
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 17, No. 2, pp. 257-267 FEBRUARY 2016 / 257

© KSPE and Springer 2016

Laser-Assisted Hybrid Processes: A Review

Choon-Man Lee1,#, Wan-Sik Woo1, Dong-Hyeon Kim1, Won-Jung Oh1, and Nam-Seok Oh1

1 School of Mechanical Engineering, Changwon National University, 20, Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, South Korea
# Corresponding Author / E-mail: cmlee@changwon.ac.kr, TEL: +82-55-213-3622, FAX: +82-55-267-1160

KEYWORDS: Hybrid processes, Laser, Machining, Welding, Coating

Today, hybrid processes have a great influence on various material process fields due to factors such as improvements in the

machinability and reductions of process forces. Also, the development of hybrid processes represents a new opportunity for the growth

of manufacturing technology. Hybrid processes are developed to enhance the advantages of individual processes. The effect of hybrid

processes is better than the sum of the advantages of a single process. Many researchers have studied a number of approaches to

combine various manufacturing processes. Specifically, since the development of the laser, it has been applied in various engineering

fields. Moreover, interest in laser and non-laser hybrid processes is recently increasing in various industries. The laser is a type of

non-contact thermal energy technology and is used in material processing. The laser heat source can be used for the heating and

preheating of various materials. In this paper, the laser is selected as an energy source and laser-assisted hybrid processes over the

past five years are reviewed, including those related to machining, welding and coating processes. The last part of this paper discusses

the trends in future research on laser-assisted hybrid processes.
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1. Introduction

In today’s manufacturing industry, with the continuing development

of advanced materials and the high quality requirements of customers,

various processing methods have been applied to produce products.

These processes generally include machining, additive manufacturing,

forming, joining, welding and heat treatments, among others. However,

these processes have technological constraints. For example, with

machining, it is difficult to machine complex shapes due to tool

accessibility issues. Additive manufacturing is still restricted owing to

long production times and poor surface quality levels.1-7

To overcome the aforementioned problems, many researchers have

studied hybrid processes. Hybrid processes refer to a combination of

processes which serves to produce products.4-6 The purpose of a hybrid

process is to enhance the advantages and minimize the disadvantages

of individual techniques. However, the concept of a ‘hybrid’ is broadly

defined. Schuh et al.8 defined it using four concepts: (1) a combination

of different energy sources at the same time; (2) a combination of

process steps; (3) the integration of different processes within a single

platform; and (4) as products of a hybrid structure or hybrid function.

In this paper, hybrid processes are defined as processes which

combine different energy sources at the same time. Also, the laser,

widely used in material processing is selected as an energy source.

Therefore, this review discusses laser-assisted hybrid processes which

have been developed over the last five years.

2. Laser (Light Amplification by Stimulated Emission of

Radiation)

2.1 Basics

A laser is an acronym for light amplification by stimulated emission

of radiation. This refers to devices that emit energy through a process

of optical amplification based on the stimulated emission of
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Fig. 1 Basic laser system
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electromagnetic radiation.9 The laser consists of a gain medium, a

mechanism to energize it, and a device to provide optical feedback,10

as shown in Fig. 1.

2.2 Types of lasers

Laser light has photons of the same frequency, wavelength and

phase. Thus, a laser beam has high directionality, a high power density

and high focusing characteristics. Due to these unique characteristics,

lasers have been applied in the fields of science, medicine, and

engineering. Specifically, laser beams are useful for the processing of

materials. Moreover, lasers are used widely depending on the type of

laser. Nd:YAG lasers and CO2 lasers are the most widely used types in

laser applications. Nd:YAG lasers have a low beam power, but the

absorptivity by materials is higher than that of CO2 lasers. CO2 lasers

have better efficiency and a good beam quality compared to Nd:YAG

lasers due to their high beam power. This makes them suitable for high-

speed metal cutting. Tables 1 and 2 show the characteristics and

applications of different types of lasers.9-16

3. Laser-Assisted Hybrid Processes

Fig. 2 shows the laser-assisted hybrid processes discussed in this

review. Laser-assisted hybrid processes are classified into the

conventional hybrid machining, the non-conventional hybrid

machining, the hybrid welding and the hybrid coating processes.1-4

3.1 Conventional hybrid machining (laser and cutting tool)

Laser machining and conventional machining processes such as turning

and milling have been used to produce products in various manufacturing

Table 1 Characteristics of lasers for material processing9,12-14

CO2 Excimer Nd:YAG High power diode Fiber laser

Wavelength (µm) 10.6 0.125-0.351 1.06 0.65-0.94 1.07

Overall efficiency (%) 5-10 1-4 1-3 30-50 10-30

Output power in CW mode Up to 20 kW 300 W Up to 16 kW Up to 4 kW Up to 10 kW

Focused power density (W/cm2) 106-8 - 105-7*, 106-9** 103-5 -

Pulse duration (sec) 10-4 10-9 10-8-10-3 10-12 10-13

Fiber coupling × ○ ○ ○ ○

*Pumping by flash lamp

**Pumping by diode

Table 2 Different types of lasers and applications9,10,15

Laser (wavelength) Applications

CO2 laser (10.6 µm)

