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Upper Limb Rehabilitation Robots (ULRR) for the patient having shoulder and elbow joint movement disorders, requires further study

for development. One aspect that must be fulfilled by such robots, is the need to handle uncertainties due to biomechanical variation

of different patients, without significantly degrading performance. Currently, rehabilitation robots require re-tuning of controller gain

for each individual. This is time consuming process and requires expert training. To overcome this problem, we propose robust sliding

mode control algorithm, which uses very basic information of subject like weight, height, age and gender to handle these model

uncertainties. For analysis, we have compared our proposed algorithm with Robust Computed Torque Control (RCTC) and Boundary

Augmented Sliding Mode Control (BASMC) algorithms with diverse subjects. Results describe the superiority of the proposed

algorithm in handling uncertain parameters human arm and robot without degrading the performance.
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1. Introduction

There are 795,000 new stroke patients every year in the US1. About

85% of these patients suffer from hemiparesis which causes impairment

of the upper limb.1 Fortunately, 50% of these patients are recoverable.

However, recovery process requires intensive health care. Physicians

use robot-aided rehabilitation for this purpose.2-11 Using robot-aided

rehabilitation, patients receive more effective and stable rehabilitation

process, while permitting therapists to reduce their workload. These

robots can also offer reliable information regarding functional assessment

of patient recovery by measuring physical parameters, such as speed

and strength of patient’s residual voluntary activity.6,12,13 Much progress

has been made for rehabilitation robots in different spheres including

design, bio-mechatronics, and control system engineering.13 However,

we are still far from the desired goals as existing devices have not been

fully able to restore body mobility.14,15

Upper Limb Rehabilitation Robots (ULRR) are not like most

industrial robots, which can be modeled and controlled by linear control

techniques. These robots are designed to provide minimum and

maximum compliant assistance for rehabilitation. In the minimum

compliance, subjects are completely passive and their limbs are 100%

guided by the robot on reference physiological trajectories. Whereas in

the maximum compliance, subjects have more freedom to drive the

robot. A key requirement to provide passive rehabilitation and/or passive

arm movement for minimum compliance is consistent, high dynamic

tracking performance to move the robot with human subject in an

effective manner.

In literature, many researchers have proposed different approaches,

NOMENCLATURE

RCTC = Robust Computed Torque Control

BASMC = Boundary Augmented Sliding Mode Control

RSMC = Robust Sliding Mode Control

ULRR = Upper Limb Rehabilitation Robot
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such as Proportional and Derivative (PD16,17), and Proportional, Integral

and Derivative (PID16,18) and nonlinear control techniques such as

Computed Torque Control16,17 and impedance control.16,19 Linear control

approaches are unable to fulfill the requirement even if we consider

nonlinearities as disturbances.20,21 Simple computed torque control

techniques which includes robust computed torque control or passivity

based robust control technique, are also not successful because of

degraded performance under uncertain dynamics. To handle such

problems several other control techniques have been proposed including

factious gain,22 fuzzy adaptation23 and adaptive control.19,21 Main problem

with these techniques is that they are good for industrial robots but not

for ULRR where the uncertainties change from subject to subject.22 Due

to diverse biomechanical variations, mathematical model of wearable

ULRR changes completely which means controller needs to be re-

adjusted for each patient every time. Moreover, adaptive control

technique always depends on switching frequency for the adaptation

law to update the control gain, which may diverge if the system has a

malfunction. This phenomenon is particularly not safe for rehabilitation

robots.24

Some researchers have used Sliding Mode Control (SMC) technique

for upper limb rehabilitation robot.8 However, this method only handles

matched/structured uncertainties. These uncertainties act as additive noise

with input (control torque) channel.25 Moreover, chattering phenomenon

in sliding mode control makes this technique unsafe for the clinical

equipment. Rehman et al. has made a detailed discussion about it and

proposed exponentially reaching sliding mode for rehabilitation robot8

but it has two main drawbacks. 1) Exponentially reaching sliding mode

control law only handles matched uncertainty. 2) Control needs to be

retuned for each individual. Re-tuning controller gain for each individual

is a difficult problem and it requires expert training. Moreover,

overestimated gain not only raises safety issued for the patient but also

makes robotic systems less efficient for rehabilitation. In order to overcome

these problems, we propose robust sliding mode control algorithm.

We have developed chattering free Robust Sliding Mode Control

(RSMC) law to handle subject’s arm and robot model uncertainties.

