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Advances introduced by additive manufacturing (AM) methods referred to as solid freedom fabrication (SFF) or rapid prototyping

(RP) methods have significantly improved the ability to fabricate porous scaffold structures close in architectures to biological tissues.

These technologies have led to the development of innovative porous scaffolds and spatially complex artificial tissues. However, the

current approaches face many challenges, such as the lack of an effective design software for printing and prototyping of tissues and

scaffolds. In this article, a brief overview of the recent trends and challenges in computer-aided tissue engineering is provided. Future

directions are also suggested in order to discuss the challenging technological barriers and provide the overall feasibility of

prototyping and printing of biomimetic scaffolds and bioartificial tissues or organs.
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1. Introduction

Recent advances in computer science and its integration with

biomaterials and tissue engineering (TE) have led to the emergence of

new fabrication technologies for producing three-dimensional (3D)

scaffolds and biomimetic tissue constructs.1-4 Much emphasis has been

given in this area to the use of additive manufacturing (AM) methods,

sometimes referred to as solid freeform fabrication (SFF) or rapid

prototyping (RP) methods. These technologies produce complex

objects from a 3D computer-aided design (CAD) digital file by

decomposing the object’s shape into a series of parallel slices. The

shape is then fabricated by adding material layer-by-layer. The AM

technique offers the methodology to precisely control over construct

architecture, including pore size, shape, orientation, interconnectivity,

and branching. Based on the discrete-stacking principle, a wide range

of biomaterials, including cells, growth factors, and genes, can be used

in AM techniques as structural building blocks.5 TE emerged in the

early 1990s to address limitations of tissue grafting and alloplastic

repair. The concept is to transplant a biofactor (cells, genes and/or

proteins) within a porous degradable material known as a scaffold. A

successful scaffold should balance mechanical function with biofactor

delivery providing a sequential transition in which the regenerated

tissue assumes function as the scaffold degrades.6-21 Cells donated by

the patient are expanded in culture and are then transferred to the

scaffold. The scaffold provides a surface on which cells adhere, thrive,

multiply, and generate the extracellular matrix (ECM) of structural and

functional proteins that make up a living tissue. Both the scaffold

material composition and its internal architecture control the behavior

and well-being of the cells seeded inside.22-28

Early scaffolds were fabricated by AM technologies from a single

biocompatible material. It is now possible to engineer materials that

contain biomimetic components to control the cellular

microenvironment. The scaffold should be a temporary feature and

disappear, through dissolution or degradation, as the cells produce the

ECM that defines the tissue.29-37 Recently, a new approach to TE has

been proposed that does not require a solid scaffold structure. In such

an approach, cells are formed into clusters, aggregates, or 2D sheets.

These are then manipulated or positioned into 3D cellular constructs by

using clusters as bricks or sheets as laminates.22 This methodology has

a number of potential benefits over scaffolds. The advanced application

of the principles of AM technologies (i.e., layer by layer deposition of

cells or matrix) in the area of TE known as bioprinting or organ
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printing, is evolving into a promising approach for engineering

bioartificial tissues or organs.38-56 This paper reviews recent trends in

porous scaffold design for TE. A brief description of recent

achievements in bioprinting is also provided with particular emphasis

on the development of an efficient design software for CAD-based 3D

organ printing.

2. 3D Porous Scaffold Micro-Architecture Design

In TE, AM techniques enable the easy control of the internal

architecture of a scaffold. The biological structure of a native tissue is

inherently heterogeneous and complex. Therefore, it is very difficult to

exactly reproduce porous scaffold micro-architecture close to a

biological tissue. For this reason, many research works in the porous

scaffold design are mainly focused on the creation of simplified

internal architecture models, functionally equivalent to the tissue to be

repaired in terms of porosity and biological properties. In order to

manufacture scaffold structures by AM methods, it is necessary to

design internal pore architectures via 3D CAD digital models.

