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In this study, a milling system based on the in-line surface roughness measurement during machining process is developed using

Artificial Neural Network (ANN) technique. In the proposed system, optimum feed rate and cutting speed are determined by ANN so

as to provide the desired surface roughness, which is an important criterion for high quality surface. For this purpose, firstly an

algorithm determining the operating principle of the system is developed. According to this algorithm, the optimum cutting parameters

are predicted for end milling (finishing) operation by measuring semi-finish machining surface roughness via an optical sensor and

then end milling operation is performed with the cutting parameters determined by the system. In the experimental part of this study,

surface quality is observed for the milling process before and after the intervention of the system and the results is compared. The

experimental results show that the system can be integrated with the modern machining systems in order to obtain the desired surface

quality levels.
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1. Introduction

One of the most significant subjects in the area of material removal

is surface finishing. Black1 defines metal cutting as the removal of

metal chips from a workpiece in order to obtain a finished product with

desired attributes of size, shape, and surface roughness. Surface finishing

is a method used very commonly in fields such as molding, automotive,

aerospace and defense industries. Controlled surface finishing has

become much more important, particularly in sectors requiring precise

surface quality, just as aerospace and defense industries.

Contemporarily, for many different purposes, machines are being

developed by means of improving processing technology. Widespread

mass-production in all areas, competitive environment and large

production requirements have made tools, machining time and quality

control costs much more important over time. Especially, the increase

of CNC machines enabled the production of high precision parts in less

time and with lower costs. However, machining vibrations, tool wear

and wrong cutting parameters come into prominence as the preventive

factors of the desired and efficient usage of this technology. Today,

although very complex geometries can be machined much faster with

a high dimensional accuracy by the current status of machining

technologies, the intended maturity in the surface roughness issue has

not been reached yet.

Researchers have paid great attention to the improvement of the

surface roughness due to the industrial importance of the subject. In

many studies, primarily the correlations between surface roughness and

cutting parameters such as cutting speed, feed rate and depth of cut have

been analyzed. By means of the experimental works, the specifications

NOMENCLATURE

Vc = cutting speed

f = feed rate

d = depth of cut

Ra
 = surface roughness
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of surface roughness based on the change in cutting parameters were

determined by using different methods.2-5 In the future works parts of

these conducted studies, the possibility of applying these methods on

machining process has been mentioned particularly. Rosales et al.

proposed an approximation of surface roughness by measuring the

cutting forces that occur during machining, apart from cutting

parameters.6 Nouri et al. modeled the cutting forces that occur during

machining process and related them to tool wear, instead of surface

roughness.7 Ali et al. have developed an ANN model using tool wear

and cutting parameters to determine surface roughness.8 Chi et al.

introduced a methodology based on genetic wavelet network to predict

surface roughness with an error less than 3%.9

Tsai et al. developed an in-process surface roughness recognition

system to predict surface roughness based on vibration and rotation

data. In that study, an accelerometer was used as an in-process sensor.

Surface roughness was predicted with a back propagation ANN model

trained with four input neurons as cutting speed, feed rate, depth of cut

and vibration.10 Kuttolamadom et al. investigated the effects of feed

rate on surface roughness for 6061 Aluminum to reduce automotive

component manufacture cycle time in machining. They observed that,

surface roughness generally increased with an increase of feed rate.11

Balij et al. emphasized the influence of cutting parameters such as

cutting speed, feed rate and depth of cut on the surface roughness of

material St-52 in face milling. In their study, Bayesian neural network

model was employed to predict the surface roughness with an error of

6.3%. Also, as a result of experiments the most influential factor was

determined as the feed rate.12 Baek et al. proposed a surface roughness

model for face milling operations based on profile, axial and radial

runout errors of cutting inserts.13 Ehmann et al. developed a new method

called Surface-Shaping System to represent the surface generation

process. The system consisted of two parts: tool kinematics modeling

and tool geometry modeling.14 Moshat et al. studied the parameter

optimization of end milling process to provide good surface finish as

well as high material removal rate using PCA-based Taguchi method.15

Chen et al. studied on the prediction of surface roughness under

different cutting conditions such as workpiece material and tool size.

