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The capability of a model to represent the complex friction behavior is particularly important for systems where friction has a major

impact on motion precision. In this work a GMS-based model is proposed which would require only two states, aiming to simplify

the implementation of control laws that require friction models capable of representing presliding friction. Simulations of the proposed

model are provided, showing that it keeps the main properties of the GMS model, like hysteresis with nonlocal memory, non-drifting

behavior and friction lag. Also, an experimental comparison of the performance of model-based compensation for the proposed two-

state model and for the complete GMS model is presented for a linear motor system with linear guides, showing promising results.
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1. Introduction

Positioning systems subject to external forces under strict precision

and speed requirements frequently depend on plain or rolling element

bearings for motion guidance. Thus, motion is performed under the effect

of friction with a highly non-linear behavior, having a negative impact

on motion control performance. Therefore, a suitable model for friction

representing most of the observed phenomena is required in order to

improve control performance for precision positioning systems.

Static friction models fail to describe all of the phenomena observed

in friction, thus, several dynamic models have been proposed. Among

the most popular ones is the LuGre model, which captures most of the

friction phenomena using a single state dynamic model. However, this

model can exhibit drifting behavior under certain conditions1 and is

NOMENCLATURE

Ff = friction force

x = position

v = velocity

Fi = single GMS element force

νi = weight factor associated to the contribution of a single GMS

element to net friction force

ki = single GMS element stiffness

σ2 = viscous friction coefficient

C = GMS attraction parameter

s(v) = Stribeck curve without viscous term

li = transition to slip parameter for element i

tc = time at which a loop is closed

ts,i = time at which element i starts slipping

Δx = displacement from initial position

k
Δx = displacement from point of motion reversal k

Fs = sticking force

Fd = slipping force

Fγ = correction for varying s(v)

Fh = hysteresis and Stribeck contribution to friction force

Fl = friction lag contribution to friction force

κ() = nonlinear spring stiffness function

Π() = nonlinear spring function

γ() = slipping fraction function

ϕi = Deviation of elementary force from s(v) for slipping elements
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unable to reproduce accurately the nonlocal memory characteristics of

presliding friction.2 To overcome these issues, several other models

have been proposed, such as the elasto-plastic friction model,1 the

Leuven model3,4 and the generalized Maxwell-slip (GMS) model.2,5 In

particular, the GMS model accurately represents nonlocal memory, also

presenting improvements on friction lag and non-drifting behavior.2

The GMS model can accurately represent most of the observed

friction behavior. This is a multiple state dynamic model, composed of

multiple elements that contribute to the total force. The contribution of

individual elements is more apparent during presliding regime. In fact,

the curve for presliding hysteresis obtained with this model resembles

a piecewise linear function, with as much sections on the total hysteresis

curve as model elements. The contribution of each of these elements is

updated by integration of a particular dynamic equation, which changes

depending on a logic state corresponding to each element. Thus, an

accurate representation of presliding hysteresis would require to integrate

these switched dynamic equations for a large number of elements, with

the respective computational cost implied. Recently, modifications of this

model has been proposed to avoid switching dynamics in its elements

in order to make it suitable for gradient-based state and parameter

estimation, such as in Refs. 6 and 7, yet keeping the same multi-state

structure. Instead, the present work seeks to obtain a reduction in the

number of states of the friction model, while keeping the description of

presliding hysteresis as accurate and smooth as possible.

Hence, this paper presents a two-state model which could describe

friction behavior as represented by the GMS model, except for minor

deviations due to the simplifications introduced. Section 2 shows a

brief recapitulation of the GMS model as described in Ref. 2. That is

the same version of the GMS model proposed in Ref. 8 for feedforward

compensation and simplified in Ref 9 for adaptive control. Section 3

acts as a motivation to the manner in which the model is approximated

and the functions defined therein will be useful in the definition of the

proposed model, which is presented in Section 4. Section 5 is devoted

to parameter determination. Then, Section 6 shows the behavior of the

proposed model by means of simulation, as well as its performance in

feedforward compensation in an experimental setup. Finally, the

conclusions are presented in Section 7. Also, an appendix is included

which expands on some of the results used along the previous sections.

2. GMS Model

The GMS model as described in Ref. 2 can be considered as com-

posed by a parallel arrangement of N single-state dynamic friction

elements whose common input is the sliding velocity , and where

each elementary model contributes with a force Fi to the total friction

force. The total force for an N-element model results in

(1)

where σ2v(t) represents viscous friction while the first term accounts

for the contribution of all single-state friction elements. A block

representation of the model is shown in Fig. 1.

