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Tool wear is one of the most important parameters in micro-end milling, and can be used to monitor the condition of the machine

and the tool. A micro-end mill has different characteristics from a macro-scale end mill; in particular, shank run-out (which is

negligible in the macro-scale tool due to the low aspect ratio) is significant in micro-end milling, inducing excessive tool wear and

reduced tool life and leading to sudden, premature failure. In this paper, a novel tool-wear monitoring method is described for

determining the state of a micro-end mill using wavelet packet transforms and Fisher’s linear discriminant. Force and torque signals

were measured using a dynamometer and were used to reflect geometric changes in the micro-end mill due to wear. Because of the

small signal-to-noise ratio, sensor signals measured during the milling process were periodically averaged, and the resulting single-

period signals provided improved efficiency of feature extraction using wavelet packet transforms. The extracted features were

classified in the wavelet domain and used to determine the tool state employing a hidden Markov model. The recognition results were

compared with those of an energy-based monitoring technique, and we found that our method could determine the tool state more

accurately for both normal wear and premature failure of micro-end mills.
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1. Introduction

Tool wear is one of the most important parameters for monitoring

the tool state in micro-end milling, and is directly related to the

machining quality.1 Direct, continuous observation of the tool and

workpiece quality is not readily accomplished during machining; hence

indirect techniques employing various sensor signals are typically used

to determine the tool state.2-5 It is more difficult to monitor the tool

state with a micro-end mill than with a macro-scale tool, because the

measured signal is small and hence is buried by noise.6,7 Additionally,

sudden failure at the flute may occur due to the small tool diameter.8-10

To overcome these problems, tool-wear monitoring is required for

micro-end mills. Moreover, due to the high speed of the machining

processes and the use of micro-scale tools, high-resolution sensors and

advanced signal processing methods are required to extract the features

related to tool wear. Monitoring focuses on changes in the tool wear

over time because the tool state is typically defined in terms of

geometrical changes in the tool.

Various sensor signals are used in tool wear monitoring, including

force, torque, and acoustic signals emitted during end milling, and

signal processing techniques are applied to extract salient data from the

raw signals.11-13 Analyses of the time and frequency domains are used

for feature extraction, and the selected features can applied to determine

the tool state using pattern recognition methods, such a hidden Markov

model (HMM), artificial neural network, or support vector machine.14

Feature extraction typically focuses on the energy of the measured

signal, the filtered signal, or the transformed coefficient.

In micro-end milling, where the tool wear is often <20 μm, the

relevant features can be difficult to extract from the signal because of

the small signal-to-noise ratio (SNR), or they may only be contained in

some specific range of the signal. Single-period signals, in which a

measured signal is split into periodic components with the same period
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as the rotation period of the spindle, allow a wear symptom in a

measured signal to be detected more easily because the signal should

appear periodically. Tool wear monitoring that focuses on wear symptom

detection in a single-period signal improves the efficiency of feature

extraction and tool state clustering compared with energy-based

monitoring methods.

Because of the high aspect ratio of the tool bit, run-out has a more

significant effect on rotational behavior in micro-end milling than in

macro-scale end milling, leading to tool wear imbalance and thereby

shortening the lifespan of the tool. Single-period tool analysis can reveal

the relationship between wear imbalance and tool life and enables tool

wear monitoring to anticipate sudden failures. In the micro machining,

the measured signals were very weak, and it could be buried by the

environmental noise. Wavelet packet transform (WPT) has advantage

in detection of fault symptom from the measured weak signal using

various basis and the subdivided frequency range. Also, in order to

reduce the diagnosis error, probabilistic estimation technique was

adopted. Using the HMM, diagnostic results were consider using the

not only the observed sensor signal but also previous state history.

In this paper, we describe a novel tool wear monitoring method based

on single-period signal analysis that uses a WPT and an HMM to

characterize tool run-out. The mechanical behavior of a micro-end mill

with tool run-out is investigated in terms of the tool life, the imbalance

torque, and the time variation in the torque. WPT and Fisher’s linear

discriminant were used to extract features from measured machining

signals, and HMM was applied to tool state recognition depending on

the tool wear (i.e., machining distance).