For this purpose, a fuzzy-nets approach was developed for the multilevel

in-process surface roughness recognition system called FN-M-ISRR.

Surface roughness was predicted by extrapolation from recorded vibration

data and cutting condition data. It was reported that the proposed fuzzy

system predicted the surface roughness with 90% accuracy during

milling operation.16 Lee et al. developed a method for simulating the

machined surface by using the acceleration data instead of cutting forces.

The algorithm was developed in terms of cutting conditions, cutting

tool, workpiece and runout parameters. Then, the surface roughness was

predicted by using the measured acceleration and the geometric model

of end milling process.17

Michalik et al. investigated the surface roughness of thin-walled

CK45 material parts during the milling operation. They studied the

effects of geometric parameters on the surface roughness using analytical

approximation techniques by utilizing the mathematical model of the

system.18  It is claimed that surface roughness is a statement of the

surface topography. Surface roughness also has considerable effects on

the criterions such as fatigue strength, corrosion resistance and creep

life.19

For the prediction of surface roughness or optimization and modeling

of cutting parameters, there are also other measurement practices.

Generally, contact-type surface roughness measurement systems are the

classical methods when the surface roughness measurement is

considered. Generally in machining, contact-type stylus profilometers

are used to determine the surface roughness. Tomkiewicz used the

image processing method for the determination of roughness levels.20

In that study, he captured the images of the surface during machining

and approximated the surface roughness with the ANNs method by

converting the images into digital signals. Optical and laser systems seem

important in the researches made on non-contact surface roughness

measuring systems. Bradley performed some tests by adapting the optical

surface roughness sensor to the coordinate-measuring machine.21 In this

study, a machining system, which is able to manufacture components

with desired surface quality without an external intervention, is

developed. The proposed system is able to machine by using optimum

cutting parameters determined by the system trained with the ANN

method on the basis of surface roughness value measured with an

integrated optical surface roughness sensor. Experimental works were

conducted by using a 3-axis CNC machine built as a part of this study

and the contribution of the developed system to the desired surface

quality of the manufactured parts has been evaluated. The overall

machining and quality control time can be reduced with the proposed

in-line surface roughness control system.

2. Artificial Neural Networks Model

In this section, artificial neural networks, which constitute the

fundamental structure of the milling system is discussed briefly. In the

studies presented so far, examinations have been made with the ANN

model for the determination of surface roughness on the basis of cutting

parameters.22,23 Within the scope of this study, ANN is used in order to

make an approximation of optimum machining parameters using the

machining data acquired from experimental measurements. The detailed

ANN model of the developed system is presented in Fig. 1.

Fig. 1 The detailed ANN model of the developed system
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As seen in Fig. 1, in the basic ANN model, the input cluster is x1,

x2, …, xm expressed as X in the vector form. Each input signal is

multiplied by the weight ratios wk1, wk2, …, wkm and wkb. The sum of

the dual multiplications shown in the vector form Wk, is calculated as

below.

(1)

At this point;

(2)

(3)

After the calculation of the sum of the weighted value, the output of

neuron is produced by applying an activation function

and (4)

Sigmoid function is used as an activation function in the study.

Sigmoid function, as opposed to classical artificial neural network

functions, can simulate the behavior of nonlinear systems. This function

is defined as follows:

(5)

where a denotes the slope of sigmoid function.

Feed-forward neural networks (FNN) used in this study are one of

the popular structures among artificial neural networks.24 These efficient

networks are widely used to solve complex problems by modeling

complex input-output relationships.25,26 However, FNNs often end up

being over trained. They adopt trials-and-errors to seek possible values

of parameters for convergence of the global optimum. The learning

process of an FNN cannot guarantee the global optimum, sometimes

trapping the network into the local optimum.24 The back-propagation

algorithm is one of the most famous algorithms to train a feed forward

network. It has great advantage of simple implementation.24 The back-

propagation algorithm works correctly for networks with more than one

input unit in which several independent variables are involved.

