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A method for reconstructing the digital real tooth surfaces of hypoid gears can be a significant foundation for a variety of dynamic

performance and lifetime prediction. This study demonstrates a new digital real tooth surfaces modeling approach for hypoid gears

based on non-geometric-feature segmentation and interpolation algorithm. In this method, the discrete data points, which are obtained

by using acoordinate measure machine (CMM), are segmented in the form of Delaunay triangular meshes. In order to identify

irregular local micro-geometry features, the segmentation method starts with a feature detection based on normal vectors of Delaunay

triangular meshes, identifying wear regions around each discrete data point, and is followed by region growing steps to divide tooth

surface. In addition, a revised interpolation algorithm is applied to describe local micro-geometry features on wear regions via

weighted factors to locally qualify the triangular vertexes. And the revised fairing algorithm minimizes the effect of noisy points.

Experimental results from reconstruction of real tooth surface after wear test demonstrate that our method can improve the

computation precision of wear region on actual tooth surfaces.
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NOMENCLATURE

B = the recursion formula of basis function

E = pinion position error along the shaft offset direction

ΔEm = blank offset

ΔEi = deviation between the control vertex and interpolation curve

Δe = absolute error of position vector norm

G = axial displacement of the gear

Ji = moment of inertia

Mji, Lji = matrix of coordinate transformation from system Sito

system Sj

n = number of contact lines

Ng = number of the gear teeth

ni,j = normal vector of Vi,j

np, ng = unit normal vectors in system St to profile of pinion and

gear, respectively

P(ui) = interpolation curve

q= cradle rotation angle

Ra = ratio of roll

Rd = contact ratio of reference tooth surface

ΔRp, ΔRg = deviations between the actual tooth surface and the

reference tooth surface

rB = cutter radius

rG = cutter point radius

rp, rg = position vectors in system St to profile of pinion and gear,

respectively

Sa, Sb = coordinate systems for assisting the installment of the

work piecen

Sc = machine cradle coordinate system

Si = theareaof Tri(i)

Sm = cutting machine frame coordinate system

Sp, Sg = coordinate systems are attached to the pinion and the gear,

respectively

St = the gear head-cutter coordinate system
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1. Introduction

 Hypoid gears are widely applied in aerospace, automotive etc.1 As

any other type of gearing, hypoid gears exhibit several types of failure

modes including tooth breakage, scoring, pitting and surface wear.2

Gear surface wear is a complex phenomenon that takes place in a

relatively long period of time. Since the ratio of rolling and sliding

motions changes along an instantaneous contact as well as with the

path of contact, a non-uniform material removal through wear is

inevitable, changing the tooth surface profiles to cause increased

contact pressures. Such pressure increases further accelerate wear at the

local contact region.3 Hence, with the accumulation of wear, dynamic

performance of the gear pair also changes negatively. The tooth surface

meshing performance directly affects the overall performance of the

drive system.

Many works have been directed towards the geometry, design, tooth

contact analysis and manufacture of spiral bevel and hypoid gears in

recent decades.4-7 In order to predict the wear behavior of a gear pair,

Archard’s wear model was used widely and quite successfully in the

past.8-13 

With the development of numerical control technology, the actual

machine settings and cutter dimensions allow precise calculation of the

theoretical tooth surfaces.18-20 However, the actual gear tooth surfaces

deviate geometrically from the theoretical tooth surfaces due to

manufacturing errors and heat treatment distortions. Gears having such

deviations exhibit wear tendencies that are not uniform. Therefore, it is

desirable to propose a digital tooth surface reconstruction approach for

calculating local micro-geometry features of the actual gear tooth

surfaces.

Park and Kahraman proposed a FE-based model based on a surface

curve fitting method to capture the deviations from the theoretical

nominal surfaces.2 While this method was effective and accurate for

representing global deviations due to manufacturing errors and heat

treatment distortions, it might be difficult to represent local deviations

such as wear in a certain region on the tooth surfaces. Kolivand and

Kahraman developed acontact model to handle both local and global

deviations via changes to the theoretical ease-off surface.13 The curve

fitting method calculated features on tooth surfaces by adjusting

weighted local shape coefficients. But the weighted local shape

coefficients were sensitive to noisy points. The fitting curves reduced

the ability to detect small details.