RSMC is designed to overcome matched and unmatched uncertainties

for upper limb rehabilitation. It uses simple information like weight,

height, age and gender, and does not require expert training to tune

controller. Robust convergence is ensured without chattering making it

perfectly suitable for rehabilitation robot. Proposed RSMC law is

evaluated on seven degree of freedom (DOF) upper limb rehabilitation

robot and the results are compared with Robust Computed Torque

Control (RCTC) and Boundary Augmented Sliding Mode Control

(BASMC) laws.

Rest of the paper is organized as follows. In Section 2, we have

described the experimental setup. In Section 3, we have described

development of chattering free robust sliding mode control for the robot.

Section 4 describes experimental evaluation for the developed control

to handle uncertainties. Section 5 concludes the results and findings.

2. Problem Formulation

2.1 Dynamic modeling human-robot system

In this section, we describe the mathematical modeling of an upper

limb rehabilitation robot with human subject, which is referred as

Human-Robot System. We consider the robot and human arm as a

single rigid body for modeling simplicity. The system dynamics can be

formulated using the Newton-Euler method as10

(1)

where  and  represents the joint angles and velocities in

the radians and radian/sec, respectively. Furthermore, ,

, ,  are Inertial, Coriolis,

Gravitational and Friction matrices for the Human-Robot system for n

degrees of freedom; whereas  represents the actuator torque of robot

while  represents human applied torque.

Eq. (1) can also be rewritten in simple form as

(2)

where

(3)

where inertial matrix  is written as M for simplicity. As modeling

errors in robot and subject’s arm models are inevitable, therefore

controller must be designed considering uncertainties. Uncertain

dynamics of human-robot system can be represented as

(4)

where  and  represents estimated information of the

concerned parameter and This system has matched and unmatched

uncertainties,25 so the parameters  and  are not

precise. However, this imprecision is bounded by the following

functions:

(5)

where  is the upper bound of inertial matrix

which also resembles to matched uncertainty. This upper bound is

calculated based on maximum expected variation from the measured or

calculated concerned parameter. Similarly, unmatched uncertainties are

bounded as

(6)

It is important to note that the bounded limit  and  are

a function of the joint angles  and velocity . Such time varying

changes for robotic systems are also not considered in the literature.

2.2 Problem statement

Based on the above discussion about the modeling of human robot

system and it bounded properties of matched and unmatched

uncertainties, the problem is described. Main objective of the problem

is to find the joint torque  so that the robot is able to track the desired

trajectory for minimum compliance without degrading the performance

due the robot and subject’s arm modeling uncertainties. In the minimum

compliance case, the subject is completely passive and the robot is run
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under 100% force to guide the subject’s limb on reference physiological

trajectories.

3. Design of Robust Sliding Mode Control

To meet the desired objective, we have designed Robust Sliding

Mode Control (RSMC) algorithm. For this purpose, sliding surface is

defined as

(7)

where  and  Moreover, Cg and λ are positive

scalars. The proposed control law for the aforementioned Human-Robot

system is

(8)

where  is written  as simplicity and  is the

continuous feedback controller gain. This gain can be calculated as

(9)

where  is the positive definite matrix and defines the

convergence rate. Furthermore, we can find K by solving the following

equation, which satisfies the Laypunov stability condition, as

(10)

Proof:

To prove the closed loop convergence, we define Lyapunov function as

(11)

Further, from Eq. (7),  can be written as

(12)

Using Eq. (2), we can rewrite Eq. (12) as

(13)

Now, using  from Eq. (8), we obtain

(14)

From Eq. (5), we can have

(15)

Using above condition, we can simplify Eq. (14) as

(16)

where

(17)

Moreover, we can define as ; and express it as

(18)

Now, applying upper bounds for [s1, s2, …, sn]
T > [01, 02, …, 0n]

T,

as described in Eqs. (5) and (6), we have

(19)

If we prove that Eq. (19) is negative definite, our control law will

always converge to stable equilibrium point.15 It can be proved negative

definite if we define K such as

(20)

where  is the positive definite matrix which defines the

convergence rate and robustness of the overall system. To choose K for

Eq. (19) to be negative definite for [s1, s2, …, sn]
T > [01, 02, …, 0n]

T,

we solve

(21)

Eq. (21) is equally valid for individual nth order sliding surfaces

satisfying the condition sn > 0 as well.

In a very similarly way, we can rearrange Eq. (19) for [s1, s2, …, sn]
T

> [01, 02, …, 0n]
T as follows

(22)

and control gain can be calculated by solving the following equation:

(23)

Remarks:

Proposed robust sliding mode control law has no discontinuity as

shown in Eq. (8). Hence, controller effort is smooth and chattering free.