Cutting, welding, and rapid prototyping

Surface treatment including cladding, and alloying

Laser ablation, and laser glazing

Excimer laser_KrF (0.248 µm) Optical stereolithography

Excimer laser_XeCl (0.309 µm) Marking, scribing, precision micromachining related to drilling, machining, etching

Nd:YAG laser (1.06 µm) Drilling, welding, machining, marking, and rapid prototyping

Semiconductor laser/Diode laser

(0.7-1.0 µm)

Optical computers, CD drivers, laser printers, scanners, and photocopiers

Optical communication Industrial alignment

Holography, spectroscopy, bio-detectors, ozone layer detector, pollution detection, bar code scanners,

3D image scanners

Cutting, and laser ablation

Fiber laser (1.07 µm) Laser cleaning in conservation of artifact, pint stripping

Copper vapor laser (0.51 µm)

High speed photography

Detection of finger prints

Precision micro-hole drilling and cutting

Excitation source for isotope separation

Fig. 2 Laser-assisted hybrid processes
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fields.17-20 The energy source used in laser machining is a laser, and the

materials are removed by melting, vaporization and decomposition from

the irradiated surface. The important parameters of laser machining are

the material properties, such as the reflectivity, thermal conductivity,

specific heat and phase transition of the materials.1

Lasers for laser machining are widely used to remove materials.

However, a laser is partly used to soften materials in combination with

conventional machining (cutting tools), as shown in Fig. 3. This hybrid

process is known as laser-assisted machining (LAM). In LAM, the

material is locally preheated by means of laser power prior to the

removal of the material without a phase transition of the material.

Currently, laser-assisted turning (LAT) is commercialized in many

countries. Moreover, silicon nitride can be successfully machined by

this process. However, developments and researches on laser-assisted

milling (LAMill) are still ongoing because it is difficult to control the

laser heat source and tool path according to the various shapes of the

workpiece during this process. To solve these problems, studies of the

development of laser devices, system control methods and three-

dimensionally shaped workpieces are essential.21-26

3.1.1 Laser-assisted turning

Fig. 4 shows a schematic diagram of the LAT process. The workpiece

is rotated and is preheated by the laser.27 Shin et al.28-30 developed a

multi-scale finite element model (FEM) to predict the post machined

sub-surface damage in the LAT process. The analysis results were

calculated to within 7% to 12% of the experimental results. Also, LAT

experiments on titanium alloy and hardened steel were performed. For

titanium alloy, the machining cost of LAT was decreased by

approximately 30% with an improvement in the machinability. For

hardened steel, a good surface finish, R
a
, of less than 0.3 µm was obtained.

Mohammadi et al.31 proposed laser-assisted diamond turning which

was coupled with LAT and single point diamond turning, as shown in

Fig. 5. Surface roughness was improved about 80% compared to

conventional turning.

3.1.2 Laser-assisted turn-mill

Lee et al.32-37 developed a laser-assisted turn-mill process which was

coupled with a turning and milling process, as shown in Fig. 6. Also,

laser-assisted turn-mill experiments of various types of clovers, spline

and square section members were performed. Consequently, a reduction

of the cutting force and an improvement in the surface roughness were

confirmed.

3.1.3 Laser-assisted grinding

Fig. 7 shows a schematic diagram of the laser-assisted grinding

(LAG) process.38 Chang et al.39 studied a LAG process capable of

manufacturing micro-features in difficult-to-cut materials such as Si3N4

and Al2O3 ceramics. The machined surface roughness and subsurface

damage were investigated. As a result, subsurface damage was not

observed when the LAG process was used, and the machined surface

roughness levels were better more consistently than those obtained

using the conventional grinding process.

3.1.4 Laser-assisted milling

Fig. 8 shows a schematic diagram of the LAMill process. Hermani

et al.40 studied the LAMill process for advanced materials. The reduction

of cutting force, increase of the material removal rate and improvement

of tool life without application of cooling lubricants were verified by

the experiments.