In this study, the multilayer feed forward network is used as ANN

model. There are one input layer, two hidden layers and one output

layer with each neuron fully connected with neurons of adjacent layer.

Four input neurons and two output neurons are for the input and output

variables. In modeling, the input elements are given as surface

roughness, depth of cut, tool diameter and work-piece material. Output

elements are composed of cutting speed and feed rate which are

indicated in Table 1. Sigmoid function is used for multilayer feed

forward network in this study. Backpropagation algorithm is selected as

a training algorithm.

In the MATLAB environment, a custom code is developed to apply

the formulations instead of neural network toolbox. The details about

the developed MATLAB code are as follows: firstly a file with an

extension of *.txt including experimental test results is read. Then, data

at related columns are assigned to input and output elements to calculate

the weight functions and layer elements. Then, all of these data is written

to an output file named as “S_f_result.mat”. Later, the output file is used

in the main Surface Roughness Control System (SRCS) as an input file.

MATLAB program code logic for ANN is shown in Fig. 2.

3. Experimental Setup

The proposed experimental setup is mainly composed of software

and hardware of the surface roughness control system (SRCS). The

SRCS is composed of a 3-axis CNC milling machine and an optical

surface roughness sensor (OSRS). The components of this system are

explained in detail in the following sections.

3.1 The software of the SRCS

In order to try the algorithm mentioned above, software for the

SRCS has been developed. The user interface and the main control

software were developed in Visual Studio environment. The cutting

speed and feed rate calculation program based on the ANN method was

developed by using MATLAB and was integrated to the main control

software.  In the SRCS, servo motor motions in the x, y and z axes and

all kinds of communications with the machine are performed through

the PLC. The SRCS is composed of three sub-categories, which are the

manual and automatic operator entry section, optical sensor measurement

section and cutting parameters calculation section shown in Fig. 3(a).

Initial-cut parameters of the SRCS are defined in the section shown in

Fig. 3(b). At this point, the cutting limits in x,y,z, initial feed rate, initial

cutting speed and the depth of cut for semi-finish cut can be entered by

the user. As seen in Fig. 3(c), the desired value of the Ra, workpiece

material, tool diameter and finishing depth of cut determined as the

input parameters in the experimental sets are entered into the SRCS.

Home position and manual control sections are placed at the top-left

and top-middle side in the panel of the SRCS software as seen in Fig.

3(a). In the position zero section (home position), zero positions for

net X Wk,( ) Wk

T
X=

Wk wk1wk2…wkmwkb[ ]
T=

X x
1
x
2
…xmbk[ ]

T=

yk f Wk

T
X( )= yk f Σi=1

m
wkjxi( )=

f net( ) 2/ 1 a– net⋅( )exp+( ) 1–=

Table 1 Cutting parameters used in ANN model

Inputs of ANN Outputs of ANN
Ra(µm) d(mm) D(mm) Material Vc(m/min) f(mm/min)

Fig. 2 MATLAB program code logic for ANN
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milling machine and workpiece can be defined by the user. In manual

control section, x, y and z axis motors and cutting speed can be

controlled individually.

The cutting speed and feed rate calculation program may predict

more than one cutting speed and feed rate couples. In this case, the

process is completed by the selection of the cutting speed corresponding

to the maximum feed rate value. The reason for selecting the maximum

value of the feed rate is to reduce machining time. Ultimately, the same

surface roughness results will be observed from the machined surface

independent of the selection. The results of the optical sensor part are

shown in Fig. 4. The average roughness value measured with the optical

sensor is shown at the top of the screen. The current condition of

surface roughness is represented by “status” as shown at bottom of the

screen. If the result is below or equal to the reference roughness value,

the condition is indicated as “GOOD” and if above, the condition is

indicated as “BAD”.

