
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 14, No. 10, pp. 1839-1846 OCTOBER 2013 / 1839

© KSPE and Springer 2013

Analysis of Squareness Measurement using a Laser
Interferometer System

Dong-Mok Lee1, Hoon-Hee Lee2, and Seung-Han Yang2,#

1 Institute of Mechanical Engineering Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea, 702-701
2 School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea, 702-701

# Corresponding Author / E-mail: syang@knu.ac.kr, TEL: +82-53-950-6569, FAX: +82-53-950-6650

KEYWORDS: Squareness measurement, Laser interferometer, Abbe’s error, Representative line, Best fit, Optical square

Squareness measurements of the driving axes of a machine tool are very important in order to evaluate the performance of the

machine. A laser interferometer measurement is one of the most reliable ways to measure squareness. However, a squareness

measurement using a laser interferometer system with an optical square causes restrictions in the straightness interferometer setup,

which results in the occurrence of Abbe’s offset. The Abbe’s offset combined with angular errors during the motion of an axis causes

Abbe’s error. In addition, difficulty in the optical square setup causes restrictions on other optics and limitations of the measurable

range. We present mathematical approaches that can be used to eliminate Abbe’s error and to estimate squareness over the full range

by using the best fit of straightness data measured without an optical square. Experiments for squareness measurements of a three-

axis machine tool are conducted. The proposed techniques are used for squareness evaluation with the elimination of Abbe’s error

and also for squareness estimation for the full travel range.
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1. Introduction

Geometric errors of a machine tool are one of the primary error

sources affecting the positioning accuracy of a feed system. These errors

can be measured by indirect methods such as position sensing detector

(PSD), capacitive sensor, and double ball-bar (DBB) system, and by

direct methods such as laser interferometer measurement system.1-8

Among these geometric errors, the volumetric error is affected

significantly by squareness, which is difficult to measure and analyze.9

In the ISO 230 standard, squareness measurement techniques are

introduced using a combination of a master square, dial gauge,

micrometer, laser interferometer, and other components.10 Lee11 suggested

a squareness measurement using an inexpensive master square and

vision system since the production of a master square is difficult, and

measurements using a laser interferometer involve more measuring

time and higher equipment cost. To estimate the squareness, Yuan

suggested an analysis algorithm with reverse kinematics using DBB

circular test data.12 A method of multi-degree of freedom measurement

using capacitance sensors was suggested by Lee.13,14 Laser interferometer

systems are widely used to measure geometric error.15,16 Consequently,

major equipment manufacturers such as Renishaw plc and Agilent have

NOMENCLATURE

aij = Abbe’s offset in i-direction of j-axis

eij = Abbe’s error in i-direction of j-axis

rij = straightness data measured with Abbe’s offset in i-direction of j-

axis, i=x, y, z; j=x, y, z

mij = straightness data with Abbe’s error eliminated from rij in i-

direction of j-axis, i=x, y, z; j=x, y, z

εij = angular error in i-direction of j-axis, i=x, y, z; j=x, y, z

sij, sij' = squareness of ij-plane for measurable and full travel range,

respectively

δij = straightness error in i-direction of j-axis, i=x, y, z; j=x, y, z

α, β = inclination of representative line of measurement data from the

X-axis and Y-axis, respectively

Δα, Δβ = difference in inclination of straightness representative lines

for measurements with and without optical square at X-axis

and Y-axis, respectively

α', β' = inclination of straightness representative line (best fit curve)

from X-axis and Y-axis, respectively
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developed optical square for squareness measurements.17,18

In order to reduce measurement uncertainty, geometric error

measurement using a laser interferometer has been performed under

conditions where the cosine error and Abbe’s error are minimized.19,20

Guidance is provided by many equipment manufacturers regarding data

processing methods to eliminate measurement uncertainty. These

considerations are especially important during squareness measurements.

However, due to misalignment between the laser beam and the

direction of feed, and also limitations in the optics setup, this approach

requires additional processes for error compensation. When using optical

square for squareness measurements, the occurrence of Abbe’s offset is

inevitable, which also leads to the generation of Abbe’s error due to the

combination of Abbe’s offset with the angular error of the travel axis.

During measurement, the space to install a straightness interferometer

is limited due to the fixed position of the laser head, retro-reflector, and

optical square. Thus, the effect of Abbe’s error is increased. Also,

limitations in the optics installation can cause difficulty in measuring

the squareness along the full travel range.

In this study, a procedure to analyze the squareness measurement

using a laser interferometer system is proposed to address concerns of

a limited measurable range and the inevitable occurrence of Abbe’s

offset. The goals of this study are as follows:

(1) The elimination of Abbe’s offset caused by optical square

installation.

(2) The estimation of squareness for the full travel range using best

fit methodology.