Fig. 3 Schematic diagram of laser-assisted machining

Fig. 4 Laser-assisted turning

Fig. 5 Concept of laser-assisted diamond turning

Fig. 6 Laser-assisted turn-mill
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Shin et al.41 performed a numerical modeling analysis of laser-

assisted micro-milling (LAMMill) with difficult-to-machine alloys,

specifically Ti6Al4V, Inconel 718, and stainless steel AISI 422. Multiple

LAMM tests using micro-end-mills with diameters of 100-300 µm were

conducted on these materials during the side cutting of bulk and fin

workpiece configurations. The flow stress was decreased by approximately

20-25% when the temperature was in the range of 250~450oC.

Dargusch et al.42 studied tool path strategies in which the laser

always preheated the workpiece directly ahead of the cutting tool. Two

low-cost methods of rotating the table and the laser module were

proposed.

Wiedenmann et al.43 developed a new processing strategy and a

simulation based model of LAMill. A reduction of tool wear and an

increase of the material removal rate were confirmed through

experiments.

Lee et al.23,44-50 studied LAMill for three-dimensional shapes such as

a workpiece with an inclination angle and a cylindrical shape. The

effective depth of cut was proposed by a thermal analysis. Also, a

reduction of the cutting force and an improvement of the surface

roughness through experiments were confirmed.

3.2 Non-conventional hybrid machining (laser and other energy

source)

The energy sources of non-conventional hybrid machining can be

an electron beam, a plasma arc, lasers and even water. These non-

conventional hybrid machining processes are not affected by chatter or the

force of the cutting tool but can be controlled by various parameters of

the energy sources such as the input energy and processing speed.1-7,51-59

3.2.1 Laser-assisted jet electrochemical machining

Fig. 9 shows a schematic diagram of the laser-assisted jet

electrochemical machining (LAJECM) process. De Silva et al.60

investigated the thermal effects on several alloys in temperature

distribution modeling and by means of an experimental analysis in

relation to LAJECM. As a result, LAJECM offered more rapid material

removal and better precision than jet electrochemical machining due to

the thermal enhancement of the electrochemical action.

Hua et al.61 developed a hybrid process which incorporated laser

drilling with jet electrochemical machining (JECM-LD) to solve several

problems related to conventional laser drilling. The proposed hybrid

method involved the placement of an electrolyte jet coaxially aligned

with the irradiated laser beam onto the workpiece surface. High

machining quality with fewer recast layers and reduced spattering was

obtained by JECM-LD.

3.2.2 Laser-assisted electrochemical machining

Skoczypiec62 conducted a detailed analysis of laser-assisted

electrochemical machining (LAECM) and proposed a mathematical

model of workpiece heating.

Zhong et al.63 studied LAECM to enhance the etching pit and cavity

quality. Etching experiments of stainless steel by LAECM with an

excimer laser were carried out. The etching rate and etching depth were

greatly improved when the etching time was 8 min.

3.2.3 Laser-assisted electro discharge machining

Clerici et al.64 studied electric discharge phenomena from different

beam shaping configurations, including a Gaussian beam, a Bassel

beam and an Airy beam. Different discharge shapes according to the

laser beams were tested to control the degree of freedom of the

discharges. Fig. 10 shows the principle of this discharge.

Fig. 11 shows a schematic diagram of the combined laser and

electro-discharge machining (EDM) process.65 Al-Ahmari et al.66 studied

a hybrid process which combines a laser and the micro-EDM process

for micro-drilling. Optimum machining conditions when combining

micro-EDM and laser machining were suggested. As a result, the

machining time which does not affect the quality of the microholes was

decreased by approximately 50~65%.

3.2.4 Laser-assisted water jet machining

Adelmann et al.67 conducted a comparison between remote laser

cutting with a fiber laser and water-jet guided laser cutting using a 532

nm solid state laser. An advantage of remote laser cutting was the high

cutting speed. An advantage of water-jet guided laser cutting was a

reduced heat-affected-zone (HAZ), a reduced dross height and the

Fig. 7 Laser-assisted grinding

Fig. 8 Laser-assisted milling

Fig. 9 Laser-assisted jet electrochemical machining
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smallest possible bridges.

Molian et al.68 studied a hybrid manufacturing process that enables

synergistic effects of a CO2 laser and a water jet, as shown in Fig. 12.

The proposed process improves the surface quality with an increase in

the cutting efficiency.

Nath et al.69 developed a hybrid laser process which utilizes a water-

jet along with a laser beam, as shown in Fig. 13. This process completely

removes paint without any trace on the surface.