2. Condition Monitoring

2.1 Shank run-out

Because the diameter of a micro-tool is small, shank run-out is a

particularly significant problem.15,16 Shank run-out not only induces

unbalanced rotary motion and tool wear imbalance but also shortens

the tool life.

Shank run-out of a cutting tool leads to machined features that are

larger than the tool diameter due to unbalanced tool rotation. This is

caused by imperfect tool alignment, asymmetric tool geometry,

mismatch between the tool and the tool holder, and vibrations during

machining.17 Because of the small magnitude of shank run-out, it can

often be neglected in macro-scale machining; however, because of the

high aspect ratio and small tool diameter in micro-end milling, run-out

is more significant and affects the machining signals, wear, and tool

life.18 Shank run-out can be measured using a dial gauge, with the total

indicator reading (TIR) value defined as follows:

(1)

2.2 Strategy for tool wear monitoring

The force and torque signals can accurately reflect the machining state,

and the measured force signals correspond to differences in micro-end

milling behavior due to varying shank run-out effects, as shown in Fig. 1.

The force signals during micro-end milling were recorded at

machining distances of 0 m and 0.8 m. Fig. 1(a) shows the force signals

with small run-out; the waveforms are similar between the two

machining distances.

Fig. 1(b) shows the force with larger run-out; the imbalance at 0.8

m was larger than that at 0 m because of the large run-out, and the

maximum difference in force between the two machining distances was

repeated at 360° intervals (i.e., periodically with the rotation of the tool).

The geometric changes in the tool due to increased machining distance

(and hence tool wear) affect the machining signal.

In micro-machining, variations in machining signals with respect to

machining distance are weak compared with those in macro-scale

machining. The energy parameters, including the mean, peak, standard

deviation, kurtosis, and skewness, of the measured signal, cannot reflect

these slight variations due to increased machining distance, as shown in

Fig. 1(b). Therefore the machining distance (i.e., tool wear) at which

the maximum difference appears more accurately reflects the state of a

micro-end milling tool.

3. Theoretical Background

3.1 Wavelet packet transform

A wavelet transform is a convolution between a signal f(t) and a

daughter wavelet ψa,b(t), which is modified from a mother signal ψ(t)

via a dilatation a and translation b, and where ψ(t) is modified from the

mother signal f(t).19 The continuous form of the wavelet transform is as

follows:

(2)

A continuous wavelet transform (CWT) incurs substantial

computational expense and also leads to the creation of redundant

terms. To overcome this, the discrete wavelet transform (DWT) can be
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Fig. 1 The x-axis force signals during end milling (a) with a small run-

out and (b) with a large run-out. P1 and P2 denote the differences in

the maximum force between machining distances of 0 m and 0.8 m.
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used to analyze the signal, which is based on a dyadic form of dilatation

and translation (i.e., a=2j, b=k2j), and is defined as follow:

(3)

where j is the scale and k is the translation variation. With DWT, the

wavelet and scaling functions are applied to the signal as low-pass and

high-pass filters, respectively. The wavelet and scaling functions are

defined as follows:

(4)

(5)

where g[n]=(−1)1−nh[1−n], h[n−2p] and g[n−2p] are filter coefficients

of the low-pass and high-pass filter, respectively, and p is the filter

length. Using the above expressions, each wavelet coefficient aj[n] can

be decomposed into compact frequency ranges, namely a low-frequency

term aj+1[p] and a high-frequency term dj+1[p], i.e.,

(6)

(7)

DWT only analyzes the low-frequency terms, and hence the features

in the high-frequency terms are neglected. To cover the entire frequency

range, the WPT, which is an expanded version of the DWT, was used

to analyze the signal throughout the low- and high-frequency ranges

simultaneously. The wavelet packet bases at the child nodes are defined

as follows:

(8)

(9)

Where p is the number of nodes, and j is the level in the wavelet

tree. The wavelet packet coefficients were computed via the convolution

integral between the signal and the two-channel filter bank, i.e.,

(10)