The analyzed results of the squareness measurement were evaluated

by conducting experiments on the XY-plane of a three-axis machine tool

using a laser interferometer system (XL-80, Renishaw plc, UK) and an

optical square.

2. Measurement of Squareness using a Laser Interferometer

System

2.1 Procedure for squareness measurement

Squareness can be calculated from two straightness data sets. First,

the straightness of two axes should be measured under a common

measurement coordinate. During the squareness measurement using a

laser interferometer, the role of the optical square is to reflect the input

laser beam by exactly 90 degrees.20 The optical square is installed at the

maximum measurable range of the axis, and then the laser head and

straightness reflector (which are not included in the travel axis). Finally,

straightness measurements are performed using the straightness

interferometer along the direction of the travel axis. Similarly, the

straightness measurement of another axis is carried out by moving the

position of the interferometer only.

The measured straightness data are used in order to calculate the

squareness about two axes, using the procedure-shown in Fig. 1. The

straightness data (raw data) ryx, measured in the horizontal direction (y-

direction) of the X-axis includes Abbe’s error due to the optical square

setup and reference coordinate system setting. Therefore, the elimination

of Abbe’s error is required in this procedure. A representative line is

determined from the straightness data myx, which is obtained after

eliminating Abbe’s error. Then we can find the inclination (α) of the

straightness data with the X-axis. The inclination of the horizontal

straightness of the Y-axis (β) is also calculated using a similar procedure.

Finally, the squareness sxy is calculated using the inclination of the

straightness data of two axes, as described in the following Section 2.2.

2.2 Definition of representative line and squareness calculation

To calculate the squareness between two axes, a representative line

from the straightness data must be defined. In the ISO230-1 standard,

a definition for the representative line is introduced in two ways. The

first method is to connect the two extreme end points of the data, and

the other is defined using the least squares method as shown in Fig.

2(a).

For example, as shown in Eq. (1), the first method of drawing a

representative line is realized by connecting the start point (x0, m(x0))

and end point (xn, m(xn)). The representative line using the least squares

method is defined as the least squares line for which we minimize the

sum of the squared error about all measurements as shown in Eq. (2).

Thus,

(1)

(2)

In order to define no straightness error at the origin, the method of

least squares for the definition of a representative line was used without

considering the constant term (intercept), as shown in Eq. (3):

(3)

The actual straightness error was obtained by eliminating the

representative line from the Abbe’s error-removed straightness

measurement data, as shown in Eq. (4). This is shown graphically in

Fig. 2(b). Thus,

(4)

The inclinations of a representative line in the straightness data of

the X-axis and Y-axis are α and β, respectively. Then, squareness sxy is
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Fig. 1 Squareness evaluation procedure
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calculated as the sum of the inclinations of the representative line, as

shown in Eq. (5). Here, a negative sign for the squareness means it is

less than 90 degrees, and a positive sign means it is greater than 90

degrees. The notation γ represents the angle between the two

representative lines.

(5)

The relationship between two representative lines with the least

squares method is shown in Fig. 3.

2.3 Abbe’s error due to optical square setup

The occurrence of Abbe’s offset can be avoided if the origin of the

reference coordinate and the measurement coordinate of two axes

coincide. However, when using an optical square for a squareness

measurement, Abbe’s offset is inevitable due to the constraint in the

installation of optics in the machine tool. Abbe’s offset depends on the

reference coordinate system (RCS) of the machine tool, as shown in

Fig. 4, and will always have at least two offset values. Abbe’s offset is

represented as aij, which means Abbe’s offset in the i-direction of the

j-axis.

These offsets affect the measurement data of geometric errors

occurring in the traveling axis. For the measurement setup with

reference coordinate as shown in Fig. 4(b), the Abbe’s error (exy, eyy) is

caused by the two Abbe’s offsets (axy, ayy) combined with angular error

εzy while traveling in the Y-axis with local coordinate system (Y-LCS),

as shown in Fig. 5. These Abbe’s errors are included both in the

horizontal straightness measurement (mxy) and linear displacement

measurement (myy). Thus, the elimination of Abbe’s error is an important

step for error measurement during precision measurement, and is

expressed as the following equation:

(6)

where, rj = [rxj ryj rzj] and ej = [exj eyj ezj] are the straightness

measurement data with Abbe’s offset and Abbe’s error, respectively.

The occurrence of Abbe's error due to the Abbe's offset is presented

using a kinematic chain as shown in Fig. 6 and a mathematical relation is

developed. Here, each parameter is defined as a 4×4 matrix, as shown in

Table 1. The homogeneous transformation matrix (HTM) representations

sxy γ 90°– α β+( )–= =

mj rj ej–=

Fig. 2 Straightness error estimation using representative lines

Fig. 3 Squareness and representative lines (yLS1 type) in the X-axis and

Y-axis

Fig. 4 Abbe’s offset caused by optical square (a) Reference coordinate

exists on the optical square (b) Reference coordinate exists on the

straightness interferometer

Fig. 5 Abbe’s error due to positioning of interferometer
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for path-1 (when the interferometer is setup without Abbe’s offset) and

path-2 (under the actual setup with Abbe’s offset) are shown in Eqs. (7)

and (8), respectively. Angular error Ej is given in Eq. (9).