Kubo et al. proposed a method for a non-generated face-milled

hypoid gear reconstruction that utilized tooth surface data obtained

from the scanning measurement.14 And Takeda et al. developed a

reconstruction method for a generated face-hobbed hypoid gear to

analyze dynamic performance using similar approach with Kubo.15

Gosselin et al. conducted hypoid gear lapping simulations using a wear

model that employed a five-point parabolic interpolation algorithm for

computing the actual tooth surface topography.16,17 To evaluate tooth

surface errors, gears were measured by CMM. However, constructing

fair curve segments of hypoid gear tooth surfaces using parabolic

interpolation is difficult due to the oscillatory nature of polynomials. 

Most of previous works about complex spiral shape modeling

mainly concentrated on approximating spiral arcsby polynomials, such

as Cornu spirals, generalized Cornu spirals and logarithmic spirals.21-25

Piegl proposed a method to determine the parameters by using Coons

surface for the discrete data points.22 However, the parameters

determined by constructed Coons surface with unknown fitting surface

deflection were not accurate. A method of constructing an

approximation to a generalised Cornu spiral (GCS) arc using non-

rational quintic Bézier curves matching end points, end slopes and end

curvatures was presented by Cripps.23 Sitnik developed a data

segmentation algorithm based on the region-growing method.24 It used

large seed regions and selective region growing based on parameters

ofthe best fit primitive. This multi-pass process was aided by histogram

analysis of calculated features. An orientation analysis of the Gaussian

map to area-form clusters was applied to identify hyperbolic and

elliptical regions by Liu.25 A signed point-to-plane distance function

was used to identify noisy points of convex and concave regions.

All these approaches constructed the approximation based on

minimizing the positional error between points on the spiral and

corresponding points on the polynomial approximation. It was effective

for reconstructing spiral surface based on point clouds with a large

quantity of measurement points. However, in practice, the number of

measurement points on tooth surface is limited. Even tooth surface

topography by using parabolic interpolation algorithm16,17 can exhibit

unsatisfactory local micro-geometry features of the actual gear tooth

surfaces.

sr = radial setting

Tri(i) = Delaunay triangle

t = time

ti = position vector of control vertex

u = profile direction

up, ug = surface parameters of the head-cutter to the pinion and the

gear, respectively

Vij = control points

v = tooth trace direction

vgt = relative velocity vector of head-cutter to the gear

vp, vg = velocity vector of the pinion and the gear, respectively

ΔXB = sliding base

ΔXD = machine center to back

αg= blade angle of the head-cutter

γm = machine root angle

κ = curve curvature

li(j) = measure points

θp, θg = surface parameters of the head-cutter

δi = angle between normal vectors of Delaunay triangles

Γi = tangential vector

ωi = weighted factor for control point

ωp, ωg = angular velocity of the pinion and the gear, respectively

ωc = angular velocity of the cradle

Σp, Σg = generating surface of pinion and gear, respectively

ψp, ψg = current rotation angles of the pinion and the gear,

respectively

ψc = current rotation angle of the cradle
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This work focuses on presenting a revised NURBS (Non-Uniform

Rational B-Splines) tooth surface reconstruction approach based on

non-geometric-feature segmentation and revised interpolation

algorithm of hypoid gears. This approach segments 3D data in the form

of Delaunay triangular meshes. In order to identify irregular local

micro-geometry features, local wear regions are grouped into areas of

similar normal vectors. A segmentation algorithm for discrete data points

based on the region-growing method is developed. By combining of

NURBS curves interpolation algorithm with Delaunay triangulation,

the measurement points or triangular vertexes are qualified by the local

weighted factors, which are calculated by revised local interpolation

algorithm. Therefore, non-geometric-feature segmentation algorithm

reduces the calculation quantityof the revised local interpolation

algorithm, in the meantime, revised local interpolation algorithm

improves the accuracy of the segmentation algorithm.

2. Real Tooth Surface Model of Hypoid Gears

The purpose of this research is to reconstruct a real tooth surface

model of hypoid gears by measuring the tooth surface. To achieve this,

in this study, it is desirable to use a reference surface with an ideal

contact condition for the gear performance. The reference surface of

the gear is defined as the surface derived from the envelope of the gear

cutter and that of the mating pinion at the conjugate surface of the gear.

Therefore, the gear set with tooth surfaces conjugate to each other has

tooth contact on the full tooth surface and has no transmission error.