For every elementary model there is a logic state indicating whether

the element sticks or slips. If an element sticks, its dynamics is given by

(2)

and the element remains in this condition until Fi = νis(v). Here ki is the

stiffness of the element and νi is a constant related to the contribution

of this element to the total force satisfying 0 ≤ νi ≤ 1 and Σνi = 1. The

function s(v) is such that the friction force for a steady-state velocity v

is given by s(v) + σ2v. For instance, a common parametrization of s(v)

according to Ref. 2 is

(3)

being Fc the Coulomb force, Fs the static force, Vs the Stribeck velocity

and δVs the Stribeck shape factor.

On the other hand, if the element is slipping, its dynamics is given

by

(4)

where C is called the attraction parameter and the elementary model

keeps slipping until the velocity crosses zero.

Before proposing a two-state simplified model for friction, the next

section attempts to rearrange the GMS model equations as a motiva-

tion for the proposed model.

3. Rearrangement of the GMS Model Equations

Each element of the GMS model have a sticking and a slipping

regime, contributing during both regimes to the net force arising from

friction elements. In the remaining section, a distinction is considered

between the part of the net elementary force contributed by elements

during all of its sticking regime, which is discussed in Section 3.1, and

that contributed by those elements during slipping regime, considered

in Section 3.2.

Thus, the GMS equations corresponding to the individual elements

are rearranged in order to combine the original states of all these el-
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Fig. 1 Representation of the GMS model including viscous friction
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ements in a few new states. In sections 3.1 and 3.2 this is done ex-

clusively for a motion beginning from a particular state until reaching

again zero velocity. Then, in Section 3.3 the results are extended to the

whole motion trajectory although allowing some deviations from the

GMS model.

3.1 Sticking force for motion from zero state

In a general case, considering an initial condition Fi,0 = Fi(t0) the

force contributed by element i at time t while sticking (see Eq. (2)) can

be expressed as

(5)

where x(t) represents the common position input, x0 = x(t0), and the

element remains sticking until Fi(t) = νis(v).

To begin with the rearrangement, it is considered an initial state for

the elements such that Fi,0 = 0 for i = 1, …, N with all elements sticking,

which will be further called zero state. Then, as a first step the sticking

force is obtained for a movement starting from zero state. Thus, the

force resulting from the elements during sticking regime is initially

(6)

being this the sticking force and also the net elementary force. Eq. (6)

holds until the first element begins slipping. Considering Eq. (5) the

condition for transition to slip of element i, i.e., Fi = νis(v), during the

initial motion can be written as

(7)

Then, an element i starts slipping at a time ts,i when

(8)

where li = νi/ki. Without loss of generality it can be considered that the

elements are ordered in a descending order of li, that is i < j ⇔ li > lj.

Such an ordering would mean that the first elements to start slipping

would be the last ones (first the element N, then N−1 and so on),

because the velocity input is common to all elements.

Now, every time an element starts slipping, it will cease to contribute

to the sticking force. Considering this, the total sticking force from t0

to the point of motion reversal can be expressed in a more general and

compact manner as

(9)

where Δx(τ) = x(τ) − x(t0) and h(ξ) is the Heaviside function, defined as

(10)

Then, defining κ0(ξ) as

(11)

the sticking force can be written as

(12)

In this way, the contribution to the sticking force of all the N ele-

ments at an arbitrary time t during motion from zero state is expressed

in a compact form.

3.2 Slip contribution for motion from zero state

When considering slipping elements, it can be seen from Eq. (4)

that when element i slips, the solution Fi(t) must hold the following in-

tegral equation:

(13)

where Fi(ts,i) is the element force when the element begins slipping, at

time ts,i.

For an individual element i, the quantity ΔFi = Fi(t) − Fi(ts,i) can be

expressed in a more convenient manner extending the lower limit of the

integral, expressing the slipping condition by means of the Heaviside

function:

(14)

However, recalling that Fi(ts,i) corresponds to the end of the sticking

regime for element i, such that Fi(ts,i) = νis(v(ts,i)), the same quantity can

be expressed, for continuous acceleration, as

(15)

Here  and it is assumed that s(v) is differentiable for

 and both limv→0+ s(v) and limv→0− s(v) exist.

The last subsection considered the contribution of elements in

sticking regime to the total force. In this subsection the effect of the

elements during slipping regime on the total force is considered. Such

a contribution will be represented by the term Fd. Initially, when all

elements stick, Fd = 0. Thereafter, for each slipping element, a term

Fi(t) − Fi(ts,i) is added to Fd. Considering the transition to slip of the

different elements along the displacement, this quantity can be expressed

as . Considering Eqs. (14) and

(15), and proceeding as done for the net sticking force, a relation for Fd

can be obtained, based on the following quantity involving all slipping

elements:

(16)
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(17)

where

(18)

And this quantity allows to calculate Fd as Fd = Fl + Fγ where

(19)

According to Eq. (16), Fl can be regarded as the deviation of the to-

tal force of the slipping elements from that corresponding solely by the

Stribeck curve, due to its dynamic behavior dictated by Eq. (13). As

such, at the beginning, when all elements stick, such a quantity would

be zero, and Eq. (17) can be considered as a relation of the type used

to describe the slipping dynamics in Eq. (13).