Conventional tissue scaffolds are fabricated through the foaming of

fluid precursors or leaching of pore-generating particles, thereby

resulting in a fairly random pore architecture when compared with a

scaffold fabricated through AM methods. By fabricating the internal

pore architecture through AM methods, it is possible to easily vary the

internal architecture of a scaffold, allowing the manufacture of a wide

range of pore unit cell libraries. Such unit cell libraries may be created

either using CAD software or image-based design approaches.6,10,57-68

Very recently, efficient methods for designing scaffold pore unit cell

libraries have been developed by the use of triply periodic minimal

surface (TPMS) pore geometries.69-79

Most of the commercial CAD systems are mainly based on solid or

surface modeling systems. At the bulk scale, commonly used geometric

design methods include boundary representation (B-Rep) and

constructive solid geometry (CSG). In CSG-based software, complex

models are designed and represented combining basic solid primitives,

such as cubes, spheres, and cylinders through Boolean operations,

thereby resulting in many problems in the generation of complex

scaffold internal pore architectures. In the case of B-Rep, the solid is

described through its boundaries, consisting of a collection of vertices,

edges, and faces.54 As model becomes large or if very fine internal

architectures are required, B-Rep models dramatically increase in size

and become very hard or impossible for current computer systems to

visualize and manipulate.64 For this reason, although there were many

researches regarding on the creation of pore unit cell libraries using the

commercial CAD systems, most of the suggested libraries are

composed of relatively simple geometry, such as sphere, beam, rod,

truss, etc. due to the limitation of solid primitive features available.63

Therefore, it was very difficult to precisely control the resulting

biomechanical properties of the scaffolds. In order to improve the time-

consuming and tedious manual unit cell modeling and assembling

process based on the commercial CAD systems, Chua et al.63-65 have

developed a computer-aided system for the design and manufacture of

tissue scaffolds. This research proposed a novel method for the design

and manufacturing of a TE scaffold. The proposed approach involves

the integration of medical imaging process for the acquisition of

anatomic models, 3D CAD modeling for creating the digital scaffold

models, and AM technique for fabricating the physical scaffolds. To aid

the user in 3D CAD modeling, a standard parametric library of scaffold

pore architectures was designed. They used MIMICSTM software to

generate a closed volume of the surface in the shape of the patient’s

bone. The edited surface file was then appended to the generated

scaffold block composed of parametric library and a Boolean operation

was performed using pro/Engineer CAD system, leaving the scaffold

structure in near net-shape of the patient’s defect. 

Recently, Sudarmadji et al.66 developed an efficient method for

designing a functionally graded scaffold (FGS) with a stiffness gradient

that mimics that of a native bone. In order to improve the iterative and

tedious design process as well as a heavy reliance on the user’s CAD

skills required in the design and manufacture of FGS, they

implemented an automated FGS production system by providing a

database that correlates scaffold porosity values and the corresponding

compressive stiffness and integrating it into the design process. To

achieve this goal, they newly developed a set of different polyhedral

units that can be assembled into scaffold structures. In addition,

mathematical relations correlating scaffold porosity and compressive

stiffness were also formulated. Although the FGS design process was

somewhat automated by their works, most of the suggested libraries

were composed of simple pore-making elements, such as octahedron,

tetrahedron, triangular prism, hexagonal prism, etc.

 In order to overcome the limitations of most CAD-based pore unit

cell libraries, more advanced unit cells composed of intricate bio-

inspired features have been introduced. Sun et al.58,67,68 have explored

the bioengineering application of reverse engineering (RE) technology

in converting computer tomography (CT) or magnetic resonance

imagining (MRI)-based images to CAD models. Application of CAD

models obtained from CT/MRI-based images allowed exploring many

novel approaches in modeling, design, and fabrication of complex

tissue scaffolds that have enhanced functionality and improved

interactions with cells. Biomimetic features can be based upon real

anatomical data regenerated from CT/MRI images, such as channels

and porous structures. Using such biomimetic features, they developed

three different types of trabecular architectures, such as plate-like

primitive for femur, rod-like primitive for spine, and hybrid primitive

for iliac crest to design heterogeneous and bioartificial bone scaffolds.

 Owing to the rapid advances in AM techniques, a paradigm shift

is taking place in the porous scaffold design from CAD-based manual

methods57-68 to computational modeling approaches69-79 that use

mathematically defined internal architectures based on the TPMS pore

geometries. The advent of TPMS-based pore architectures has initiated

the start of a revolutionary era for the porous scaffold design. The

aggregates of cells generally have cells separated by curved partitions.

The bio-morphic geometry that best mimics this structural

configuration would be surfaces that are continuous through space and

divided into two sub-spaces (pore and non-pore) by a non-intersecting

two-sided surface. TPMSs are ideal to describe such a biomimetic

geometry.72,73,75-79 The most important advantage of TPMS compared to

the pore geometries based on conventional CAD-based manual design

methods is the accurate and easy controllability of internal pore

architectures, such as pore size, pore shape, porosity, etc. Moreover the
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entire design process can be fully automated by a computer program.