τ1 = TME (for path-1) (7)

τ2 = ATREA
-1 (for path-2) (8)

(9)

In order to make a kinematic chain, the final HTMs of the two paths

should be equal (τ1 = τ2). After the removal of high-order terms, the

straightness without Abbe’s error is obtained from the relationship as

shown in Eq. (10).

(10)

where, aj = [axj ayj azj] and tj = [txj tyj tzj] are Abbe’s offset and the

machine instruction, respectively.

3. Estimation of Squareness for the Full Travel Range

3.1 Consideration of the measurement range

Generally, geometric error measurement and compensation are

performed for the full travel range. However, for a squareness

measurement using a laser interferometer, it is difficult to measure the

squareness for the complete travel range due to constraints on the

Ej

0 ε zj– εyj

εzj 0 εxj–

εyj– εxj 0

=

mj rj Ejaj–=

Fig. 6 Kinematic chain between the ideal and actual measurements

Table 1 Definition of geometric errors and motion parameters

Symbols Description Expression

A Abbe’s offset

T
Machine instruction for

the linear axis driving

M
Straightness measurement

without Abbe’s offset

R
Straightness measurement

with Abbe’s offset

E
Angular error at the position

of machine instruction Fig. 8 Representative line according to the measurement range

Fig. 7 Influence of travel range on the squareness measurement

Table 2 Difference of squareness results depending on measuring range

X (mm) × Y (mm) α (μm/m) β (μm/m) sxy (μm/m)

100×100 22.0 19.7 -41.7

200×200 6.0 5.5 -11.5
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available space for the installation of an optical square, interferometer,

and reflector. Obstacles such as the machine tool door and the outer

cover are removed to avoid interference with the laser beam movement,

and an additional fixture is required to install the optical square at a

measurable position for the full range of the two axes.

Conducting the measurement over a partial range due to non-

fulfillment of the extra demands poses a serious challenge to the exact

measurement of the squareness. In our experiments using a laser

interferometer system, the angle between the two representative lines

for the partial range is γ, as shown in Fig. 7. Here, the partial range and

inclination of the representative line (Fig. 8) with the X-axis and Y-axis

are xi, yi, and α, β, respectively. Similarly, the inclinations of the

representative line for the full travel range (xn, yn) are α' and β',

respectively. The results of the two cases, as listed in Table 2, show that

the measurement range critically affects the squareness value.

Therefore, the squareness for the full range must be calculated using

Eq. (11) instead of Eq. (5).

(11)

If straightness measurement data using an optical square are used in

the commercial analysis program provided by the manufacturer, then

squareness is analyzed only for the partial range and not for the full

travel range. Therefore, in some cases, error compensation is performed

using the opposite sign. Thus, in this study, a squareness estimation

algorithm for the full travel range from the partial range data is

proposed as shown in Fig. 9.

3.2 Best fit of straightness measurement data

For the straightness measurement of an independent axis, there is no

need for the installation of an optical square, and thus the measurement

can be easily performed for the full travel range. Also, the straightness

of the full range with an optical square can be estimated using this data,

as described below. When there is a coincidence of the two

measurement coordinates, then the measured results of the

aforementioned cases (with and without the optical square) will show

the same result. Therefore, we propose a best-fit method for the

estimation of straightness error for the full travel range when using an

optical square.

We obtained different representative lines depending upon the

measurement range. Therefore, squareness was not determined from

the inclination α (partial range). Rather, it was determined from the

inclination of a representative line about the full range α'. Thus, we can

apply the additional procedure as shown in Fig. 9 by using the full

range straightness data without an optical square for the squareness

evaluation. Here, the data myx,i are taken from the straightness data myx,n

measured about the full range without an optical square. The selected

range is equivalent to the measurable range when using an optical

square. Calculation of the inclination αi of the representative line from

the data myx,i is followed by a new inclination α of the representative

line of the estimated straightness for the full travel range using an

optical square. For the best fit of two straightness measurements (Fig.