Thus, the net elementary force can be obtained as F = Fs + Fl + Fγ,

where Fγ is related to the difference in the value of the Stribeck curve

between the current time and the time when the respective elements

started slipping. A convenient way to visualize these quantities is

considering that each of Fs, Fl and Fγ results from the contribution of

individual elements during its motion. For instance, Fig. 2 shows a

graphical representation of the contribution of element i to each of these

quantities for a slipping element along its displacement.

It should be noticed that Fs and Fγ can be combined in a single state

Fh = Fs + Fγ, in which case its dynamics will be given by

(20)

As previously stated, this is valid for a motion starting from zero

state as long as zero velocity is not reached. In that event, if velocity

reaches zero at tzv, all the elements change to stick state, Fl( ) = Fγ

( ) = 0 and the net force becomes the force of sticking elements

resulting Fh( ) = Fh( ) + Fl( ) being this the initial condition for

the next motion. Here, the notation f( ) and f( ) stand for  f(t)

and  f(t) respectively.

Before proposing a model based on this rearrangement, it must be

considered the manner in which the defined quantities vary for different

initial conditions.

3.3 Extension to the whole motion trajectory

It is still necessary to consider the manner in which the results for

motion from zero state can be extended to the whole motion trajectory.

In this section a short overview is given, but more detail can be found

in sections A.3 and A.4 of the appendix. It should be noticed that these

rules correspond only approximately to the GMS model, as an exact

representation would require a significant increase in the complexity of

the proposed model. More information about the simplifications

introduced can be found in the aforementioned sections.

As a first step it should be considered the dynamics of the elements

sticking after reaching zero velocity (initially all of them). The situation

is quite similar to the one for motion from zero state, except for the

initial state of all elements, which will affect the point of transition to

slip of the different elements. When the body reaches zero velocity and

then continues motion in the same direction, the previously slipping

elements can be considered to continue slipping. In such a case the

transition of the sticking elements afterward is given by the same

functions κ0 and γ0 and the states do not change at that point.

In the case of motion reversal, approximately the same equations

can be used except that the arguments of functions κ0(ξ) and γ0(ξ) are

given by ξ = kΔx(t)/(s(v(t)) − s(v( ))), being kΔx(t) = x(t) − x(tk) and

x(tk) the last point of motion reversal. Here the points of motion reversal

are indexed as k = 0, 1, 2, … corresponding k = 0 to zero state. This

argument is used until a new motion reversal, until loop closure or until

return to the virgin curve, i.e., the friction-displacement curve described

during motion from zero state, which would happen when k = 1 and

(21)

In the latter case, the last point x(tk) to consider is again x(t0), k =

0 and the arguments of κ0 and γ0 are once again given by Δx(t)/s(v(t)).

A similar case occurs in the event of a loop closure, when after two

consecutive motion reversals the elements slipping immediately before

the last motion reversal  are again slipping (see Fig. 3) and elements

slipping at  begin to slip again. In this case, for the model proposed

in Section 4 it is considered that elements slipping for the last time at

 begin to slip at the same instant tc, when

(22)

To correct at some extent this simplification, the states are updated

at time tc as

(23)

where
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Fig. 2 Contribution of an individual element to Fs, Fl, Fγ Fig. 3 Inner loops
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and Π(ξ) is a primitive of a nonlinear spring stiffness function such that

Π(0) = 0. More details about these functions can be seen in Section 4

where the proposed model is presented.

From then on, the argument to use in functions κ0 and γ0 after loop

closure is k-2Δx/(s(v(t)) − s(v( ))) when k > 2 or Δx/s(v(t)) when k=2.

Although these results may suggest the necessity to keep the

previous values of s(v(t)) at times of motion reversal, this is not exactly

the case. As acceleration was presumed to be continuous, the value

s(v( )) corresponds to limv→0+ s(v) or limv→0− s(v) depending on the

motion direction previous to the point of motion reversal. To simplify

the exposition, it will be assumed here that s(v) has odd symmetry,

although it is not difficult to adapt the model to other case. Also, the

quantity sst is defined as sst = limv→0+ s(v) = −limv→0− s(v). Then, for

continuous acceleration, if tk corresponds to the last point of motion

reversal (or more precisely to the instant at which zero velocity is

reached before motion reversal) then s(v( )) = −sgn(v)sst.

Finally, it should be pointed out that the loop closure conditions

must be considered only when there are elements sticking at , as such

conditions correspond to the transition to slip of these elements after

the last point of motion reversal. Thus, if x( ) is beyond the presliding

region, there are no elements sticking at that point and the loop closure

condition is not considered. In such a case this point of motion reversal

is kept as the reference of the arguments in the equations and previous

points of motion reversal are no longer considered for motion in the

same direction. The point x( ) will be inside the presliding region when

(25)

A similar situation occurs with the return to the virgin curve, except

that the condition to be considered is

(26)

In the same manner, when this condition does not hold, condition in

Eq. (21) will not be considered and x(t1) will be kept as the reference

in the arguments of the equation.