3.2 The hardware of the SRCS

The SRCS is composed of a 3-axis CNC machine and an optical

surface roughness sensor. The SRCS was designed and assembled in the

scope of this study. 3-axis milling machine, optical surface roughness

sensor and control software are shown in a line diagram in order to

describe the complete experimental setup (Fig. 5). Here, Optic surface

roughness sensor (OSRS) is mounted on the spindle head of 3-axis

milling machine. OSRS is connected to System Computer with RS-232

connection to transfer surface roughness data to the software of the

SRCS. According to measured roughness data, the software of the

SRCS transmits the calculated feed rate and cutting speed data to PLC

control unit through RJ45 Ethernet connection in order to control the

servo motors and spindle motor.

The frame of the 3-axis CNC machine is constructed by 90×90 and

90×180 heavy-duty aluminum sigma profiles as shown in Fig. 6. In

order to provide a 3-axis movement on the SRCS, three servo motors

with brakes are used. Movement on 3-axis are provided by delivering

the motions coming from the servo motors by means of the anti-backlash

couplings to ball screws. HSD brand MT 1090-Y6162Y0019 type of

spindle has been chosen for the machining part. The CNC milling

machine used in the experiments has been produced and assembled in

such a way that it has 4.5 kW head engine power and 18000 rpm

maximum rotational speed.

Surface roughness systems are able to make mechanical or optical

measurements. However, mechanical measurement systems have not

been approved for the SRCS, because these measurement systems have

to contact the surface rather slowly and are also expensive. Furthermore,

they scratch the surface owing to the mechanical usage of stylus during

the measurement. This constitutes a problem in situations requiring

precise surface quality. Due to the non-contact measurement capability,

Fig. 3 The user interface of the SRCS (a) main program interface (b)

initial parameters entry interface of the SRCS (c) cutting speed and the

feed rate calculation program interface of the SRCS

Fig. 4 Status of the surface roughness measured by OSRS (a) undesired

result (b) desired result

Fig. 5 The line diagram of complete setup
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a Hohner Brand D516 type of optical surface roughness sensor is used

to measure the surface roughness of the machined surface. Non-contact

roughness measurements are performed continuously by OSRS. Choice

of optical sensor has brought many advantages in the SRCS. Rapid data

transfer, adaptation to the developed program, easy integration to the CNC

milling machine, low cost and suitability for measuring in real time

machining may be considered among the most significant advantages.

OSRS is able to measure the surface roughness of the machined

metal surfaces between the 0.05 µm and 20 µm. At the end of the

machining operation, infrared light beams radiated by a light emitting

diode (IR LED) are sent to the surface as shown in Fig. 7. If the surface

is perfectly smooth, the light will be reflected at an angle equal to the

angle of incidence. In this case, reflection in any other direction will be

zero and the ratio between the reflected and scattered beams is infinite.

If the surface is absolutely rough, the incident light will scatter at any

direction with equal amounts and the ratio between the reflected and

scattered beams will be 1. The value of the surface roughness at a point

on the surface is determined by comparing the amount of reflected and

scattered lights measured by the OSRS. The ratio between the reflected

and scattered beams is inversely proportional to the degree of surface

roughness.27

In this measurement system, the surface roughness (Ra) is not

measured directly. Firstly, according to surface profile, reflected and

scattered infrared light values are collected by the optical sensor. These

reflection and scatter data are related to surface roughness values with

the sensor software. Ra is determined on the basis of the reflection/

scatter ratio. Before measurement, the sensor is calibrated with the help

the workpieces with known surface roughness values. In the calibration

process, the workpiece having lower surface roughness is scanned firstly.

Therefore, the Ra corresponding to the reflection/scatter ratio acquired

by the scanning is entered into the software. Then, the acquired Ra is

also entered into the SRCS by the repetition of the same processes for

the surface quality of other workpiece having greater Ra. At the end of

the calibration procedure, the sensor can measure the correct Ra value

corresponding to the reflection/scatter ratio on every point using the

calibration parameter F, which is defined as27

(6)

Where SS denotes the signal coming from the photo detector for

reflection and SN denotes the signal coming from the photo detector for

scatter.