Because the computed wavelet packet coefficients reflect the signal

and the daughter wavelet (i.e., the base), they can be changed by varying

the base. Several cost functions were used to choose the optimal base

to extract the features of interest. The chosen base can be used to

identify many features that are relevant for monitoring tool wear.20

3.2 Hidden Markov model

A hidden Markov model is a doubly stochastic process, with an

underlying stochastic process that is not directly observable and can

only be observed via another set of stochastic processes that produce a

sequence of observed symbols.21,22 The N hidden states S={S1, S2, …,

SN} are tool states, and the M observation sequences O={O1, O2, …,

OM} are machining signals during micro-end milling.23,24 An HMM is

described by the model λ = (A, B, π), in which

• A = {aij} is the state transition probability distribution, where aij

= P[qt+1=Sj | qt=Si], and the state at time t is qt. A = {aij} is a

probability of state Sj following state Si.

• B = {bj(k)} is an observation symbol probability distribution in

state j, where bj(k) = P[Ok at t | qt = Sj].

• π = {πi} is an initial state distribution where πi = P[q1=Si].

If the observations are continuous signals, the discrete probabilities

are replaced with continuous probability distribution function, which is

generally approximated by a weighted sum of M Gaussian distribution

η, i.e.,

(11)

where cjm is a weighting coefficient, μjm is the mean vector, Ujm is a

covariance matrix, and M is the number of components.25 The model

with a continuous distribution is given by

(12)

4. Feature Extraction using Wavelet Packet Transform and

Fisher’s Discriminant

Data on tool wear can be extracted from the machining signals, and

a wavelet packet transform was applied to detect the features of interest.

The wavelet coefficients were extracted from the signals according to

the machining distance using WPT. The wavelet coefficients were

determined by selecting the daughter wavelet, i.e., the base. For this

reason, the selection of a base is important to classify the state of the

micro-end mill according to the tool wear or machining distance.

Each base was evaluated using Fisher’s linear ratio, which can be used

to differentiate between groups and allows us to focus on a particular

group. The Fisher’s discriminant ratio (FDR) is defined as follows

(13)

where m is the mean and σ is the standard deviation of coefficients. The

means and standard deviations of the normal- and wear-state groups of

the tool were used for classification and concentration of the wavelet

coefficients. A large FDR means that the two groups are well

differentiated, and each coefficient is concentrated within the group.

Fig. 2 shows the application for the force data due to tool wear.

The machining signals reflect the tool state, and groups of signals

with different machining distances (i.e., different tool wear) were

analyzed using WPT and FDR to obtain a base for discriminating

between different groups. The optimal base was then used to generate

the wavelet coefficients used to diagnose the signal state. All bases

contain information on the daughter wavelet, level, node, and translation;

higher-level analysis provides greater accuracy but also requires more

computational time. The periodic signals were preprocessed to divide

the original signal into multiple single-cycle signals.

Fig. 3 illustrates the choice of the optimal base using FDR when
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two states are to be classified. In this analysis, single-period signals of

each state are used for detection, so the measured signals from the

micro-end mill were divided using a single-period time interval and

acquired via an optical fiber sensor.

Each single-period signal was resampled to have the same data length

for the WPT analysis because the single-period time intervals may differ

slightly. The resampling compensates for the data length variations. Fig.

3 shows signals for the two states, i.e., normal (A) and wear (B). The

signals of the two states were resampled to generate multiple single-

period signals, and the wavelet coefficients were estimated using FDR

for simultaneous classification and concentration.

Some bases can be used to separate the groups completely, whereas

other cannot separate the groups effectively. The separation depends on

the ability of the base that is selected to differentiate between the two

groups. A good base generates wavelet coefficients that are well

clustered and are separated according to the state, whereas a poor base

does not. The gray region in the rightmost part of Fig. 3 corresponds

to poor bases, and the black region represents good bases that produce

two isolated groups of wavelet coefficients, which correspond to the

two different states. Once good candidate bases have been identified,

the optimal base is chosen from among them by evaluating the FDR.