4. Proposed Model

Based on the previous sections, an approximate model will be

proposed where κ0(ξ) and γ0(ξ) are replaced by continuous functions κ(ξ)

and γ(ξ) as shown in Fig. 4, which allows to represent such functions

with just a few parameters. In order to make this approximation,

functions κ and γ are required to satisfy several properties corresponding

to those of κ0 and γ0 and shown in more detail in Section A.1 of the

appendix.

Then, the proposed model can be expressed as follows. Friction

dynamics is given by the following 2-state system (obtained from

derivation of Eqs. (20) and (17))

(27)

where k is the index of the last motion reversal to be considered, kΔx(t)

= x(t) − x(tk) and the net friction force is still given by F = Fh + Fl + σ2v.

For motion from zero state, it is considered that s0 = 0. Instead, for k

≥ 1 the value sk = s(v( )) = −sgn(s(v(t))) · sst, thus the quantity s(v(t))

− sk is approximately 2s(v(t)). For the first motion (k = 0), x(t0) is the

initial position and if the system begins from zero state then Fh = Fl =

0. The model requires to keep two stacks of values, one with points of

motion reversal and the other with the respective values of Fh. The

arguments on the equations change after each motion reversal or loop

closure according to the following rules:

Rule 1 If motion direction changes at xd, k is incremented by 1, and

both x(tk) = xd and Fh( ) are saved to the stacks. Then, the states are

updated as Fl( ) = 0 and Fh( ) = Fh( ).

Although there is a deviation from the GMS in not adding Fl( ) to

Fh as seen in Section 3.2, it is necessary because of having neglected

the deviation of elementary force from s(v) for slipping elements, ϕi,

when the argument for motion reversal was determined (see Section A.3

of the appendix). This is required to obtain the force corresponding by

the Stribeck curve for stationary velocity.

Rule 2 When a loop is closed, that is when

(28)

and the following condition holds:

(29)

the states are updated as

(30)

where βc is given by Eq. (24). Then k is reduced by 2, and the last 2

elements of each stack are removed. As previously described, Π is a

function related to the nonlinear spring stiffness function κ and is

defined as .

Rule 3 (Only when the system begins from zero state) When k = 1,

 and |Δx(t1)|/sst ≤ l1, k returns to 0, the last

element of each stack is removed, and the states remain unchanged in

the transition point.
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Fig. 4 κ and γ in the proposed model in contrast with κ0 and γ0
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stack because of loop closure, there will be more elements of the stack

which can be removed due to the conditions regarding l1 in rules 2 and

3. This will allow to reduce in some degree the amount of memory

required in the implementation of this algorithm.

Finally, it should be noticed that the evolution of the state Fh

between points of discontinuity can also be obtained without the need

of integration as shown in Section A.2. In fact, if td is the last point of

state discontinuity, where the state is updated to the value Fh( ), and

the arguments of κ and γ in Eq. (27) are referenced to the point of

motion reversal at x(tk), then

(31)

which reduces to

(32)

when td = tk. In this manner, Fh can be constructed by a set of rules in

a manner resembling Masing rules for hysteresis.10 This allows to update

one of the states without performing any numerical integration, which

is needed only for the state related to friction lag. Furthermore, a

simplified model without friction lag can be obtained considering just

the state Fh and thus not requiring any integration.

5. Parameter Determination

The procedure for obtaining the Stribeck curve parameters would

consist as usual on performing constant velocity motions, for which force

is given by F = s(v) + σ2v, as shown in Section A.2 of the appendix, and

fitting the data for different velocities to a parameterization of s(v)+σ2v.

As for determination of κ(x) it can be obtained by performing constant

speed motions at equal low velocity along the presliding region, for

instance following a saw-tooth reference position. In such a case, if

relative position from a point of motion reversal is given by x = vst, then

friction force (or its variation from the value at x = 0) is dependent on

the position from the point of motion reversal, that is F = F(x), and 

= . Hence, if  can be neglected

(33)

Thus, one manner would be fitting a curve to F(x) on this experiment

and deriving the analytic expression, in order to obtain κ from Eq. (33),

for which it would only be needed a scale change to obtain κ(ξ). Then, Π

can be calculated as , and considering the properties

of κ and γ, in particular (A-3), γ(ξ) can be obtained as γ(ξ) = Π(ξ) −

ξκ(ξ). It should be noticed that due to the properties of κ(), the

parameterization of F(x) should be constant for x > 2s(vs)l1. Thus,

considering a piecewise-defined function, the process would imply the

fitting of a curve to F(x) for x ≤ 2s(vs)l1.