3.3 The control structure of the SRCS

The OSRS which constitutes the measurement part of the surface

roughness control system (SRCS) and its working principle has been

mentioned in the previous section. In this section, information about

software of the SRCS and the working principle of the SRCS is

presented. The goal of the SRCS is basically to achieve the desired Ra

for machined surface of the workpiece by determining optimum cutting

parameters and conducting metal removal accordingly by measuring

the Ra for the finish cut operation. Before the machining operation,

values of the cutting speed and the feed rate for semi-finish cut and the

constant depth of cut are entered into software of the SRCS. In

addition, values of the desired Ra and the depth of finishing cut are also

indicated. The SRCS performs the semi-finish cut according to the

parameters defined by the user. The sensor carries out the surface

roughness measuring process for the finishing operation. If the surface

has the desired surface quality in accordance with the measured Ra, the

SRCS performs the cutting operation with the existing parameters and

completes the process. If the measured Ra does not match the desired

roughness value previous to finishing operation, the SRCS predicts the

parameters for the finishing cut according to the necessary Ra. The

SRCS carries out the end milling in compliance with the cutting speed

and the feed rate determined by the software and completes the process

by performing a confirmation measurement. Furthermore, data measured

from the experimental set of actual machining parameters is used for

the constant training of the SRCS as a new reference set for ANN.

Therefore, the developed system can be adapted to any type of CNC

milling machines with itself training capability. The algorithm shown in

Fig. 8 explains the working principle of the SRCS. The developed

SRCS determines the suitable cutting speed and feed rate values in

order to obtain the desired surface roughness value at the end of the

surface finishing operation with the aid of ANNs.

4. Experimental Results and Discussions

Experimental studies are carried out in order to test the performance

F SS SN–( )/ SS SN–( )=

Fig. 6 Developed experimental setup

Fig. 7 Measurement principle of OSRS27
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of the developed Surface Roughness Control System. There are many

parameters, which affect the roughness such as cutting speed, feed rate,

depth of cut, workpiece material and cutting tool. These fundamental

parameters are taken into consideration in the experimental phase. The

cutting tool is chosen as Taegutec AES 2200 brand and 2-flute solid

carbide end mill for aluminum machining with Ø20 mm diameter. In

this study, the cutting angle (approach angle) is 90°. In end mill

operations the approach angle is generally 90°. Surya et al. studied the

influence of approach angle of face milling cutter on surface roughness.

They reported that the surface roughness increases as the approach

angle increases.28 The coolant is not used in the experimental studies so

dry machining is performed. In this study, commercially available AA

5083 H111 and AA7075 T6 Aluminum Alloys are used as the workpiece

materials. Chemical compositions of these materials are given in Table 2.

Cutting speed is swept from 63 m/min to 628 m/min, and the feed

rate is varied between 100 mm/min and 1000 mm/min as presented in

Table 3. There are two experimental sets prepared for 0.2 mm and 0.5

mm depths of cut, since the depth of cut is an issue approached as a

finishing operation.

Experiments are conducted for 192 different variations on the basis

of the test conditions stated above in order to construct the ANN model.

The number of sample to test the ANN model is taken as 30. At the end

of the experiments, the Ra values have been measured with calibrated

Mitutoyo SJ-310 contact-type surface roughness tester and they are

used as the input data for the ANN model.