(The optimal base is the one that maximizes FDR.) Using this base, the

measured signals for each state can be classified and concentrated

simultaneously.26

5. Experimental Setup

The experimental setup is shown in Fig. 4. The workpiece was a 80

× 120 × 1-mm sheet of Al-5052 aluminum alloy. The micro-end mill

had two flutes, and the diameter was 500 μm. The machining signals for

tool wear monitoring were sampled via a data acquisition board (CP-

1103, dSPACE GmbH, Germany) at a sampling frequency of 20 kHz

with a 9-kHz low-pass filter for antialiasing. The tool wear was

measured using a digital microscope (ICS-305B, Sometech Vision Co.,

Ltd., Korea) at 0.08-m intervals in the machining distance.

Shank run-out was measured using a laser displacement sensor (LK-

G3000, Keyence, Japan) with no load and a spindle speed of 100 Hz,

and the period of tool rotation was measured using an optical-fiber

sensor (FU-35FA, Keyence, Japan). The cutting force and torque were

measured with a 5-channel dynamometer (Type 9256C1, Kistler

Instrumente AG, Switzerland), and the workpiece was mounted as

shown in Fig. 4. Workpiece vibrations were measured using a tri-axial

accelerometer (3093B13, Dytran Instruments, Inc., USA).

5.1 Signal post-processing

The raw data were split into single-period time intervals using the

fiber-optic sensor to generate the single-period signals. Each single-

period signal was averaged five times. The signal post-processing

dataflow is shown in Fig. 5.

5.2 Clamping torque

Shank run-out can be caused by imperfect tool alignment, asymmetric

tool geometry, mismatch between the tool and tool holder, and tool

vibration during machining. In micro-end milling, shank run-out creates

Fig. 2 Fisher’s linear discriminant for the force data with different tool

wear

Fig. 3 Condition-monitoring method for a micro-tool using WPT and

Fisher’s linear discriminant (Adapted from Ref. 26 with permission)

Fig. 4 A photograph showing the micro-end milling experimental setup

Fig. 5 Signal post processing
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a rotational imbalance and affects the lifespan and wear mode of the

tool. Unbalanced rotation increases the cutting force and tool wear

(which is directly related to tool lifespan). To minimize shank run-out

caused by tool attachment, a constant clamping torque was applied

between the micro-end mill and the chuck using a digital torque wrench.

Shank run-out was observed using the laser displacement sensor for

clamping torques of 6 and 9 Nm, as shown in Fig. 6. The TIR for a

clamping force of 9 Nm was smaller than that for a force of 6 Nm. It

follows that the clamping force affects shank run-out. The larger

clamping torque reduced the variation in shank run-out. Therefore, the

clamping torque was set at 9 Nm in the following experiments.

5.3 Tool life with shank run-out

Shank run-out affects the tool life and mechanical behavior of a

micro-end mill. The laser displacement sensor measurements of shank

run-out without load and before end milling are shown in Fig. 7(a). The

resolution of the laser displacement sensor was in the range 0.2 μm ~

1 mm; however, the environmental noise interfered with the

measurement. To minimize the effects of noise, a low-pass filter was

applied to the signal, and we extracted only the frequency components

below 200 Hz. The filtered TIR and lifespan of each micro-end mill

were compared. In this experiment, two tool-life groups were observed

depending on the TIR. The early failure group had failed with a total

machining distance of <0.5 m, whereas the typical machining distance

for the normal group was ~0.96 m. As shown in Fig. 7(b), the group

with TIR <6 μm (i.e., the normal group) had long tool lives compared

with the group with TIR >6 μm (early failure group).

5.4 Torque imbalance ratio and the maximum torque due to

shank run-out

The single-period signals from the premature failure group and the

normal group were analyzed, as shown in Fig. 8. The tool from the early

failure group failed after 0.48 m, whereas the tool from the normal

group did not fail after a machining distance of 0.96 m on average.