As for the attraction parameter C, one way is to perform a varying

positive velocity motion as suggested for the GMS model in Ref. 2. As

C is the only unknown parameter, Fl is obtained as Fl = F − Fh − σ2v,

from which dFl / dt is calculated and C is obtained fitting the data to the

proposed model equations (Eq. (27)).

6. Results

In this section, simulation and experimental results are shown for

the proposed model. First, simulation results show the behavior of the

proposed model in a variety of friction conditions. Then, experimental

results are shown for feedforward compensation performance of the

proposed model in comparison with that of the GMS model.

6.1 Simulation results

A simulation of the proposed model and a 5-element GMS model

for motions in the presliding regime is shown in Fig. 5. There, the

proposed model presents a continuous slope change along each branch

of the hysteresis loop in contrast to the abrupt slope changes for the

GMS model. This is an advantage of the proposed model as is shown

further in the experimental results.

Also, simulation of the proposed model in presliding regime for a

different input is shown in Fig. 6, where it can be seen that when a loop

is closed, the main loop is followed again. This is the expected behavior

of hysteresis with nonlocal memory, one of the known properties2 of

presliding friction.

A property verified in the model for the sliding regime is the friction

lag. In Fig. 7, a positive velocity with a periodical component is applied

to the friction model, which results in a hysteresis loop around the

Stribeck curve, as shown in Ref. 11.

Another important property of friction is the non-drifting behavior.2
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Fig. 5 Comparison of GMS and proposed model under simulation for

presliding regime

Fig. 6 Presliding friction for the proposed model
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To verify whether a model is capable of exhibiting this behavior a

particular time-varying force1 must be applied to a mass with the

proposed friction model. In the simulation the first part of the applied

force is a ramp which reaches a value higher than that of breakaway

force, falling immediately to a value below Coulomb friction. Then the

applied force oscillates around this value without reaching the

breakaway force. The result for the proposed model is shown in Fig. 8,

where it can be seen the non-drifting behavior, as the mass position

oscillates around the same point during the oscillatory part of the force.

6.2 Experimental results

The performance of the proposed model for feedforward control has

been tested on the linear motor stage shown in Fig. 9. Here the friction

force comes from the four ball runner blocks with 8% of preload, sliding

over linear guides. The linear drive is based on a permanent magnet

linear synchronous motor. Position measurement is performed with a

high resolution linear scale. More details about the particular system

can be found in Ref. 12.

The system is controlled by a pole-placement state-space controller

with integral action and model based feedforward. A diagram of the

whole control structure is shown in Fig. 10. The state-space controller

with full state observer as well as the inclusion of integral action follows

the typical structure shown in Ref. 13. The observer has a deadbeat

design and the controller poles are at z1 = 0.9624, z2,3 = 0.9617±j0.0376.

Also, a zero phase error tracking controller was set following the

procedure in Ref. 14, having one uncancellable closed-loop zero at z =

48.5807. The feedforward signal considers cogging and ripple as

modeled in Ref. 12, as well as model based friction compensation.

Being just a feedforward signal it will not affect closed loop stability.

The performance of the proposed model for feedforward compen-

sation has been compared to that of two other models, the simple Tustin

model and the GMS model. The Tustin model for friction is solely

based on the Stribeck curve, as is described in Ref. 15 where this model

is used for control design. A 5-element GMS model is also considered,

as its number of states is comparable to that of the proposed model.

Also, in order to perceive the importance of the reduction of slope

changes in presliding, a 10-element GMS model is set.

The parameters for Tustin model are those corresponding to the

Stribeck curve, which are shown in Table 1, and the procedure followed

for obtaining them is described in Ref. 12. The GMS models also have

the attraction parameter, which is C = 10.8 N/s and the hysteresis

parameters, which are shown in Table 2 for the 5-element model and

in Table 3 for the 10-element model. These parameters had also been

determined following the procedure in Ref. 12. For the proposed model,

instead of presliding parameters there are interrelated functions which

can be obtained from a parameterization for F(x) in the interval [0,

2s(vs)l1] as described in Sec. 5. In the particular experiments carried on

in this work the chosen parameterization is F(x) = K −  − cx4

where K =  for the parameters a = 2631 N, b = −0.0438 mm−0.3,

c = 2367.9 N/mm4, α = 0.3, β = 1×10−3 mm and l1 = 0.004 291 mm/N.

First, the system is commanded to follow a 5 mm amplitude sinu-

soidal reference with a 6 s period. Fig. 11 shows the position error for

the friction models tested. It can be seen that the maximum error for

Tustin based feedforward reaches 75.2 μm, being 13 μm for the 5-

element GMS model, 11.5 μm for the 10-element GMS model and 9.8

μm for the proposed model. Thus, for this motion amplitude the

performance obtained in feedforward control with the proposed model

is better than that of the GMS model while requiring the update of just

ae
b x β+( )

α

ae
bβ

α

Fig. 7 Friction lag as represented by the proposed model

Fig. 8 Non-drifting behavior of the proposed model

Fig. 9 Linear motor stage

Fig. 10 Control diagram for the experiment
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two states. Besides, it is clear that the performance of both, the GMS

and the proposed model, far exceeds the Tustin model, which is no

longer considered in the following tests.