According to the results of the experiments conducted for both ANN

training and analyzing the behavior of the SRCS, changes in the Ra value

depending on feed rate, cutting speed and depth of cut are presented in

Figs. 9~12. Fig. 9 shows the change in the surface roughness depending

on the cutting speed under constant feed rates between 100 mm/min

and 1000 mm/min at a fixed depth of cut of 0.2 mm. It is observed that

Fig. 8 The proposed algorithm of the SRCS

Table 2 The chemical composition of the AA5083 and AA7075

materials used in the experiments

Material/
Composition

Fe Si Mn Cr Cu Mg Zn Hardness

AA5083 H111 0.199 0.171 0.513 0.089 0.015 4.599 0.311 27 HRB
AA7075 T6 0.103 0.230 0.029 0.219 1.46 2.75 5.12 87 HRB

Table 3 The experimental sets and cutting parameters used in the

experiments

Cutting
Speed

(m/min)

Feed Rate
(mm/min)

Depth of
Cut (mm)

Workpiece
Material

Cutting
Tool

Tool
Holder

63

100
200
400
600
800
1000

0.2

0.5

AA5083
AA7075

2 flute end 
mill cutter

with 20 mm
Diameter

ER32
Collet

126
188
251
314
377
503
628

Fig. 9 The change in Ra depending on cutting speed at 100-1000 mm/

min feed rates interval for 0.2mm depth of cut (a) for material AA5083

(b) for material AA7075
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the surface roughness decreases under the constant feed rate, with an

increase in the cutting speed.

Fig. 10 illustrates the relation between the cutting speed and

roughness value for various feed rates. The roughness value increases

as the feed rate increases for 0.2 mm depth of cut.

Fig. 10 shows the change in the roughness values depending on the

cutting speed under constant feed rates between 100 mm/min and 1000

mm/min at a 0.5 mm depth of cut. The Ra value decreases with the

increase in the cutting speed in a similar way presented in Fig. 9.

In Fig. 12, the change in Ra with respect to the feed rate under

constant cutting speeds between 63-628 m/min at a 0.5 mm depth of

cut is given. The Ra increases with the increase in the feed rate

approximately in direct proportion in a similar way presented in Fig.

10. The increase in the depth of cut results in increasing surface

roughness values. When these results are compared with the findings of

similar studies in the literature, it is observed that the changes in Ra

with the feed rate, cutting speed and depth of cut show similar

behavior. Especially, Palanikumar observed that the Ra value decreases

with the increase in cutting speed, and it increases with the increase in

feed rate and depth of cut.29

The results presented in Figs. 9-12 are used to create the ANN

model, which is the main part of the SRCS. Then, the performance of

the surface roughness control system is examined experimentally for

two different workpiece materials. For this purpose, the initial values of

the feed rate and cutting speed are chosen as 1200 mm/min and 251 m/

min, respectively. The depth of cut is taken as 0.8 mm for semi-finish

operation. The required value of Ra is assigned as 0.6 µm to the SRCS.

Moreover, the depth of finishing cut is determined as 0.2 mm. Using

these parameters, the surface roughness was measured by OSRS after

the semi-finish cut operation as shown in Fig. 13 and the Ra value is

determined as 1.576 µm for AA5083 Aluminum alloy.

Since the resulting Ra value was greater than the desired value, the

Fig. 10 The change in Ra depending on feed rate at 63-628 m/min

cutting speed interval for 0.2mm depth of cut (a) for material AA5083

(b) for material AA7075

Fig. 11 The change in Ra depending on cutting speed at 100-1000 mm/

min feed rates interval for 0.5mm depth of cut (a) for material AA5083

(b) for material AA7075
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SRCS calculated the cutting speed and feed rate to achieve the desired

roughness level. The SRCS determined the required optimum cutting

parameters as Vc=477 m/min and f=303 mm/min for Ra=0.6 µm. Then

the system machined the surface of the workpiece automatically with

these new cutting parameters and then the roughness measurement was

repeated. After the measurement, it was observed that the roughness

value was obtained as 0.476 µm and the milling process was finished.

Fig. 14 illustrates the roughness values before and after the intervention

of the SRCS for AA5083 alloy. The blue curve represents the surface

roughness after the semi-finish cut, the red curve represents the desired

surface roughness limit and the green curve represents the resulting

roughness levels obtained by using the cutting parameters determined

by the SRCS.