Romoli et al.70 studied laser process which involves a moving water-

jet, as shown in Fig. 14. The laser beam is guided by the total internal

reflection at the water-air interface. The surface roughness was measured

to be 450 nm and 150 nm for the EDM and the laser micro-jet process,

respectively.

3.3 Hybrid welding

Welding can be largely classified as laser welding and arc welding.

Laser welding and arc welding have long been used in various material

processing fields. Laser welding leads to a very narrow HAZ with a large

depth, as the laser beam has a high energy density and a small heat

source diameter, as shown in Fig. 15(a). In addition, a high welding

speed can be obtained. However, a high laser power is required due to

a low energy efficiency of materials with low specific resistance and

excellent thermal conductivity. Also, the cost of the laser welding

device increases geometrically according to an increase of the laser

power.71-80

Fig. 10 Principle of laser-guided discharge

Fig. 11 Laser-assisted electro discharge machining

Fig. 12 Concept of laser-assisted water jet machining by Molian et al.

Fig. 13 Concept of laser-assisted water jet machining by Nath et al.

Fig. 14 Concept of laser-assisted water jet machining by Romoli et al.

Fig. 15 Comparison of (a) laser welding, (b) arc welding and (c) laser-

arc welding
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Fig. 15(b) shows the arc welding process. Arc welding has a much

lower energy density and a slow welding speed, but arc welding causes

a bigger heat source, and the cost of an arc welding device is very low

compared to the laser welding device. Therefore, by merging these two

welding processes, many advantages, such as improved weld quality

levels, higher welding speed, less deformation, an excellent gap bridging

ability and good process efficiency are achieved.71-74

Laser-arc welding which consists of a laser and an arc heat source

is capable of offsetting the disadvantages of individual process. Laser-

arc welding has been studied by many researchers since the technology

of laser-arc welding was initially proposed by Steen.81 Fig. 15(c) shows

the laser-arc welding process. It is formed by the merging of laser

welding and arc welding. Furthermore, excellent weldability is confirmed

by the efficient synergetic effects between the laser and the arc heat

source.

The welding characteristics of laser-arc welding differ according to

the order of the two heat sources and the types such as a CO2 laser, a

YAG laser, and TIG, MIG, MAG, and plasma. The determination of

parameters such as the distance between the laser and the arc, the

relative power levels, the shielding gas arrangement, and the welding

speed, among others, are very important because the degree of

weldability can differ greatly depending on the materials.71-74

3.3.1 Laser-assisted MIG/MAG welding

Fig. 16 shows a schematic diagram of the laser-assisted MIG

(LAMIG) welding process. Li et al.82 conducted a comparison of laser

beam welding and the LAMIG method. The weld formation was

improved by adding welding wire and with a higher level of heat input.

Moreover, compared to laser beam welding, welded joints were

improved.

Guen et al.83 studied the effects of the main operating parameters of

laser-assisted MAG (LAMAG) welding. A numerical model of LAMAG

welding was proposed through experimental results and simulations.

Gao et al.84 studied the high power LAMIG welding of AZ31 Mg

alloys. Tensile tests were used to evaluate the mechanical properties of

welded joints. Stable process and sound joints were obtained using the

optimal welding conditions in LAMIG welding. The tensile strength

efficiency of the welded joints was also calculated to be 84~98% of the

substrate.

3.3.2 Laser-assisted TIG welding

Fig. 17 shows a schematic diagram of the laser-assisted TIG (LATIG)

welding process. Zeng et al.85 investigated the microstructure and

mechanical properties of 304 stainless steel joints by LATIG welding.

Tensile testing and an analysis of the fracture surfaces were performed.

Excellent mechanical properties of the joints were observed by LATIG

welding.

Shenghai et al.86 studied the technologies of the autogenous laser

welding and LATIG welding of thick plate of the high strength lower

alloy structural steel 10CrNiMnMoV. The unique advantages of LATIG

welding were analyzed by comparing the process conditions and welding

joints of two processes. In LATIG welding, the assembling clearance and

misalignment adaptability of the weldment were significantly improved.

3.3.3 Laser-assisted plasma welding

Fig. 18 shows a schematic diagram of laser-assisted plasma (LAP)

welding process. Ribic et al.87 studied LAP welding using optical

emission spectroscopy. The experiments were performed considering

the arc currents and heat source separation distances, as these parameters

significantly affect the weld quality. The plasma electron temperatures,

electrical conductivity and arc stability during hybrid welding were

better than those in arc and laser welding.