Fig. 1 gives a set of examples for the TPMS-based pore unit cell

libraries composed of multiple triangular facets generated from

marching cube algorithm80-83 that is an excessively well-known implicit

surface visualization algorithm. As shown in Fig. 1, TPMSs are infinite

and periodic in three independent directions. Moreover, TPMSs are

very smooth and continuous thereby resulting in an optimized pore

architecture with fully perfect pore interconnectivity and enhanced

interactions with cells. TPMSs are of special interest not only to the

tissue engineer, but also to the structural engineer and material scientist

because those appear in the natural and man-made worlds, providing a

concise description for a variety of physical structures, such as silicates,

bicontinuous composites, detergent films, and lipid bilayers.72

Rajagopalan et al.69 designed simple cube types of P-scaffolds and

manufactured with the layer-based fabrication device to realize

coterminous seeding-feeding networks thereby guaranteeing blood/

nutrient supply to the proliferating cells. Melchels et al.70,71 presented

a scaffold design methodology using TPMS. They used K3D surf

software to generate CAD files that describe the well known TPMS

surfaces of gyroid (G) and diamond (D) architectures. The gradient in

pore size and porosity of the gyroid structure was introduced by adding

a linear term to the equation for z-values. In their work, it was found

that the good accessibility of pores and resulting high permeability of

the scaffold result in the more biologically desirable behavior in the

seeding of cells and the transport of nutrients and metabolites, either

during in vitro or after implantation in the body. They also observed

that the mathematically designed tissue engineering scaffolds like a

computer designed gyroid architecture fabricated by AM technique

show a more than ten times higher permeability than the conventional

scaffolds fabricated by salt leaching due to the perfect interconnectivity

of pore network of TPMS-based scaffolds. Through the experiments,

they proved that gyroid scaffolds show large cell populations in the

centre of the scaffold, while salt-leached scaffolds are covered with a

cell sheet on the outside and no cells are distributed in the scaffold

centre.73 Hence, the TPMS-based pore unit cell libraries, possessing the

advantages of both computational efficiency and enhanced interactions

with cells, can be considered as one of the candidates for an ideal pore

geometry in the design of next generation scaffolds. However, the

samples designed and manufactured for the experiments in all the

above mentioned works were simple cubic or cylindrical shapes. Very

recently, Yoo et al.72,73 presented a computer-aided porous scaffold

design method based on TPMS. For clinically practical applications,

they presented an effective method for the 3D porous scaffold design

based on distance field (DF) and TPMS. By the application of DF into

the Boolean operations of the anatomic model and TPMS-based unit

cell library, defects free porous scaffold digital models having the

complicated microstructures and high quality external surfaces could

be automatically obtained by using the developed scaffold design

program. Through the numerical experiments, they showed that the

proposed scaffold design method has the potential to combine the

perfectly interconnected pore networks based on the TPMS unit cell

libraries and the given patient-specific external geometries in a

consistent design framework irrespective of the complexity of

anatomical models (Fig. 2).

As well as showing the easy controllability of pore architectures and

providing the feasibility of clinical application, they also showed that

the proposed method can be further improved in terms of design

efficiency through recent studies75-79 related to the functionally graded

scaffold design and hierarchical porous scaffold design (Fig. 3). It is

undisputable that further advance of AM techniques will significantly

improve control over the pore network architecture of scaffolds. Hence,

it is highly likely that TPMS-based scaffolds will be used clinically in

the near future.

3. CAD-based Organ Printing

CAD-based organ printing which has been defined as computer-

Fig. 1 A variety of TPMS-based unit cell libraries

Fig. 2 Tissue engineering porous scaffolds with TPMS-based pore

architectures



2208 / OCTOBER 2014 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 15, No. 10

aided 3D tissue-engineering of bioartificial human tissues or organs has

initiated the start of an innovative era for the tissue engineering. A

fundamental requirement of this process is its capability to

simultaneously deliver scaffolding materials, living cells, nutrients, and

growth factors at the right time, right position, right amount to form a

bioartificial tissue or organ composed of living cells/ECM (or scaffold)

for in vitro or in vivo growth.57 Combination of an engineering

approach with the developmental biology concept of tissue fluidity

enables the creation of a new 3D printing technology, which will

dramatically accelerate and optimize tissue and organ assembly.40

Computer-aided printing of natural materials such as cells or matrix, is

done one layer at a time until a particular 3D tissue form is achieved.

However, recent attempts using AM technologies to manufacture

bioartificial tissues suffer from the inability to precisely place cells or

cell aggregates into the printed scaffolding materials due to the lack of

an effective design software for organ printing. Organ printing is

distinct from conventional scaffold manufacture using AM techniques

because it allows the fabrication of scaffolding materials and the

simultaneous or sequential deposition of living cells. Mironov et al.40

predicted that organ printing will be a promising approach because

tissue engineers as well as doctors and their patients, do not have

enough time to wait years until engineered tissues and organs become

morphologically, biochemically, mechanically, and functionally

differentiated. Their prospects for the future of 3D organ printing are

being realized by some related recent research works.