2.1 Theoretical reference tooth surfaces

A general mathematical model for the generation of tooth surfaces

of the gear is adopted as shown in Fig. 1.26 Coordinate system Sg is

rigidly attached to work piece (the gear). Coordinate system Sc is used

to describe the angular position of the cradle. The coordinate system Sm

is rigidly connected to the cutting machine frame. Sa and Sb are used for

assisting the installment of the work piece. Coordinate system St is

rigidly connected to the gear head-cutter. ψg and ψc are represent and

related to the current rotation angles of the gear and the cradle,

respectively.

There are six potential auxiliary motions parameters that can be

used to modify the tooth surface of a generated spiral bevel gear: ΔEm

is blank offset, ΔXB is sliding base, ΔXD is machine center to back, γm

is machine root angle, sr is radial setting, and q is cradle rotation angle.

The ratio of gear roll Ra is represented by the equation.

(1)

Where, ωg and ωc represent angular velocity of the gear and the

cradle, respectively.

As shown in Fig. 2, the cutting edge of head-cutter blade is divided

into four sections as the edge, toprem, profile, flankrem. The cutting

surfaces of the head-cutter are generated by rotation of the blade about

the Zt-axis, the rotation angle is θg. Most of the generating of gear tooth

surface is done by the profile section that is a straight line with the

profile angle αg. The fillet of the gear tooth surface is generated by the

edge section with corner radius ρw. Referring to Fig. 2, an arbitrary

point Mb on the cutting surface of blade is determined by ug and g (Fig.

3). The generating surface Σg about the profile section of the head-cutter

blade is represented by vector function rt(ug, θg) as

(2)

Where, rG is the head-cutter point radius. αg is the blade angle. ug

and θg are tooth surface parameters. The upper signs in Eq. (2) correspond

Ra

ωg

ωc

------
dψg

dt
---------

dψc

dt
---------⁄= =

rt ug θg,( )
rG ug αgsin±( ) θgcos

rG ug αgsin±( ) θgsin

ug αgcos–

=

Fig. 1 Coordinate systems applied for gear generation

Fig. 2 The four sections of blades
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to generation of concave side of the gear tooth surface, while the lower

signs correspond to convex side.

The unit normal to the gear generating surface Σg is represented by

vector function nt(θg) as

(3)

Gear theoretical tooth surface Σg is formed by cutting edge track

surface Σt enveloping of cutter, so the theoretical tooth surface model

can be represented as

(4)

Where, Mgt, Lgt represent the transformation matrixes from

coordinate St to Sg. ψg is rotation angle of the gear.

(5)

Where, vgt is the relative velocity vector of head-cutter to the gear.

The reference tooth surface of pinion which is the conjugate tooth

surface of the gear theoretical reference tooth surface can be obtained

by using the conjugate surface theory and meshing principle.26

2.2 Numerical analysis for digital real tooth surfaces

For reconstruction of real tooth surfaces, it is required to divide the

reference surfaces to describe the reference tooth surfaces using grid

points. As described in the previous section, a point on the cutting edge

is taken, and the line generated by the point is calculated. All the lines

generated by the points on the cutting edge are parallel to the root line,

then the reference surface can be divided in the profile and lengthwise

directions. The grid points of the tooth surface for a non-generated

face-milled hypoid gear can be described by the points on the cutting

edge and the rotational phase angles. And this approach was reported

by Kubo et al..14 However, the shapes of the paths of the points on the

cutting edge are not straight lines but are curves in the generated face-

hobbed progress. It becomes complicated and impractical to describe

the reference surface of a generated face-hobbed hypoid gear using a

point on the cutting edge and the cutter rotation angle.15 For this reason,

in this study, a method for describing the tooth surface using the

theoretical contact lines is proposed,and this method is suitable to

describe both the generated and non-generated hypoid gear using the

grid points.

As shown in Fig. 4, the point M(ugM, θgM) is the center of the gear

tooth surface. The point Mt(ugt, θgt) is the intersection between the

contact line through the point M and tip line.The distance from Mt to

tip line can be represented as

(6)

The current rotation angle of the gear gt can be represented as

(7)

Where, ψgM is the rotation angle of the gear corresponding to Mt.

With Eqs. (6)~(7), the coordinate of Mt(ugt, θgt) can be solved by

Newton-Raphson Method.

Consider the distance from Mi(ugi, θgi) to tip line is f(ugi, θgi), and the

current rotation angle ψgi is g(ugi, θgi).

We generate the Mi+1 recursively by choosing step size Δu, Δθ and

incrementing ugi, θgi at each stage by Δu, Δθ respectively. So the

equation satisfying Mi+1(ugi+Δu, θgi+Δθ) is given by

(8)

as required.