Fig. 11 also shows the peaks of maximum error, which occur at

motion reversal, where friction is in presliding regime. In order to fully

study the error behavior in the presliding regime, a set of experiments

has been performed with smaller motion amplitudes as follow: 250 μm

in Fig. 12, 100 μm in Fig. 13 and 50 μm in Fig. 14. The first observation

in these experiments is the oscillatory behavior of the error clearly seen

when the 5-element GMS model is used for compensation, and in a

minor degree for the 10-element model, in contrast to the proposed

model. This seems to be a result of the integral control reacting to the

discontinuities of the slope changes reflected in the feedforward term,

which were pointed out in Fig. 5. As a consequence, the maximum

error in each experiment for the proposed model is lower respect to the

GMS model. The maximum errors for both models are summarized in

Table 4 for the purpose of comparison.

The previous experiments have been repeated for the proposed model

and the 5-element GMS, adding a 15.5 kg load to the motor to test the

robustness of this compensation strategy for different conditions. The

results are shown in Table 5, where it can be seen that the errors are very

Table 1 Stribeck curve parameters

Fs [N] Fc [N] Vs [mm/s] δVs σ2 [Ns/mm]

26.1 21.6 3.1 0.6 0.054

Table 2 Hysteresis parameters for 5-element GMS model

vi 0.17 0.13 0.30 0.017 0.38

ki [N/mm] 1152.07 377.23 215.33 9.39 87.66

Table 3 Hysteresis parameters for 10-element GMS model

vi 0.1198 0.0077 0.0809 0.0841 0.0053

ki [N/mm] 2051.68 47.15 288.57 248.35 10.37

vi 0.0505 0.139 0.0895 0.0355 0.3876

ki [N/mm] 60.05 104.15 58.05 19.99 92.16

Fig. 11 Comparison of model performance in feedforward control for 5

mm amplitude sinusoidal reference

Fig. 12 Comparison of model performance in feedforward control for

250 μm amplitude sinusoidal reference

Fig. 13 Comparison of model performance in feedforward control for

100 μm amplitude sinusoidal reference
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similar to those obtained without load (see Table 4). In fact the maximum

error for the proposed model is still lower to that of the 5-element GMS

in this case.

7. Conclusion

The present work shows a two-state model based on the GMS model,

keeping the main model properties including friction lag, Stribeck effect,

presliding friction and non-drifting behavior.

Its performance for feedforward compensation has been tested for

several references, where the error obtained was lower to that of the

GMS model, mainly due to its performance on presliding regime. This

improvement is attributed to the continuity of slope change inside the

hysteresis loop exhibited by the proposed model, in contrast to the GMS

model. Additional tests were performed with an extra load obtaining

similar results to the experiments without load.

Furthermore, the proposed model only requires the update of two

states which is convenient for real time implementation on certain

systems. Moreover, the definition of these states allows obtaining one

of them without performing any integration, leaving only one state to

integrate in order to consider the effect of friction lag.
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APPENDIX

A.1 Properties of κ and γ

Functions κ0 and γ0 are defined motivated on Eqs. (11) and (18). From

such equations, functions should have the shape shown on Fig. 15.

Function κ0 is positive, decreasing and has unitary area as can be

seen on Fig. 16, as kili = νi and .

An important property involving both functions can be seen when

integrating κ0(ξ) from a point of transition lm:

(A-1)

This property holds for any number of elements for integration from

transition points. As the number of element increases, the distance

between transition points diminishes accordingly.

In the proposed model, κ0 and γ0 are replaced by continuous functions

κ and γ, which allow to represent such functions with just a few

parameters. As in κ0 and γ0, for ξ ≥ l1 holds κ(ξ) = 0 and γ(ξ) = 1. Also,

as if each point of the interval [0 l1] would be a transition point, it will

be considered that both functions fulfill the same properties stated

before, that is

(A-2a)

(A-2b)

The last property will allow to obtain γ(ξ) once κ(ξ) is known. Also,

the last property can be rearranged based on the first one and considering

that . Then, the following expression

can be obtained:

(A-3)

which can also be used to obtain γ(ξ) from κ(ξ).