 The liver is a complex, multifunctional organ that is vital for human

survival. In contrast to other simple structural tissues, such as bone and

cartilage, the liver must carry out complex metabolic functions.

However, the current techniques face many challenges, such as the

complex branched vascular and bile ductular systems and the variety of

cell types, matrices and regulatory factors involved in liver

development. Therefore, the manufacture of an implantable bioartificial

liver has long been a dream for many scientists.1 Wang et al.

investigated the overall feasibility of bioartificial liver development. In

their recent review paper,5 some fundamental requirements for the

development of a bioartificial liver were addressed. In this paper, a

brief review will be given in this viewpoint. 

First, a more advanced AM machine will be required to allow the

production of more elaborate multi-cellular and multi-material

constructs. For instance, multi-nozzle deposition systems should be

developed to distribute a high density of the required cells, both

efficiently and uniformly, throughout the artificial tissue constructs. By

using such an elaborate machine, the biomimetic tissue substitute

should be constructed in vitro such that the engineered composite can

be transplanted in vivo for the recovery of lost or malfunctioning livers.

Second, more innovative design software should be developed to

deliver a range of cell types and ECM and at the same time into 3D

structures at accurately chosen positions. While there have been some

remarkable studies in the area of the development of 3D artificial

organs mainly focused on the 3D cell printer design/manufacture and

organ maturation, the researches related to the computerized design

software for the development of blueprints for organs have not yet been

investigated in the field of 3D organ printing. In order to manufacture

artificial organs by AM methods, it will be necessary to make a more

intelligent and elaborate computer software. Currently, automatic cells

and scaffolding materials distribution algorithm which can realize the

3D organ printing is under development using DF and TPMS-based

unit cell libraries. The basic concept and main idea of the methodology

are illustrated in Fig. 4.

In fact, the cells exactly know what to do because they have been

doing organ forming for millions years. Hence, they know the rules of

the organ forming. As we know, a tissue or organ is very well organized

according to very stringent rules in cellular sets. It is expected that it

will be possible to print an organ composed entirely of living human

tissue and let it assemble itself. Assembling from biomolecules and

cells to whole functioning printed organs will become only a matter of

time. In order to establish this ultimate goal, many tissue engineers

Fig. 3 The easy extensibility of TPMS-based scaffold design

method75,78
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around the world have begun to print prototype body parts, such as

heart valves, ears, artificial bones, joints, nerves, muscles, skin grafts,

etc. Now, in order to make more complex organs like a human liver,

bioengineers have started to develop more sophisticated manufacture

techniques. Among these techniques are microinjection,86-92 holographic

optical tweezers,93-109 stereolithography,110-128 selective laser sintering,
129-133 3D printing,134-142 fused deposition modeling,143-146 and

bioplotting.147-154 Regardless of the differences between technologies

the ultimate goal of these techniques is to accurately replicate the in

vivo environment within an artificial tissue construct.56

Therefore, it is expected that, with such advanced manufacture

techniques and especially designed software, a range of cell types and

biomolecules will be easily and accurately positioned into precise

patterns within a specific 3D bulk construct in the near future.

4. CAD-based Biomimetic Scaffold

RE and AM are the two most important techniques in computer-

aided medical engineering. RE combined with AM make it possible to

design and manufacture very complex human body models that are

difficult to create with conventional techniques. The integration of

CAD and medical technology is referred to as Bio-CAD. Bio-CAD is

widely used in many applications such as computer-aided surgery,

structural modeling of tissue, design of orthopedic devices and

implants, design of tissue scaffolds, etc. Although there were many

researches regarding on Bio-CAD model reconstruction, most methods

require tedious and time-consuming manual interactions. In general,

human body models are obtained by RE process based on non-invasive

imaging techniques like CT/MRI. Particularly, CT medical image data

is the most popularly used data format for RE in medical engineering.

CT medical image is limited by its 2D image presentation in that it

does not allow doctors to quickly diagnose illness and explain

treatments to patients. Medical models in 3D solid models are therefore

very important in the diagnosis and treatment process. Usually, a 3D

Bio-CAD model is reconstructed through either segmentation or

volumetric representation. 3D Bio-CAD model reconstruction from

CT/MRI medical image data has recently become the issue of much

attention. It is particularly important in bio-medical engineering since

CAD with the help of medical imaging and AM technologies has the

capacity to create realistic anatomic models which have diagnostic,

therapeutic, and rehabilitatory medical applications.75 

Two recent studies84,85 have demonstrated substantial progress in

this area (Fig. 5). Through their works, a variety of complex human

anatomic models were automatically reconstructed by using the

developed computer program without any manual operations of users.