Hence we have

(9)

Then

(10)

Here, the differential equations 

can be represented as

nt θg( )
αg θgcoscos

αg θgsincos

αgsin±

=

rg ug θg ψg, ,( ) Mgt ψg( )rt ug θg,( )=

ng ug θg ψg, ,( ) Lgt ψg( )nt ug θg,( )=⎩
⎨
⎧

ng vgt⋅ fg ug θg ψg, ,( ) 0= =

f ugt θgt,( ) 0=

g ugt θgt,( ) ψgt ugt θgt,( ) ψgM– 0= =

0 f ugi uΔ+ θgi θΔ+,( ) f ugi θgi,( ) u
∂f

∂ug
--------

⎝ ⎠
⎛ ⎞

i

Δ θ
∂f

∂θg

--------
⎝ ⎠
⎛ ⎞

i

Δ …+ + += =

0 g ugi uΔ+ θgi θΔ+,( ) g ugi θgi,( ) u
∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i

Δ θ
∂g
∂θg

--------
⎝ ⎠
⎛ ⎞

i

Δ …+ + += =

⎩
⎪
⎪
⎨
⎪
⎪
⎧

∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i

uΔ
∂f

∂θg
--------

⎝ ⎠
⎛ ⎞

i

θΔ+ f ugi θgi,( )–=

∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i

uΔ ∂g
∂θg
--------

⎝ ⎠
⎛ ⎞

i

θΔ+ g ugi θgi,( )–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

uΔ

f ugi θgi,( )
∂g
∂θg

--------
⎝ ⎠
⎛ ⎞

i

– g ugi θgi,( )
∂f

∂θg
--------

⎝ ⎠
⎛ ⎞

i

+

∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i

∂g
∂θg
--------

⎝ ⎠
⎛ ⎞

i

∂f
∂θg
--------

⎝ ⎠
⎛ ⎞

i

∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i

–

-----------------------------------------------------------------------------------–=

θΔ

f ugi θgi,( ) ∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i

– g ugi θgi,( ) ∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i

+

∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i

∂g
∂θg
--------

⎝ ⎠
⎛ ⎞

i

∂f
∂θg
--------

⎝ ⎠
⎛ ⎞

i

∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i

–

-----------------------------------------------------------------------------------–=

⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i 1+

∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i 1+

∂f
∂θg
--------

⎝ ⎠
⎛ ⎞

i 1+

∂g
∂θg
--------

⎝ ⎠
⎛ ⎞

i 1+

Fig. 3 Blades and generating cones for gear generating tool: (a)

Generating tool cones for concave side and (b) Generating tool cones

for convex side

Fig. 4 Contact lines on reference tooth surface
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(11)

(12)

(13)

(14)

Choosing Δu, Δθ small will improve the accuracy of the method,

but it will be more time consuming excessively. Therefore, to reduce

computation time, we need to determine the convergence precision on

the algorithm. So, in this study, the convergenceprecisions are defined

as

(15)

(16)

The intersection Mr between contact line through the point M and

root line also can be solved by the method mentioned above. With

turning rotation angle of the gear ψg at regular intervals, in turn, the two

endpoints of the corresponding contact line on conjugate reference

tooth surface can be obtained.In this study, the distance between each

contact line is equivalent to 1/16 of a pitch of the gear. The numerical

analysis results of contact lines on reference tooth surfaces are shown

in Fig. 5.

The contact ratio of driven side can be represented as

(17)

Where, ψgt0 is the rotation angle of Mt0 in a meshing period. ψgh0 is

the rotation angle of Mh0 in a meshing period. Ng is the number of the

gear teeth.

Scanning lines are defined as li, i = 1, 2, …, n. Simultaneously, each

contact line should be segmented and numbered from root to tip

insequence, li(j) j = 1, …, m, as shown in Fig. 6.

For describing deviationsof real tooth surfaces, it is required to

measure the actual tooth surface by CMM. Unlike the measurement

performed by scanning the line in both the profile direction and the

tooth trace direction on the tooth surface, the measuring lines are set in

contact lines direction, as shown in Fig. 6.

Given the possibility to numerical analysis of the results from 3D

measurement with data obtained by CMM, we may define the gear and

pinion coordinate systems, as shown in Fig. 7. The coordinates and unit

normal vector of measurement point on the gear surface are (xg, yg, zg)

and (nxg, nyg, nzg), respectively. The coordinates and unit normal vector

of measurement point on the pinion surface are (xp, yp, zp) and (nxp, nyp,

nzp), respectively.

