generator’ to generate the disturbed load of damping

system. The experiments for the EHDS were done in case the working

condition contains the large disturbances. Fig. 11 displays the

displacement responses of the EHDS corresponding to a chirp

excitation (10 mm, [0.1-0.5] Hz) using the conventional PID controller

(kP = 0.724, kI = 0.213, kD = 0.031), self-tuning PID controller42 and

the proposed SPC controller. The results show that the EHDS using the

traditional PID controller and self-tuning PID controller are unable to

obtain the acceptable displacement control performances when the

Fig. 9 Simulation program for testing the ISTLFM controller

Fig. 10 Force-sensorless control simulation performances using

proposed models corresponding to a sinusoidal excitation

Fig. 11 Position control performances using SPC controller

corresponding to a chirp excitation
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system operates in the working environment including the large

disturbances. On the contrary, the SPC controller still has enough

ability to control the EHDS system with high accuracy even in the large

varying environment perturbation.

Finally, the proposed semi-parallel control technique was applied to

EHDS to perform the control target. The desired force and position was

given to verify the effectiveness of the proposed controller as in (56).

Figs. 12 and 13 represent the comparison between the designed semi-

parallel control strategy using conventional PID controller, STPID

controller, SPC controller without Markov chain in grey predictor

system and the proposed SPC controller.

(56)

The position tracking results and the force tracking performances

are shown in the sub-plots (a) and (b) of these figures, respectively.

Besides, the system actuations are analyzed in the subplots (c) to (f).

As the results shown in the sub-plots (a) and (b) of Figs. 12 and 13

with the dash-dot-red lines, it is clearly that the semi-parallel position/

force-sensorless control using the SPC controller always achieved the

better control performances. The system responses in this case were

faster, more accurate and stable than those of the other controllers.

These results prove the effectiveness of the proposed control method in

which the nonlinear PID controller and SGMP are implemented. The

capability of the SGMP in forecasting the position is depicted in Fig.

14 and analyzed in Fig. 15 using three evaluation criteria: root mean

square error (RMSE), average relative error (ARE) and coefficient of

determination (R2) which are defined as (57), (58) and (59),

respectively.

It is clear that the high prediction accuracy could be achieved by

using the SGMP. Based on the SGMP information, the control gains

were online optimized in advanced with respect to the estimated

control error using the robust tuning mechanism. Furthermore, the bad

effects of noises and disturbances were remarkably eliminated by the

compensating control action produced by the SGMP. As a result, the

precise tracking performances were enhanced by the proposed SPC

controller.

(57)

(58)

(59)

5. Conclusion

In this paper, an advanced semi-parallel control algorithm for

application to simultaneous position/force-sensorless control of EHA

ref

xr

fr
 0≤   if   x·r 0≥,

 0>   if   x·r 0<,⎩
⎨
⎧=

Fig. 12 Semi-parallel position/force-sensorless control performance corresponding to a saw-tooth excitation of position and multi-step excitation of

force using different controllers
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system using MR fluid damper is proposed. The control strategy is a

combination of the smart predictive control, and MR fluid damper

identification techniques using a STLF approach. The SPC control

approach is constructed from the nonlinear PID controller, and the

SGMP. Meanwhile, an observation of the previous system output

values is constituted into the SGMP to estimate the output in the near

future with the dynamic prediction step size which is fed back to the

main controller to obtain the control input. Moreover, an additive

correction to the control signal is introduced to another inverse model,

to estimate the additive control signal of the MR fluid damper based on

Fig. 13 Semi-parallel position/force-sensorless control performance corresponding to a sinusoidal excitation of position and multi-step excitation of

force using different controllers

Fig. 14 Comparative results of position prediction in two cases using Grey predictor and Grey-Markov predictor
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the predicted displacement error information given by the SGMP. This

additive signal is then sent to the force control system to balance the

position and force control performance as well as to compensate for the

influences of noises and disturbances and, subsequently, performs the

closed-loop control system.

To validate the designed control method, the EHDS test rig using

the EHA and MR fluid damper was implemented to investigate the

proposed semi-parallel control performance. The comparative study

with the other controllers was then conducted for the full evaluation.

The comparison results by mean of real-time experiments shown that

the best control performance could be always achieved by the proposed

controller. This method promises a feasible solution for semi-parallel

position/force-sensorless control of EHDS in industrial applications.
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