Proposed Control law has no time varying adaptive update law

which makes rehabilitation robot unsafe for subjects. Control effort 

is systematically calculated for the desired response based on simple

information about modeling and hence it does not need to be re-tuned

for each subject. This makes proposed control scheme widely applicable

especially for wearable ULRR.

4. Experimental Evaluation

4.1 Upper limb rehabilitation robot system

Proposed control algorithm is experimentally evaluated using Upper

Limb Rehabilitation Robot (ULRR). General structure of the

experimental setup is shown in Fig. 1. It is a unilateral device and only

attachment to the right arm is studied. The maximum joint range of

motion for shoulder and forearm flexion/extension were -30~135o and

0~150o, respectively. All other DOFs were kept free. Shoulder

abduction/adduction motion was kept passive and revolute joint was

used for this purpose. This frame was connected to human with two

braces: one at shoulder section and other at forearm section as shown

in Fig. 1. Brushless DC motors were incorporated with harmonic
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derives (with gear ratio 100:1 for shoulder and 160:1 for elbow). These

actuators can provide the peak torques of 45 Nm (shoulder motor) and

25 Nm (elbow motor). EPOS2 70/10 and EPOS2 25/5 Maxon DC

drives are employed for motors. System implementation is carried out

on National Instrument card NI cRIO9024. Hardware was programmed

using LabVIEW 2012.

Several safety features were installed in the robotic arm and control

hardware. Mechanical stops were placed on shoulder and elbow joints

to avoid the robot to go beyond the physiological motion range.

Moreover, in case of fast and uncontrolled movement whole plant shut

down feature is programmed. Independent safety circuit is also

incorporated that can power down the system in case of any danger or

if the subject's feels discomfort.

4.2 Upper limb rehabilitation robot parameters

Robot parameters for Upper Limb Rehabilitation Robot (ULRR) are

shown in Table 1. Human upper limb parameters like segment mass,

center of mass and lengths are calculated by subject's gender, body

weight, height and age as described in the literature.26,27

For the experiments, ten healthy neurologically intact male subjects

(age 25-35 years) were selected. Details of the participants are given in

Table 2. We have considered 20% variations in their biomechanical

properties.

4.3 Evaluation of RSMC law

We have compared RSMC algorithm with Robust Compute Torque

Control10 (RCTC) and Boundary Augmented Sliding Mode Control15

(BASMC).

The RCTC equation is listed below.

(24)

where Kp and Kd are the proportional and differential gains, while δα

is obtained as per rules given in the literature.10 It is important to note

that RCTC requires to tune 6n (where n represents DOF) parameters.

This is quite complicated to use and demands high expertise.

The BASMC equation can be written as

(25)

where  is the saturation function and K is the control gain. This

gain can be obtained by solving the following equation as

(26)

Proposed RSMC equation can be represented as

(27)

where the controller gain is obtained by solving Eqs. (21) and (23).

Once the controllers are tuned, no changes are made between the tests

in terms of gains in control strategy which is the key advantage of

RSMC. Good performance can also be achieved with RCTC and

BASMC but it needs to be retuned for each individual. However, RSMC

does not need to be re-tuned. A block diagram of the experimental

setup is shown in Fig. 2. The output of the controllers are the desired

torque for shoulder and elbow joints. We converted torque command to

desired motor current. To ensure the system to follow desired current

command, we have implemented local closed loop system using simple

proportional integral (PI) controller followed by saturation function to

limit the desired current. Output current is filtered using Kalman Filter.15

Experimental setup is developed using LabVIEW 2012 FPGA module.

Sampling rate for controllers is 500 μs while the current loop controller

sampling time was 50 μs.

4.4 Experimental results

All the controllers were evaluated experimentally with ten different

subjects. We found errors and variations in trajectories. These

experiments were carried out for minimum compliance which means

that controllers are run under 100% force to guide the subject’s limb on

reference trajectories. During this mode, the maximum angular deviation

from the desired trajectory must be less than 5o.