The deviations between the actual tooth surface and the reference

tooth surface can be represented as

(18)

(19)

Where, Δθg and Δθp denote the angular deviations of the gear and

∂f
∂ug
--------

⎝ ⎠
⎛ ⎞

i 1+

f ugi uΔ+ θgi,( ) f ugi θgi,( )–

uΔ
-----------------------------------------------------------=

∂g
∂ug
--------

⎝ ⎠
⎛ ⎞

i 1+

g ugi uΔ+ θgi,( ) g ugi θgi,( )–

uΔ
-------------------------------------------------------------=

∂f
∂θg
--------

⎝ ⎠
⎛ ⎞

i 1+

f ugi θgi θΔ+,( ) f ugi θgi,( )–

θΔ
-----------------------------------------------------------=

∂g
∂θg
--------

⎝ ⎠
⎛ ⎞

i 1+

g ugi θgi θΔ+,( ) g ugi θgi,( )–

θΔ
--------------------------------------------------------------=

f ugi θgi,( ) 0.0001≤

ψg ugi θgi,( ) ψM– 0.0001≤

Rd

ψgt0 ψgh0–

2π

Ng

------

--------------------------=

RΔ g θΔ g yg– nxg⋅ xg+ nyg⋅( )⋅=

RΔ p θΔ p yp– nxp⋅ xp+ nyp⋅( )⋅=

Fig. 5 Contact lines on the reference tooth surfaces (driving surface)

Fig. 6 Grid points on contact lines

Fig. 7 Definition the gear and pinion coordinate systems
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the pinion, respectively. The real tooth surface model is shown in Fig. 8.

3. Real Tooth Surface Reconstruction Technology based on

Non-Geometric-Feature Segmentation Algorithm

NURBS curves are a popular parametric form used in a variety of

CAD/CAGD systems.27 While in the current reconstruction process of

real tooth surface, constructing fair curve segments using parametric

polynomials is difficult due to alimiton the number of measurement

points. Even NURBS curves can exhibit unsatisfactory curvature

profiles. A different method of constructing a digital real tooth surface

using non-geometric-feature segmentation of tooth surface discrete

points is proposed. This method covers the real tooth surface with a

collection of triangulation mesh in a consistent manner. To improve the

interpolation algorithm speed of the real tooth surface, non-geometric-

feature segmentation is used to split the discrete points along the

growing path of triangulation or tooth surface edges.

In the process of computation of NURBS tooth surface, segmentation

of discrete data points on tooth surface is necessary for describing

geometric features of wear regions quickly and accurately. Traditional

data segmentation divides the discrete data points into a set of defined

surfaces, however, it is unsuitable for describing the irregular geometric

features of wear regions. In this study, regions can be grouped into

areas of similar normal vectors called center triangles. These center

triangles are then grown to segment discrete data points.

3.1 Tooth surface model based on NURBS surface

NUBRS surface is based on the tensor product form of NURBS

curve, the NURBS surface can be defined as27

(20)

Where, P(u, v) is the point on the surface for parametric values u

and v. u, v denotes profile direction and the tooth trace direction,

respectively. The grid of (n+1)×(m+1) control points is denoted by Vij.

The basis functions in u and v directions are denoted by Bi,k and Bj,k.

The variable k denotes the order of the surface in the direction of u and

v. m and n are the numbers of control vertices in the direction of u and

v, respectively.

Wherein, the recursion formula of basis function can be defined as

(21)

3.2 Delaunay triangulation for discrete data

In order to describe the real tooth surface intuitively, discrete data

points obtainedby CMM are processed by using Delaunay triangulation

principle.28

Traditional Delaunay triangulation algorithms tend to project

geometric features in 3D discrete data points onto a 2D plane. Whereas

triangular region obtained by this method cannot describe their spatial

relations, the quality of triangulation is reduced. Therefore, this study

presents direct triangulation algorithm on 3D discrete data points.

Scanning lines are defined as li, i = 1, 2, …, n, the number of measure

points on scanning lines is t, among which, two adjacent scanning lines

are lk, lk+1, 1 ≤ k < k+1 ≤ n. The number of measure points on two

scanning lines is lk(j), j = 1, 2, …, m, l = lk+1(l), l = 1, 2, …, m.

As shown in Fig. 9, we connect the start points (lk(1) and lk+1(1)),

end points (lk(m) and lk+1(m)) that belong to two scanning lines,

respectively. And then, we connect each data point to neighborhood

point which is the nearest on another scanning line in sequence.