There are two peaks in the single-period signal shown in Fig. 8(a),

and the peak values increased with increasing machining distance (i.e.,

tool wear). However, the difference between the two peaks did not

change. In the normal group, the torque was smaller than in the

premature early group, and the torque waveform was very uniform, as

indicated by the small peak differences. It follows that shank run-out

affects not only the torque waveform but also the cutting torque. The

two peaks A1 and A2 or (A’1 and A’2) indicate that the difference in

the cutting torque due to contact between the micro-end mill edges and

the workpiece generates imbalance that produces eccentric rotary motion

of the tool. Because of this eccentric rotary motion, one edge of the

micro-end mill cuts a larger volume of the workpiece than the other

does. The torque imbalance ratio directly relates to the tool run-out and

is defined as follows:

(14)

Stress concentration appears at one edge, and the eccentric behavior

increases the  torque imbalance. Thus, the tool life decreases over the

entire machining distance due to the excessive torque imbalance ratio

concentrates torque on one edge of the micro-end mill, as shown in Fig.

8(c), which leads to faster tool wear.

In the early failure group, the tool life was shorter than that in the

normal group because of the stress concentration at one edge. The

torque imbalance ratio did not change rapidly with the machining

distance. Torque imbalance also leads to increased maximum torque, as

shown Fig. 8(d). The two groups of tools showed a difference in the

evolution of the torque with machining distance. In the early failure

group, the maximum torque increased rapidly, whereas in the normal

group, the maximum torque varied more slowly.

5.5 Tool wear due to shank run-out

Tool wear was observed using an optical microscope at 0.08-m

intervals in machining distance. The tool wear for both the early failure

group and the normal group is shown in Fig. 9(a). For the early failure

group, the tool wear at a machining distance of 0.48 m was larger than

that for the normal group at a machining distance of 0.96 m. It follows

that shank run-out affects not only tool wear but also the life of the

micro-end mill.

The overall wear is summarized in Fig. 9(b). The tool wear of the

early failure group increased rapidly with the machining distance and

exceeded 30 μm before the machining distance reached 0.5 m. The

normal group exhibited a more gradual increase in tool wear as a

function of the machining distance, and the maximum wear was <30

μm at a machining distance of 0.96 m.

The torque imbalance ratio was determined as a function of the shank

run-out. The torque imbalance ratio causes the torque to be concentrated

more at one edge than at the other. Eventually, this torque concentration

increases the maximum torque, thereby decreasing the tool life.

Imbalance torque ratio 
A
1

A
2

-----  or  
A′

1

A′
2

-------=

Fig. 7 (a) Measurement of shank run-out using the laser displacement

sensor and (b) the tool life according to shank run-out. The spindle

speed was 100 Hz.

Fig. 6 (a) Clamping of the micro-end mill to the spindle chuck using a

digital torque wrench, (b) TIR data for different clamping torques
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6. Condition Monitoring

6.1 Classification using the component-level method

The optimal bases for the torque and force signals were used to

monitor tool wear, as listed in Tables 1 and 2. Data at machining

distances of 0.08 m and 0.48 m were used to select the optimal base,

and data at 0.96 m were applied to the chosen base for state

classification in the wavelet domain. Because the abnormal peak

position was not fixed throughout the machining process in a single-

period signal, data for the initial and middle stages of machining were

used to determine the optimal base for revealing features related to tool

wear at different machining distances. It follows that the abnormal peak

in the single-period signal increased with increasing tool wear.

The classification results for the force data at 0.08 m and 0.48 m are

shown in Fig. 10(a). The two groups were well classified in the wavelet

domain, and using the same optimal base, the untrained data (i.e., force

data at 0.96 m) were applied to the wavelet domain. As shown in Fig.

10(b), the untrained data were also well classified, and tended toward

larger values in the wavelet domain. This means that the wavelet

features generated using the optimal base increased with machining

distance.

Using these wavelet features, the state of a micro-end mill can be

classified in the wavelet domain. Moreover, the untrained data (i.e.,

after a machining distance of 0.96 m) can be applied to the same

optimal base (which was chosen at machining distances of 0.08 m and

0.48 m), and the resulting data were clustered in the wavelet domain.