Moller et al.88 developed a coaxial LAP welding method for the flux

less joining of aluminum. The mechanisms of interaction between the

laser and the plasma arc were confirmed by varying certain parameters,

including the laser power, plasma current, and plasma polarity.

Schnick et al.89 investigated the interaction between a laser and a

plasma in LAP welding. Experiments were performed with a non-

concentric set-up of the laser and the plasma. Improvements in the

process stability and penetration depth were confirmed by combining

individual processes.

Fig. 16 Laser-assisted MIG welding

Fig. 17 Laser-assisted TIG welding

Fig. 18 Laser-assisted plasma welding
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3.4 Hybrid coating

Coating techniques of materials are applied to induce good

mechanical properties and to restore the surface quality levels of

materials. Coating techniques such as electro-deposition, thermal

spraying and laser cladding are very important for the fabrication of

composite coating. Specifically, laser cladding has been steadily used

to change microstructure and mechanical properties. Compared to other

coating techniques, including deposited welding, laser cladding has a

number of useful characteristics, such as minimum dilution, a small

HAZ, less distortion and better processing flexibility.90-92

However, laser cladding has been not widely used in many industries

owing to several disadvantages, such as low cladding efficiency, low

coverage rates, and high thermal stress, inducing cracks in the cladding

layer. In order to overcome these problems, laser-assisted hybrid coating

technologies have been developed.90-95

3.4.1 Laser-induction hybrid coating

Fig. 19 shows a schematic diagram of the laser-induction hybrid

coating (LIHC) method. Zhou et al.96 studied the efficiency of the LIHC

process. An analytical model of LIHC for Ni-based WC composite

coatings was also proposed. Experiments were conducted to verify the

calculated results. The maximum error between the measured and the

calculated coating heights was 13.6%.

Huang97 studied LIHC through powder feeding, dilution action and

through the elemental composition distribution. A relationship between

the dilution and the composition distribution was confirmed in LIHC.

Various microstructures and mechanical properties were obtained by

adjusting the laser and the induction energy.

Wang et al.98 studied the residual stress and cracking behaviors of

Cr13Ni5Si2 based composite coatings by LIHC. An X-ray based layer-

removal method was used to obtain the residual stress, which was found

to be remarkably decreased in LIHC, with no cracks observed over a

large area and with high thickness, hard facing coatings.

3.4.2 Laser-plasma hybrid coating

Roy et al.99 reported the fabrication of compositionally graded

hydroxyapatite (HA) coatings on Ti by combining laser engineering net

shaping (LENSTM) and radio frequency induction plasma spraying

processes. The hardness of the base metal of 189±22 Hv was

significantly increased to 922±183 Hv.

Serres et al.100 studied the properties of NiCrBSi alloy layers obtained

by a laser-plasma hybrid coating (LPHC). The effects of a combination

of a laser and plasma were verified by improvements of mechanical

properties such as the adhesion, hardness and elastic modulus.

4. Conclusions and Future Directions

This paper reviewed laser-assisted hybrid processes over the last five

years. Table 3 summarizes the characteristics of the reviewed processes.

Lasers have been applied to process the materials in various industries.

Lasers and other energy sources have also been combined to enhance

the advantages and to minimize the disadvantages found in individual

techniques.

As discussed above, the studies of laser-assisted hybrid processes

are ongoing by many researchers. These results continue to lead to the

development of the manufacturing industry.101-103

In the future, the relationships between processes and control

systems will be established, leading to the introduction of new methods

of process combinations. Also, advances in individual processes can

accelerate the development of hybrid processes.4,5
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Table 3 Characteristics of laser-assisted hybrid processes

Scale Important findings Problems and challenges Application5

Conventional

hybrid machining
µm~mm

Decrease of machining cost29

Improvement of tool life40

Reduction of flow stress41

High costs

Complex control system

Application to materials with various shapes23
Frequent

Non-conventional

hybrid machining
µm

Improvement of electrochemical dissolution63

Reduction in machining cost65

Reduction in HAZ67

Increase of cutting speed67

Difficult to machine 3-D structures63

Thin cutting process67
Partly

Hybrid welding mm

Improvement in tensile strength of welded joints84

Improvements in process stability and penetration

depth89

Large number of parameters

Complexity of equipment72

Consumable costs72

Application to various materials

Very frequent

Hybrid coating µm~mm
Improvement of microhardness96

Reduction in residual stress and crack98
Determination of parameters in order to

enhance hardness 
Partly

Fig. 19 Laser-induction hybrid coating
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