Simultaneously, the region between scanning lines lk and lk+1 is divided

into r(r ≥ t−1) spatialregions. This process may lead to the creation of

regions which are quadrilateral.Therefore,the number of points in each

region is checked.

For spatial quadrilateral regions, we triangulate them by the minimum

interior angle maximum criterion28 to complete the Delaunay

triangulation of discrete data points on tooth surface, as shown in Fig. 10.

3.3 The normal vector of arbitrary point on tooth surface

During the gear measurement, the data measured by measurement

P u v,( )

Bi k, u( )Bj k, v( )ω ijVij

j=1

n

∑
i=1

m

∑

Bi k, u( )Bj k, v( )ωij

j=1

n

∑
i=1

m

∑

---------------------------------------------------------=

u v, 0 1,[ ]∈

Bi 0, u( )
1 ui u ui 1+

≤ ≤,

0⎩
⎨
⎧

=

Bi k, u( )
u ui–

ui k+ ui–
------------------Bi k 1–,

u( )
ui k 1+ +

u–

ui k 1+ +
ui 1+

–
----------------------------Bi 1+ k 1–,

u( )+= k 1≥

0

0
--- 0=

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

Fig. 8 Digital real tooth surface

Fig. 9 Rough delaunay triangulation between adjacent scanning lines

on tooth surface

Fig. 10 The triangulates of polygon area
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instrument is the coordinates of measure probe center.In order to obtain

normal vector of an arbitrary point on tooth surface accurately, all

neighborhood triangles with a common vertex lk(p) are defined as Tri(i).

The neighborhood triangle Tri(i) as a spatial triangle mesh of

approximating surface represents geometric feature changes of adjacent

region around vertex lk(p).

Suppose material of adjacent regions around vertex lk(p) is

homogeneous. The moment of inertia of Tri(i) rotation about axis

which is through the vertex lk(p) is defined as Ji. The normal vector of

vertex lk(p) is defined as n. The center of gravity of neighborhood

triangle Tri(i) is defined as Ci. The moment of inertia for Tri(i) rotation

about n is represented as

(22)

Where, Si is theareaof Tri(i). Ri is the distance from the center of

gravity Ci to n.

The moment of inertia for all neighborhood triangles rotation about

n is represented as

(23)

Accordingto multi-rigid-body dynamics, the moment of inertia J

can obtain extremum on three mutually perpendicular principal axes of

inertia. The direction of the principal axis of inertia on which the moment

of inertia J is the maximum among principal axes of inertia is the

direction of the normal vector of vertex lk(p).

3.4 Region growing

Suppose an arbitrary triangle on digital real tooth surface  as center

triangle CenTri, normal vector of which is n, the normal vector of whose

adjacent triangles NeiTri(i) are nii = 1,2,3. The angle between n and ni

is i. Calculate the value T of each CenTri as Eq. (24). Compare all the

T value bytraversing all CenTris. One CenTri that the T value issmallest

shall be defined as the StaTri, as shown in Fig. 12.

(24)

We calculate the normal vector of each adjacent triangle NeiTri(i),

and then, compare theangles betweenthenormal vectors of NeiTri(i) and

CenTri. The adjacent triangle NeiTri(i), which normal vectorial angle is

minimum among adjacent triangles, is defined as the next CenTri.

Otherwise, we reselect start triangle StaTri. (Fig. 13).

Region growing is performed until there are no more possible

triangular regions that can be added. It can also be used to aid shape

recognition for wear regions.

3.5 Revised local interpolation algorithm

The traditional NURBS surface interpolation algorithm is curve

interpolating first, curvefairness second. Most of works calculated

features of NURBS surfaces via local weighted factors to locally qualify

control vertexes. It is difficult to guarantee precision of real tooth surface

reconstruction with wear due to the oscillatory nature of polynomials

caused by deviation of wear regions.

The local interpolation algorithm proposed in this study overcomes

these limitations and in addition, provides a unified high-performance

solution to the computation of NURBS surfaces by adjusting local

weighted factors and deviation of control vertices, simultaneously.

According to the non-geometric-feature segmentation algorithm of

discrete data points, grids which are not satisfied with Eq. (24) are

extracted from tooth surface as object to interpolation.