A.2 Friction force for stationary speed

For simplicity it will be considered the case where no intermediate

state updates are performed, that is when no loop closure nor return to

virgin curve occurs. Let t1 be the time for the beginning of a new

displacement after motion reversal, and tl the time at which presliding

region is surpassed during this displacement, that is when 1Δx(tl)/(s(v(tl))

− s1) = l1. From Eq. (27), Fh at tl is given by

(A-4)

From properties in Section A.1,  can be expressed as

(A-5)

where

(A-6)

Then, (A-4) can be put as

Σi=1

N
νi 1=

κ
0

u( ) ud
l
m

l
1

∫ ki lm 1–
lm–( )

i=1

m 1–

∑ ki lm 2–
lm 1–

–( )
i=1

m 2–

∑ … k
1

l
1

l
2

–( )+ + +=

k
1

l
1

lm–( )= k
2

l
2

lm–( ) … km 1–
lm 1–

lm–( )+ + +

kili
i=1

m 1–

∑= lm ki
i=1

m 1–

∑– kili
i=1

N

∑ kili
i=m

N

∑– lm ki
i=1

m 1–

∑–=

vi
i=1

N

∑= vi
i=m

N

∑– lm ki
i=1

m 1–

∑– 1 γ
0

lm( )– lmκ
0

lm( )–=

κ u( ) ud
0

l
1

∫ 1=

κ u( ) ud
ξ

l
1

∫ 1 γ ξ( )– ξκ ξ( )–=

κ u( ) ud
0

l
1

∫ κ u( ) ud
0

ξ

∫ κ u( ) ud
ξ

l
1

∫+=

κ u( ) ud
0

ξ

∫ γ ξ( ) ξκ ξ( )+=

Fh tl( ) Fh t
1

( ) κ
xΔ1 τ( )

s v τ( )( ) s
1

–
-------------------------

⎝ ⎠
⎛ ⎞v τ( ) τd

t
1

t
l

∫+=

 γ
xΔ1 τ( )

s v τ( )( ) s
1

–
-------------------------

⎝ ⎠
⎛ ⎞ds°v

dt
----------- τ( ) τd

t
1

t
l

∫+

γ
xΔ1

s v( ) s
1

–
------------------

⎝ ⎠
⎛ ⎞

γ
xΔ1

s v( ) s
1

–
------------------

⎝ ⎠
⎛ ⎞ Π xΔ1

s v( ) s
1

–
------------------

⎝ ⎠
⎛ ⎞ xΔ1

s v( ) s
1

–
------------------κ

xΔ1

s v( ) s
1

–
------------------

⎝ ⎠
⎛ ⎞–=

Π xΔ1

s v( ) s
1

–
------------------

⎝ ⎠
⎛ ⎞ κ u( ) ud

0

xΔ
1

s v( ) s
1

–
-------------------

∫=

Fig. 15 κ0 and γ0

Fig. 16 Area for κ0
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(A-7)

Integrating by parts, the first integral can be written as

(A-8)

In such a manner, (A-4) is reduced to

(A-9)

As  tl  is  the  instant  when  the  presliding  region  is  surpassed,

.  On  the  other  hand,  at  the  beginning  of  the

displacement . Thus

(A-10)

A similar result can be obtained for a displacement from zero state,

except that s1 would be replaced by s0 = 0. Then, if the displacement

before motion reversal started from zero state, and considering rule 1

from Section 4, Fh(t1) = s1. Thus, Fh at time tl results Fh(tl) = s(v(tl)). Once 

surpassed the presliding region, , 

and the only effect on Fh by the proposed model is to add s(v(t)) −s(v(tl)).

Hence, outside the presliding region Fh(t) = s(v(t)).

If a new motion reversal occurs, the same procedure can be followed

to show that after the presliding regime Fh(t) = s(v(t)) once again.

Regarding the complete friction force, after reaching a stationary

velocity vs, dsov / dt = 0. Then, as C is positive and s(vs) is bounded, it

can be shown that Fl → 0, and F ≈ Fh + σ2v. In such a case F ≈ s(vs)

+ σ2vs.

It should also be noticed from the previous discussion that the same

procedure can be applied to obtain the evolution of Fh between points

of state discontinuity. For instance, if td is the last point of state

discontinuity, where the state is updated to the value Fh( ), and the

arguments of κ and γ in Eq. (27) are referenced to the point of motion

reversal at x(tk), then

(A-11)

A.3 Motion reversals

For motion from zero state, the slipping transition was reflected in

the arguments of functions κ0(ξ) and γ0(ξ), through terms of the form

h(ξ − li). Such a term account for the transition to slip of an element i

whenever the argument ξ = li. For a motion from zero state the argument

was ξ = Δx(t)/s(v(t)). However, for the following motions, instead of

beginning from an initial condition of zero force as in Eq. (6), every

element has an initial force which may differ from zero. The effect of

this initial force will be to modify the arguments of κ0 and γ0 until the

next time zero velocity is reached.