Figs. 10(c) and 10(d) show the classification results using the torque

data; each state was well classified in the wavelet domain.

Fig. 8 (a) Torque imbalance of the early failure group, (b) Torque

imbalance of the normal group, (c) The torque imbalance ratio as a

function of machining distance, (d) Maximum torque of the early

failure and normal groups as a function of the machining distance

Fig. 9 Micro-end mill wear: (a) Optical microscope images of the

early-failure group and the normal group (b) Overall wear aspects of

the two groups with machining distance
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Data for various machining distances were applied to optimal bases

that were generated at machining distances of 0.08 m and 0.48 m. The

resulting classifications are shown in Figs. 11(a) and 11(b). Some

coefficients interfered with each other; however, the group was well

classified in the wavelet domain using the chosen bases. It follows that

these bases can be used to classify the state of the tool in the wavelet

domain over the entire range of machining distances.

6.2 Component-level analysis

The monitoring technique described here detects the wear-related

data in the measured signal using the WPT and FDR. This is a

component-level approach to extracting features from a measured

signal, as opposed to an energy-based method, which may fail to

extract some of the relevant data or features. Furthermore, such a

component-level approach provides specific information on faults in

the signal (wear-related faults or sensitive positions as well as the

progress of a fault that is related to tool wear).

Using this method, the optimal and second-best bases can be used

to identify features throughout the entire range of machining distances,

as shown in Fig. 12(a). The optimal and second-best bases could also

be used to detect the maximum variations in the measured data as a

function of the machining distance.

FDR was used to determine the optimal base for classifying two

groups (i.e., machining distances of 0 m and 0.48 m) and the

concentration within each group. For the data at a machining distance

of 0.08 m, the optimal base point is located near 0 Nm, whereas for a

machining distance of 0.48 m, the optimal base point was near -0.04

Nm, and for a machining distance of 0.96 m, the optimal base point

was near -0.18 Nm. It follows that the torques selected using the

optimal base increased with increasing tool wear.

The green crosses in Fig. 12(a) represent the sensitive points

selected using the second-best base (note that because the optimal bases

were chosen for machining distances of 0.08 m and 0.48 m, the data at

0.48 m and 0.96 m cannot be better classified than at 0.08 m and 0.48

m). The selected points and ranges represent the variations due to

machining distance remarkably well, and hence, they directly reflect

the changes in the geometry of the tool.

6.3 Comparison of the component-level method without WPT

and the energy method

The component-level method can be executed without WPT. In this

Table 1 Optimal base for the force data

Best base 1st 2nd

Wavelet db6 db7

Level 3 3

Node 2 2

Translation 1 5

Table 2 Optimal base for the torque data

Best base 1st 2nd

Wavelet db3 db6

Level 3 3

Node 1 2

Translation 4 3

Fig. 10 Classification results using the proposed condition-monitoring

method
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case, FDR was applied to each point of the raw signal to determine the

sensitive points depending on increased wear or machining distance.

Fig. 13(a) shows the sensitive points selected via the component-level

method with and without WPT.

With WPT, the peaks were in the sensitive range depending on the

machining distance; however, without WPT, points on the inclined side

were selected as sensitive points. The classification results are shown in

Fig. 13(b). Without WPT, the features at each machining distance

overlapped. In particular, with a machining distance of 0.48 m, the data

cannot be classified without WPT. However, with WPT, three states were

classified that exhibited higher FDRs than the results without WPT.

The energy method with WPT can be used to determine sensitive

node energies for tool wear monitoring. The measured signals are

classified into low- and high-frequency ranges for WPT, and the

wavelet packet energy of each node is calculated as follows:

(15)

where T is the length of a node, dj is the wavelet coefficients of the

node, and j is the index of the node in the level. The wavelet packet

energies of each node were compared as a function of machining

distance and used to select sensitive nodes as features for tool wear

monitoring. Because the energy method involves large datasets, the

time for the calculation increased compared with the component-level

Ej

1

T
--- dj

2
k( )

k=1

T

∑=

Fig. 11 Classification results of data at five machining distances: (a)

The force signal and (b) the torque signal

Fig. 12 Component-level analysis

Fig. 13 Classification results with and without WPT: (a) The sensitive

points selected via the component-level method with WPT (pink O and

X marks) as well as without WPT (green triangle and star marks), (b)

The classification results with and without WPT
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model, and sensitive points or features in the raw signal may be lost

because of the small SNR.