The control vertex Vi of interpolation curve P(ui) is obtained by

interpolation algorithm. The corresponding weighted factor is ωi. ΔEi is

Ji SiRi

2
=

J SiRi

2

i=1

n

∑=

T max δ
1

δ
2

– δ
2

δ
3

– δ
1

δ
3

–, ,( ) min δ
1

δ
2

– δ
2

δ
3

– δ
1

δ
3

–, ,( )–=

Fig. 11 The moment of inertia method to solve the normal vector

Fig. 12 The position of CenTri on tooth surface

Fig. 13 The process of segmentation of discrete data based on non-

geometric-feature
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the deviation between the control vertex Vi and interpolation curve P(ui),

as shown in Fig. 14.

(25)

Where, Vi is a control vertex. ΔVi is the deviation of curve control

vertex Vi. ωi is the weighted factor for Vi. Δωi is the weighted factor

deviation of ωi. Bi,k is the k order B-spline basis function in u direction.

For the compensation of ΔEi on NURBS surface, it is necessary to

adjust the positions of control vertices. Based on thrice interpolation

algorithm of NURBS surface for position compensation of control

vertices, the deviations of control vertices can be solved by (Δωi=0)

(26)

Where, . .

The deviations of weighted factors of control vertices can be solved

by (ΔVi = 0)

(27)

Where, . Γi is the tangential vector of Vi-V(ui).

ni,3 is the normal vector of Vi,3.

4. Fairing Algorithm

To minimize the effect of noisy points, most of fairing algorithms

for discrete data points use calculated curvature of interpolation curve

to distinguish noisy points, then delete them. These methods are unable

to guarantee modelingprecision of local geometric features of wear

regions on the tooth surface.

The shape of the curve must be modified as interpolation points

have changed. Surely local geometric features of wear regions can be

determined automatically by control vertices, so the solution is to make

sure which control vertices should be adjusted and how many minimal

adjustments can guarantee fairness.

The curvature of corresponding interpolation curve P(ui) of control

vertex Vi is defined as
27

(28)

Where,  is the first derivative of P(ui).  is the second

derivative of P(ui).

The curvature of corresponding data point of each control vertex

can be solved by using Eq. (28). The judging standard for noisy point

is the curvature changes among data points. If the curvature of

corresponding data point of control vertex Vi meets Eq. (29), then judge

it as a noisy point.

(29)

Here, .

Suppose the control vertex Vj as the judged noisy point, the

corresponding position vector of Vj is tj. The new control vertex  is

defined as

(30)

Where, ;

The fairingprocedure of discrete points on the tooth surface can be

achieved by using Eq. (30). And it greatly improves the effect of real

tooth surface construction via combines with local interpolation algorithm

based on non-geometric-feature segmentation algorithm.

5. Experimental Work and Calculation Results

In order to verify the validity and accuracy of the above algorithm,

several experiments were performed. The hypoid gear geometry

parameters and machine-tool settings are shown in Table 1 and 2,

respectively.

Hypoid gear box wear tests are done in loaded rear axle testing

machine. The input speed of pinion is 4000 rmin, and the input torque

is 160 N·m. In the test, in order to accelerate the tooth surface wear, and

savethetest time, some grinding powder is added in the lubricating oil

artificially. The results of tooth surface wear test are shown in Fig. 15.
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Fig. 14 Revised interpolation algorithm of tooth surface
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(In the test, 150 mg grinding powder is added in 1.3 L lubricating oil.)

The Hyb-35 hypoid gear tooth surface measuring instrument is used

in this test for scanning measurement. The computation of tooth surface

based on the interpolation algorithm proposed by literature14,15 is shown

in Fig. 16. The computation of tooth surface based on the presented

method is shown in Fig. 17, and variables used for this method are listed

in Table 3.

On the basis of data points on hypoid gear real tooth surface Σr,

compare the digital model of gear tooth surface based on area weighting

interpolation algorithm and proposed approach with data points on the

surface tooth Σr, respectively. During the error analysis of digital gear

tooth surface model, we focus on the calibration of measurement point

data in tooth surface wear region. According to the results of tooth

surface wear test, the determined data validation area is shown in Fig. 18.

The position vector norm of point pi in calibration area on NURBS

tooth surface based on non-geometric-feature segmentation is ri =

. The position vector norm of the corresponding point 

on actual tooth surface Σr is .  The absolute error

of position vector norm between point pi in NURBS tooth surface and

corresponding point  on actual tooth surface is .

In this study, we choose 4 measure lines for verification precision of

two digital real tooth surface computation methods, as shown in Fig.