If a comparison is made between the results of the experimental

studies carried out for the training stage of the ANN and the result of

the SRCS, it can be seen from Fig. 15 that the Ra value for the feed rate

of 303 mm/min at Vc=503 m/min and d=0.2 mm is about 0.4 µm. This

roughness value is very close to the roughness value obtained by SRCS

and this indicates the efficiency of the developed system.

Fig. 16 shows the microscope images of the machined surface

magnified by 25 times before and after the intervention of the SRCS

Fig. 12 The change in Ra depending on feed rate at 63-628 m/min

cutting speed interval for 0.5mm depth of cut (a) for material AA5083

(b) for material AA7075

Fig. 13 Spindle and the integrated optical measurement system

Fig. 14 Surface roughness values before and after the SRCS for

AA5083

Fig. 15 The change of surface roughness with respect to the feed rate

at 503 m/min cutting speed and 0.2 mm depth of cut for AA5083
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for the comparison purpose. Carl Zeiss Axioskop 2 Mat was used to get

the surface image. As seen from the magnified surface image, which

was machined according to the cutting parameters determined by SRCS

for the finishing operation, there is a good improvement in the surface

roughness.

Similarly, as a result of machining operation with initial parameters

Vc=251 m/min, f=1200 mm/min and d=0.5 mm, for AA7075 alloy, Ra

is measured as 0.914 µm. This value was also higher than the desired

surface roughness of 0.4 µm. The SRCS determined the cutting

parameters as Vc=430 m/min and f=758 mm/min, for finishing

operation to get desired Ra with constant depth of cut. Using the new

cutting parameters determined by SRCS, end milling operation was

completed with the resulting surface roughness Ra=0.348 µm. Fig. 17

illustrates the roughness values for AA7075 alloy before and after the

intervention of SRCS.

Fig. 18 presents the correlation between the results of the roughness

measurements performed by OSRS and a contact type roughness

measurement system Mitutoyo SJ-310 for two different materials. The

cutting parameters used in the milling operation of different samples

for which the Ra values are measured, are given in Table 4. The

percentage deviations between the roughness values of optic and

contact type measurement systems are 6% and 2% for materials AA

5083 and AA7075, respectively. The reason for these small differences

may be noise, ambient light and structural vibration. The results of the

comparison presented in Fig. 18 shows that, the OSRS used in this

study provides reliable Ra values in comparison with the contact type

roughness measurement devices.

The validation error associated with the proposed surface roughness

control system is calculated using the Ra values presented in Fig. 18 as

Fig. 16 Machined surface images of AA5083 material (×25) (a) Vc=

251 m/min, f=1200 mm/min, d=0.8 mm (b) Vc=477 m/min, f=303

mm/min and d=0.2 mm

Fig. 17 Surface roughness values before and after the SRCS for

AA7075

Fig. 18 Comparison of surface roughness levels of OSRS and contact

type systems (Mitutoyo SJ-310) (a) for AA5083 (b) for AA7075

Table 4 Cutting parameters used in the comparison of roughness

measurement method

Sample Number Vc (m/min) f (mm/min)
1 251 1200
2 565 300
3 377 800
4 353 131
5 334 452
6 502 481
7 346 900
8 314 1000
9 440 1500
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6.1% for AA5083 and 4.5% for AA7075 materials as the mean

differences between optical and contact type Ra measurements.

5. Conclusions

The surface roughness control is achieved on the basis of the

optimum cutting speed and the feed rate determined during the

finishing operation by means of the SRCS developed in this study. The

results of measurements acquired in accordance with the different

cutting parameters and the machining surface images   show that it is

possible to have a more qualified finishing surface by using the

proposed SRCS. Also, by virtue of the developed SRCS, the initiative

of the operator on the proper selection of the cutting parameters is

taken out and the time loss in the total machining process is

economized by minimum operator intervention. It is also estimated that

the SRCS will reduce the tool wear by determinations of the optimized

cutting parameters. With the proposed SRCS, the surface roughness

can be continually kept under control during the process and the quality

of the surface roughness will be controlled within the production phase.

The system with the learning property can be applicable for other types

of CNC milling and turning machines.
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