Fig. 14 shows the monitoring process based on the energy method

with WPT. The torque signal was classified according to frequency

range using WPT, and the energy of each node in level 3 (the final level)

was calculated using Eq. (15). As shown in Fig. 14(b), the 1st, 2nd, 4th,

and 8th nodes exhibited prominent variations as a function of the

machining distance. Fig. 14(c) shows the coefficients of the sensitive

nodes for each machining distance (0.08 m, 0.48 m, and 0.96 m); these

features were used for tool state decision making using the energy

method.

6.4 Predictive results using HMM

Here, we consider three tool states defined by the level of wear:

normal (<10 μm of wear), medium (10~20 μm of wear), and excessive

(>20 μm of tool wear), as listed in Table 3. The immoderately worn

part of the two flutes was measured.

The extracted features were applied to an HMM for state recognition.

The recognition performance was determined by the recognition rate,

i.e.,

(16)

With the same machining conditions, two sets of machining data are

used to train the HMM (i.e., tools 1 and 8, representing normal and

early failure modes, respectively). The recognition rates are listed in

Table 4. Three monitoring methods were used: component-level analysis

without WPT (type I), energy method analysis (type II), and component-

level analysis with WPT (type III). The recognition rates are listed in

Table 4. With the same machining conditions, tools 2 and 3 exhibited

early shank run-out and short tool life, and the recognition rates were

lower than those of the normal group for all three methods. The self-

recognition rate was also lower for the early failure group than for the

normal group. The technique using WPT exhibited higher recognition

rates than did the other monitoring methods.

The results obtained with different machining conditions are listed

in Table 5. The training data were mild and severe machining conditions,

i.e., tools 1 and 7, respectively. Tools 2 and 3 were also in the early

failure group under these machining conditions, and the recognition

rates were lower than those of the normal group. The results of Table

5 show that the monitoring method with component-level analysis with

WPT can predict the wear state of a micro-end mill more effectively than

the energy method and component-level method without WPT can.

Component-level analysis with WPT exhibited a higher recognition

rate using HMM compared with the energy and component-level

methods without WPT. Furthermore, early failure of a micro-end mill

(which results primarily from shank run-out) can be predicted more

effectively using the component-level analysis with WPT.

7. Conclusions

We have described a tool wear monitoring method for micro-end

milling based on single-period signals using WPT and FDR. Shank

run-out affects not only the rotational behavior of a micro-end mill but

also the tool life and wear imbalance (which induces imbalance torque

between the edges of an end mill with two flutes). As a result,

Correctly classified states / Misclassified states(

Correctly classified states)+ 100  %[ ]×

Fig. 14 Condition-monitoring process based on the energy method: (a)

Decomposition of the torque data using WPT, (b) comparison of the

wavelet packet energies of each node in level 3, and (c) selection of

features as a function of the machining distance

Table 3 Tool states depending on the tool wear

Tool

state
Normal Medium wear Excessive wear

Wear <10 μm 10~20 μm >20 μm

Image
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excessive shank run-out decreases the tool life and increases tool wear

in the initial stages of milling.

A tool wear monitoring method was developed using the WPT and

FDR based on single-period signals. A procedure for selecting the

optimal base (which includes the daughter wavelet, level, node, and

translation) for state classification was described. This method (both

with and without WPT) was compared with the energy method in terms

of state recognition efficiency with machining conditions and tool life.

We find that the proposed tool wear monitoring technique classifies and

recognizes the tool state more effectively than the other methods do,

including differences in micro-end mill tool lifetimes. Above this

diagnosis technique could be applied to the various diameter and tool

material, because it use only the vibration sensor and shank

displacement data.
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