18. The location diameters of Line1, Line 2, Line 3 and Line 4 are

305.30 mm, 305.10 mm, 304.90 mm and 304.70 mm, respectively. The

absolute errors on that 4 measure lines after running 2000km and 5000

km are shown in Fig. 19 and 20, respectively. Some detailed results are

xi
2

yi
2

zi
2

+ + p′i
rmi
* x′i

2
y′i

2
z′i

2
+ +=

p′i eΔ rmi
* ri–=

Table 1 The geometric parameters of hypoid gears

Parameters Pinion Gear 

Number of teeth 6 37

Module 8.243

Hand of spiral Left-hand Right-hand

Shaft angle /(o) 90

Pinion offset /mm 31.75

Face width /mm 45.12 40

Pitch angle 11o43' 77o58'

Face angle 16o3' 78o26'

Root angle 11o15' 73o31'

Pitch apex beyond cross point /mm 0.71 1.40

Face apex beyond cross point/mm -3.14 1.40

Root apex beyond cross point /mm -7.59 1.39

Outer cone distance /mm 155.35 155.92

Outside diameter /mm 84.07 305.52

Pitch diameter /mm 304.99

Table 2 The adjustment parameters of pinion machine-tool

Parameters Concave side Convex side

Cutter diameter /inch 8.94 8.73

Blade angle / (o) 14 35

Machine root angle -3o -4o5'

Machine center to back /mm 5.26 10.57

Sliding base /mm 22.60 37.56

Blank offset /mm 25.51 44.64

Eccentric angle 55o53' 68o4'

Swivel angle 269o33' 292o21'

Cutter spindle rotation angle 49o24' 54o56'

Ratio of roll 0.6802 0.8301

Fig. 15 Wear condition of test gear tooth surface

Table 3 The parameters of method proposed in this study

Parameters
Computation object

2000 km 5000 km

rotation angle ψgt0 / rad 3.143

rotation angle ψgh0 / rad 3.692

contact ratio Rd 3.498

Number of contact lines 53

Number of measure lines 17

Order of B-spline 3

Weighted factor deviation Δωi ≤0.064 ≤0.083
Deviation of curve control vertex Vi / μm ≤0.79 ≤1.04
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listed in Table 4.

The average absolute errors of computation tooth surface based on

the area weighting interpolation method are 2.18 m and 4.64 m after

2000 km and 5000 km wear test, respectively, while the absolute errors

of this study are only 1.23 m and 2.42 m. After running 5000 km, the

maximum absolute error on NURBS tooth surface computed by area

weighting interpolation algorithm is 9.4 m, while the maximum absolute

error on NURBS tooth surface computed by non-geometric-feature

segmentation and interpolation algorithm is less than 3.6 m. Therefore,

it is obvious that the presented method improves the computation

precision of wear region on actual tooth surfaces.

6. Conclusions

We propose a NURBS reconstruction approach for hypoid gear tooth

surfaces that based on non-geometric-feature segmentation algorithm.

Fig. 16 Computation tooth surface based on the area weighting

interpolation algorithm (the gear)

Fig. 17 Computation tooth surface based on non-geometric-feature

segmentation and interpolation algorithm (the gear)

Fig. 18 Precision calibration measurement points on digital tooth

surface

Fig. 19 The average errors of computation after running 2000 km
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Our approach isto create an algorithm that could process discrete data

of wear regions obtained by CMM with equal ease. For this we adopt

the region-growing algorithm based on Delaunay triangulationfor real

tooth surface calculation. The segmentation algorithm can automatically

identify wear regions of measured discrete data on tooth surfaces.

The segmentation algorithm has some characteristics as follows:

First, the region-growing algorithm can recognize wear regions on tooth

surfaces. Only the regions which are produced due to the rough effect

in normal vectors are extracted in the local interpolation process. Hence,

the algorithm can reduce time-consuming steps ininterpolation algorithm.

Second, a revised local interpolation algorithm is applied to compute

local deviations in wear regions on tooth surfaces. This local interpolation

algorithm compensates for modeling error ΔEi via control vertices and

weighted factors rectification. That is more accurately to represent local

micro-geometry features. Finally, NURBS fitting algorithm reduces

sensitivity to noisy points.

The results of test show the applicability of this approach for real

tooth surface reconstruction of hypoid gears. Future directions of work

include optimizing threshold value in segmentation algorithm to

minimize over-segmentation. We will also investigate techniques in

interconnectivity relationships between wear prediction model and

micro-geometry features based on this digital real tooth surfaces

reconstruction approach.
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