10(a)), inclination Δα is shown in Eq. (12). Here, inclinations α and α'

are calculated using the representative line without the constant term

from the data myx. Thus,

(12)

If the straightness data without an optical square (myx,n) is rotated by

the difference angle Δα, then the straightness measurement for full

sxy γ ′ 90°– α′ β ′+( )–= =

αΔ αi α–=

Fig. 9 Squareness evaluation procedure for the full travel range

Fig. 10 Best fit of straightness measurement data for full range when

using optical square
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range straightness with an optical square is finally obtained as myx as

shown in Fig. 10(b). Consequently, inclination of the representative line

of the transformed straightness data α' was calculated as the difference

between the inclination αn (i.e., the representative line without an

optical square), and the angular difference Δα. Thus,

(13)

A similar procedure was applied to calculate the inclination angle β

about the Y-axis as shown in Eq. (14). Finally, the squareness for the

full travel range can be calculated using Eq. (11).

(14)

4. Experiments

To confirm the effectiveness of the proposed procedure for the

squareness analysis described in Section 3, a squareness measurement

was performed for the XY-plane of a three-axis machine tool, as shown

in Fig. 11. The measurement system consisted of a laser interferometer

and optical square (XL-80, Renishaw plc, UK). Their specifications are

shown in Table 3. In order to remove Abbe’s error, angular error

measurement (excluding roll error) was conducted three times for each

axis with an interval of 10 mm, as shown in Fig. 12.

The installation space for the straightness interferometer was restricted

due to the use of an optical square for measurement, which was installed

near the spindle. Abbe’s offset measured from the reference coordinate

is shown in Table 4. The measurable ranges of the X-axis and Y-axis

were restricted to 200 mm due to the optical square. The straightness

measurement ranges of the X-axis and Y-axis without an optical square

were 490 mm and 290 mm, respectively.

The results of the measured straightness and Abbe’s error-removed

straightness are shown in Fig. 13(a). It was necessary to eliminate the

Abbe’s error for precise measurement since there was a significant

difference between the two straightness measurements. In order to

estimate straightness when using the optical square for the full travel

range by a best fit process, the inclination difference of two straightness

representative lines (with and without the optical square) for a partial

range (200 mm range) was calculated as shown in Fig. 13(b). The R-

square value between the straightness data with an optical square and

the transformed straightness data without an optical square for a 200

mm range is 92.78%. The estimated inclination α ' of a representative

line for the full travel range was calculated from the transformed

straightness data, as shown in Fig. 13(c). Similarly, the inclination β ' of

the representative line was calculated for the Y-axis, as shown in Fig.

13 (right). Finally, the squareness for the full travel range was

calculated from Eq. (12). Squareness results for the following three

cases are compared in Table 5:

Case I: Commercial analysis software.

Case II: Proposed procedure along the partial travel range.

Case III: Proposed procedure along the full travel range.

The differences between results for Case I and II, and between II

and III, are 4.3 μm/m and 33.55 μm/m, respectively. Abbe’s error can

have critically large value depending on the product outcome of Abbe’s

α ′ αn αΔ–=

β ′ βn βΔ–=

Fig. 11 Experimental setup for squareness measurement

Table 3 Specification for squareness measurement

Manufacturer Renishaw plc, XL-80

Range ±3/M mm/m

Accuracy ±0.5% ±2.5 ±0.8M μm/m

Resolution 0.01 μm/m

M = measurement distance in meter of the longest axis

% = percentage of the displayed value

Table 4 Abbe’s offset

axj (mm) ayj (mm) azj (mm)

X-axis -538 8 0

Y-axis -218 -308 0

Fig. 12 Angular error measurements of (left) X-axis and (right) Y-axis
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offset and angular error. Moreover the results (Case II, III) also showed

squareness estimation critically depends on the measurement range.

Thus squareness estimation without the elimination of Abbe’s error

and/or without the consideration for the full travel range results in

undesired error compensation (usually followed by the present

commercial software). For example, in some cases compensation is

performed in the opposite direction due to incorrect sign of the

measurement result.

Especially the measurable range constraint should be always

considered in most of the measuring system for evaluating the squareness

like when using a master square, DBB and so on.

5. Conclusion

In this study, problems during squareness measurements using a

laser interferometer system with an optical square such as inevitable

Fig. 13 Abbe’s error elimination and best fit of straightness measurement data (left) for X-axis and (right) Y-axis

Table 5 Results of squareness analysis

Measurement range 

X (mm) × Y (mm)

Squareness

(μm/m)

Case I 200×200 42.3

Case II 200×200 38.0

Case III 490×490 4.45



1846 / OCTOBER 2013 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 14, No. 10

Abbe’s error and local squareness estimation due to the constrained

measurable range are presented. A method is proposed for eliminating

the Abbe’s error and also for the squareness estimation by applying the

best fit process to partial and full range data. 

The proposed method highlights: (1) A generalized equation for the

elimination of Abbe’s error from the straightness errors using kinematic

chain is developed and (2) The best fit process involves only simple

subtraction of inclinations of representative lines of partial and full

range data.

The proposed method improved the squareness measurement accuracy

for the full travel range without the need for any modification in the

existing machine tool setup.
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