In Fig. 3, trajectory tracking results for RCTC is represented, while

Figs. 4 and 5 represents the response with BASMC and RSMC,

respectively. It is evident from the Fig. 3 that RCTC is mostly affected

by biomechanical variations. BASMC also suffers from unacceptable

deviations from the desired trajectory (as shown in Fig. 5) and hence

not suitable for ULRR. On the other hand, RSMC (as shown in Fig. 5)

tracks the desired trajectory with minimum variations. It is found that

tracking error due to these uncertain variation is as high as 20o for

sat s( )

Fig. 1 Schematic diagram of exoskeleton with a human subject; q1 and

q2 refers to shoulder and elbow joint angles, respectively

Table 1 Robot parameters

Parameter Shoulder Link Elbow Link

Length (m) 0.32 0.30

Mass (kg) 0.3 0.2

Center of mass (m) 0.16 0.15

Table 2 Subject participants data

Age (Years) 25 to 35

Gender Male

Body Weight (kg) 65-82

Height (m) 1.7 to 1.82
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RCTC whereas for BASMC, it is up to 12o, but with RSMC it only

varies from 1o to 4o. We have highlighted this error comparison in Fig.

6. It is clear from Fig. 6 that RSMC is least affected by subject’s arm

uncertainties as trajectory tracking error using RSMC is 10 times less

than RCTC and three times less than BASMC. Overall, the least

performance is obtained by RCTC. This performance was mainly

because of control algorithm’s inability to handle subject and robot

model uncertainties which makes RCTC impractical to use for Upper

Limb Rehabilitation Robot (ULRR). BASMC handles uncertain system

parameters better than RCTC, but it lacks in handling time varying un-

matched uncertainties. Un-matched uncertainties are part of unmolded

dynamics which acts through the non-control input channel e.g., ( ).15

Therefore, BASMC is also not suitable for ULRR. So, the best

performance is achieved using RSMC. Main reason for this performance

is the ability of RMSC to cater matched & unmatched uncertainty,

smoothly. For better understanding, we have presented statistical

analysis in Fig. 7.

We repeated experiments 20 times and plotted average RMS error

for each control law. Fig. 7 represents the performance variation for

RCTC, BASMC and RSMC over repeated experiment. Statistical

τ

Fig. 2 Control architecture of Upper Limb Rehabilitation Robot (ULRR)

Fig. 3 ULRR trajectory tracking results using RCTC; (a) for shoulder joint, (b) for elbow joint

Fig. 4 ULRR trajectory tracking results using BASMC; (a) for shoulder joint, (b) for elbow joint



360 / MARCH 2016 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 17, No. 3

analysis is summarized in Table 3. Fifth column of table elaborates

standard deviation normalized to RSMC for comparison. It can be seen

that standard deviation σ, for RCTC is more than four times of RSMC

while σ for BASMC, it is almost two times.

5. Discussion

RCTC and BASMC controllers can be tuned in an attempt to achieve

better performance. However, tuning process needs to be repeated for

each individual. Moreover, RCTC requires 6n parameters to be tuned

while BASMC requires 2n parameters whereas RSMC requires 3n

parameters for the controller tuning. Although, BASMC requires lesser

parameters than RSMC but it has two major disadvantages as follows:

1) BASMC cannot handle unmatched uncertainties. These unmatched

uncertainties acts through non-input channel and causes chattering.

RSMC law not only overcomes this problem but is also chattering free.

2) BASMC needs to be retuned for each individual every time whereas

RSMC does not need this retuning, it can handle matched and un-

matched uncertainties very well. Once, bounds and desired response

time is defined, controller does not need to be retuned for parametric

variations due to different subjects. With just basic information of

human subject parameters like weight, height, age and gender,26,27

controller is simply re-adjusted for these parameters. So, once the

controller is tuned, no further tuning is required for different subjects.

Results in Sections 4.4 presents comparative analysis of the proposed

methodology.

6. Conclusions

In this paper, we have discussed issues and control challenges for

upper limb rehabilitation robot particularly concerned with changing

subject’s arm parameters. We have proposed chattering free robust

sliding mode control for upper limb rehabilitation robot (ULRR).

Proposed methodology is evaluated on seven degree of freedom robot

Fig. 6 ULLR trajectory tracking error; (a) using RCTC, (b) using BASMC, (c) using RSMC

Fig. 5 ULRR response using RSMC; (a) for shoulder joint, (b) for elbow joint
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with two active and five passive joints. These active joints make the

robot able to move in sagittal plane only. We have successfully

demonstrated the RSMC performance against RCTC and BASMC.

Tracking performance is compared while varying the subject’s physical

characteristics. Results indicate that RSMC achieves better performance

in handling diverse subject’s arm uncertainties as compared to RCTC

and BASMC. Thus, we conclude RSMC can be more effective for

Upper Limb Rehabilitation Robot.
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