Suppose there has been k motion reversals, where the last motion

reversal occurred at tk. Now, proceeding as done to obtain Eq. (7) but

considering that Fi,0 = Fi(tk) ≠ 0 in Eq. (5), the elements will be sticking

while

(A-12)

where Fi(tk) is the initial condition of that element after motion reversal,

being tk the time at which the object reached zero velocity. Suppose

element i was slipping until that point. As already known, the force while

slipping is being attracted to the curve νis(v).2 For convenience this force

at time tk, Fi(tk), will be written as

 (A-13)

where

(A-14)

Then, the sticking condition in (A-12) can be expressed as

where depending on the sign of velocity, kΔx(t) will increase or decrease

defining one particular condition for transition to slip. Then, for a motion

reversal, where s(v(t)) and s(v( )) have opposite sign, the sticking

condition can be put in a more convenient manner as

(A-15)

The term ϕi( )/(s(v(t)) − s(v( ))) is related to the deviation from

the Stribeck curve due to friction lag. The excursions from the Stribeck

curve are expected to be smaller when the attraction parameter is bigger,

or when the variation of s(v) for velocities in the same direction are

smaller. If ϕi( )/(s(v(t)) − s(v( ))) can be neglected, which amounts

to neglect the effect of friction lag on the force position relation during

presliding regime, the slipping condition can be expressed as

(A-16)

Thus, while the elements that begin to slip are those previously

slipping, the arguments of κ0 and γ0 would be given by the left side of

(A-16).

Here it was described the case of a motion reversal. In the same

manner, it can be shown that when the body reaches zero velocity and

then continues motion in the same direction, the slipping elements can

be considered to continue slipping. In such a case the transition of the

sticking elements afterward will be given by the same functions κ0 and

γ0 and the states do not change at that point.

This section primarily showed the situation of slipping elements after

motion reversal. However, it still needs to be described the situation of

the elements sticking immediately before motion reversal. Consider the

particular case when k = 1. After motion reversal at t1 the arguments are
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those previously shown, which account for the elements previously

slipping at . However, regarding the elements not slipping at , as

the force of each element at t1 is given by Fi(t1) = kiΔx(t1), its force after

motion reversal is Fi(t) = ki · Δx(t) until the element slips. Then, the

slipping condition for these elements corresponds again to Eq. (8), and

the arguments of κ0 and γ0 are once again given by Δx(t)/s(v(t)) once

these elements begin to slip.

To obtain the point where these elements start to slip, it is

convenient to consider that for the first motion the slipping condition

Eq. (8) does not hold for these elements. Hence, the li of these elements

is such that . Thus, after the first motion reversal,

considering (A-16), these elements will begin to slip when

(A-17)

A similar case arises when considering the closure of inner loops,

described in Section A.4.

A.4 Loop closure

It can be shown that the first elements to slip since tk (see Fig. 3)

will be those with the smaller values of li, which are already slipping

at . Also, the next elements to slip will be those with the next bigger

values of li, which were slipping for the last time at tk-1.

In this section, the condition for elements sticking at  to begin

slipping is considered. This condition will be referred to as the

condition for loop closure. Conversely, a motion will be considered part

of an inner loop if the set of slipping elements is a subset of those

elements slipping before the last motion reversal. Then, after tk those

elements will not slip while the following condition holds:

(A-18)

In order to simplify, here is considered only the case for positive

velocity at time t, although similar conclusions can be drawn for the

other case. Proceeding as before, (A-18) leads to the condition

(A-19)

As velocity at times t and  have the same direction, the right side

of the inequality might be close to zero. In such a case the elements

slipping for the last time at  will begin to slip over a small region

in the nearings of k-1Δx(t) = 0. Although this transition could be accounted

for as done for the transition to slip shown in previous section, this might

result in practical problems when implemented in an approximate

model.

To avoid the aforementioned problems in the proposed model, it is

considered that these elements begin to slip at the same instant tc. In

order to make such a simplification however, the state Fh should be

corrected to account for the transition to slip of these elements, and for

the integration of κ and γ along values which would still correspond to

some of these elements in stick state. A correction term can be obtained

considering (A-11) along a complete loop. Thus, defining the instant tc

of transition to slip as

(A-20)

the correction term amounts to a compensation of the speed difference

between instants tc and , resulting

(A-21)

where

(A-22)

Regarding Fl, the elements which begin to slip over this small

region start with zero deviation from the Stribeck curve, so it will be

assumed that the net deviation can be neglected. In this maner, Fl will

stay as previously to loop closure.

From there on the elements which will begin to slip are those which

were sticking at tk-1 and that were slipping for the last time at tk-2.

Considering the slipping condition for these elements, as done in (A-

18) for elements slipping in tk-1, it can be seen that the argument to use

in functions κ and γ after loop closure k-2Δx/(s(v(t)) − s(v( ))).

Although the previous treatment was for a generic point of motion

reversal at an inner loop, the same applies when k − 2 = 0, that is when

loop closure occurs at the first motion reversal, except that the elements

that will begin to slip are those which has never slip, resulting that the

argument after loop closure will now be Δx/s(v(t)).
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