Fig. 4 An automatic cells and scaffolding materials distribution

algorithm for 3D organ printing based on the three-dimensionally

continuous combination of multiple materials using TPMS-based pore

architectures

Fig. 5 Automatic reconstruction of human tissue models from CT

image data84,85
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They used a heterogeneous implicit solid interpolation method in

conjunction with the domain decomposition method to reconstruct

perfect 3D bio-CAD models from a sequence of medical image data.

In addition, they showed the versatility of the proposed method by

designing a biomimetic porous scaffold with controlled porosity and

internal architectures (Fig. 6). Since the material gradient information

(i.e., porosity distribution) is included within the medical image data,

they could design more realistic and biomimetic tissue scaffolds.

Firstly, a solid was reconstructed by creating a smooth implicit solid

from the geometric positions and Hounsfield unit (HU) values using an

implicit interpolation algorithm based on radial basis functions.

Secondly, a functionally graded tissue scaffold with bio-mimetically

controlled porosity distribution was designed using the internal detail

of the tissue obtained from the smoothly interpolated HU value

distribution. The interpolated HU value distribution can be considered

as the 3D grey-scale density distribution within an anatomical model.

Since the HU value is directly related to the material properties, such

as density and porosity, the porosity at a spatial location within an

anatomical model could be defined uniquely and continuously.

Through numerous design results, they showed that it is possible to

design a functionally graded tissue scaffold with bio-mimetically

controlled porosity distribution closely resembling the biological

characteristics of native tissue.

5. Conclusions and Prospects for the Future

Although many tissue engineers have developed a variety of AM

techniques for the production of scaffolds and artificial tissues, the

majority of published work to date is at a relatively low level of real

clinical application. Of course, advanced AM techniques have the

potential in the future to enable the manufacture of next generation

scaffolds and implantable artificial organs. However, even if we can

develop a more advanced AM equipment with unprecedented precision,

we will never build a big organ or tissue without a biologically

sophisticated software. With a complicated mechanical part like a gear

assembly, a 3D CAD system or 3D scanner can create a CAD file in

hours and upload the CAD file to a 3D printer. But, there is no

equivalent in an organ or tissue. At present, we can make a big and

complex mechanical part like an airplane by using CAD/CAM systems.

However, a software model of the human organ like a liver is more

complicated than the CAD model for an airplane. It will be very

difficult or impossible to construct a complete CAD file of a liver by

using currently available tools such as commercial CAD software and

CT/MRI image processing software.

At present it is not clear to what degree we should mimic natural

organs or tissues. However, it is certain that we should deposit a

vascular network, cellular aggregates, nutrients, and growth factors at

the right time, right position, right amount to form a bioartificial organ

or tissue. Recently, a company in USA has teamed to develop CAD

programs that could be applied to organ printing. In the near future, we

will be able to buy patient-specific CAD blueprints for repairing of our

damaged or malfunctioned organs/tissues. Through recent research

results, it was found that TPMS-based scaffold design method can

provide an important advance in scaffold design because many of the

parameters of pore architecture that control the mechanical and

biological properties are easily and accurately adjustable. Thus, as

discussed previously, it is now possible to model the influence of pore

architecture and validate the model by in vitro and in vivo experiments

on a range of structures. Moreover, owing to the remarkable advances

in AM equipment, it is also possible to provide separate processing of

biofactors and scaffold materials allowing simultaneous deposition of

them on the same platform. However, there are no blueprints and

software models of human organs or tissues that will drive such

advanced AM equipment to form implantable artificial organs or

tissues.

So far, many researches in this field have shown much progress

such as the establishment of a nutrient and metabolite transport system,

enhanced cell loading efficiency, and enhancement of cell self-

assembly. AM technologies made it possible to have full control over

the design and fabrication of bioartificial organs or tissues with highly

reproducible complex architectures and variable biomaterial

composition. However, further progress needs to be made on the

development of more advanced AM devices and more sophisticated

software tools for the arrangements of different cells, scaffold

materials, and biofactors in precise positions that mimic their respective

locations in the organs. The automatic cells and scaffolding materials

distribution algorithm (Fig. 4) based on TPMS pore architectures

introduced in this paper is likely to be a promising approach for

printing and prototyping of bioartificial tissues and more biologically

Fig. 6 Generation of a biomimetic porous scaffold model for the spine

bone using the heterogeneous implicit solid interpolation method and

domain decomposition method75,84
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desirable scaffolds, but further work is needed to demonstrate the full

potential of the approach through both in vitro and in vivo experiments.
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