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NOMENCLATURE 

 

E = Young’s modulus 

I = area moment of inertia of the shaft 

Ω = shaft speed 

P = applied axial force 

� = shaft length 

m = distributed mass of the shaft per unit length 

d
m = disk mass 

p
I = polar moment of inertia of the shaft 

p
I = polar moment of inertia of the disk 

t
I = transverse moment of inertia of the shaft 

t
I = transverse moment of inertia of the disk 

V = shearing force 

M = bending moment 

ψ = angle tangent to the deflection curve 

 

 

1. Introduction  

 

Numerous analyses have been published on the subject of a 

beam under axial loads by various investigators.1-4 Saito and Otomi1 

studied the vibration and stability of an elastically supported beam 

carrying an attached mass and subjected to axial and tangential 

compressive loads. They presented the influence of the support 

stiffness, the direction of loading, and the slenderness ratio on the 

natural frequency and critical load of a beam. Ari-Gul and 

Elishakoff2 conducted an analysis on the shear-flexural buckling of 

columns with overhang under an axial force by solving the 

differential equations of static equilibrium at the onset of buckling 

for a Timoshenko-type beam. Wang et al.3 presents the stability 

criteria and buckling loads of columns under intermediate and end 

concentrated axial loads by employing the Timoshenko column 

theory. They showed the effect of transverse shear deformation on 

the buckling capacity of the column under compressive loads. 

Arboleda-Monsalve et al.4 performed the stability and free vibration 

analyses of a weakened Timoshenko beam-column with generalized 

end conditions under constant axial load. They presented the 

coupling effects of some factors such as shear and bending 

deformations along the member’s span, the translational and 

rotational masses of the member uniformly distributed along its 

span, and constant axial load.  

Many researchers studied also the effect of axial loads on a 

rotating shaft since an axial load can be easily generated in a real 

machine by the pressure difference across the rotor disk or in other 

applications.5 Ku and Chen6 used the finite element method to study 

the stability behavior and whirl speed of a rotating shaft subjected 

to an axial compressive load. They showed the variations of the 

whirl speed of a shaft as the axial compressive load increases and 

found that the critical instability load is independent of the spin 

speed of the shaft. Czolczynski and Marynowski7 investigated the 
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stability of a rotating disk with a flexible shaft of negligible mass 

subjected to a longitudinal force acting on a disk and concluded that 

the critical axial force is practically independent of the support 

stiffness. Sheu and Chen8 employed a lumped mass model to 

determine the regions of parametric instability of a cantilever shaft-

disk system subjected to periodic longitudinal forces. They found 

that the periodic axial loading makes the rotor system more unstable 

than the periodic follower force does under the same static load 

factor.  

This paper addresses the modeling and stability analyses of an 

overhung rotor subjected to an axial force by employing the transfer 

matrix method. The equation of motion of an overhung rotor under 

an axial end force is first derived. And then, a transfer matrix 

approach is presented for the dynamic analysis of a general rotor-

bearing system under axial forces. Two different types of overhung 

rotor systems are considered to cover the typical overhung 

turbomachine. 

 

 

2. Theoretical Development 

 

2.1 Equations of Motion of a Cantilevered Overhung Disk 

under Axial Force  

Fig. 1 depicts the cantilevered overhung rotor with speed Ω 

under applied axial force P. The kinetic energy of the entire shaft 

rotating speed of Ω is 
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The kinetic energy of the rotating disk is 
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where the subscript �  represents the right end of the shaft. 

The work due to the bending moment and a compressive axial 

load P becomes 
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Substituting Eqs. (1)-(3) into the extended Hamilton's principle 
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and introducing a complex deflection, ,w x iy= +  yield the 

following equation of motion  
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Fig. 1 Coordinates and axial compressive external force for the 

cantilevered overhung disk 

 

with the associated boundary conditions at 0:z =  

 0, 0
w

w
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and at z = � : 
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Substituting the following nondimensional parameters  
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into Eqs. (5)-(7) yields the dimensionless equations as 
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and at 1η =  
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Introducing a trial solution in series form  
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where s is a complex number to be determined, .s iλ ω= ±   

into Eqs. (8)-(10b) gives 
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r Pr Q s r iI Q sr s+ − Ω + Ω +Ω =
� � � �  (12) 

and four homogeneous equations in Cj. The necessary and sufficient 

condition for a nontrivial solution of four equations in Cj is that the 

determinant of the coefficients of Cj must be zero. Thus,  
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where  
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Equation (13) is the characteristic equation for the system shown in 

Fig. 1, subjected to an axial force. Eqs. (12) and (13) are used to 

check the numerical results obtained using the transfer matrix in 2.2.  

 

2.2 Transfer Matrix Formulation 

The conventional transfer matrix is modified to account for an 

axial force. Fig. 2 presents the sign convention for the nth station 

and the nth shaft section on the xz-plane.  

The inertia transfer function at the nth station can be expressed 

in matrix form as 
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In more compact form, 
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where R and L denote right and left side of station n, respectively. 

The following relationships can be obtained for the shaft 

section; 
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The same relationship can be obtained for y-z plane by replacing x 

with y in the above equations. Where the flexibility influence 

coefficients aij for a cantilevered beam under the axial force are 

found by using the method in reference9 as  
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The transfer function for the shaft section can be expressed in the 

following matrix form by combining Eqs. (16) and (17)  

 

Fig. 2 Sign convention for the nth section on the xz-plane 
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where  
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In more compact form,  
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The overall transfer matrix can be found as 
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3. Numerical Examples 

 

A computer program was developed by employing the transfer 

matrix approach described in the previous section. Numerical 

analyses were conducted to investigate the effects of the axial force 

on both the natural frequency and the stability of general overhung 

rotor systems. The accuracy of the numerical solutions obtained 

from the developed computer program was tested by considering 

simple models for which exact solutions are available. For this 

purpose, the effect of applied forces on the critical speeds of 
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uniform shafts supported on either rigid short or rigid long bearings 

was investigated for comparison. When ten segments are used for 

the transfer matrix method, the maximum errors in the first two 

critical speeds are less than 0.02% for the shaft on short bearings 

and 0.04% for the shaft on long bearings.  

 

3.1 Whirl Speeds of a Cantilevered Overhung Rotor under 

Axial Forces 

The following data which represent one stage of a typical 

modern high-speed turbomachine were selected for the numerical 

analyses: shaft length ℓ = 0.254 m, shaft diameter d = 0.038 m, 

shaft density ρ = 7833 kg/m3, disk mass md = 31.8 kg, disk polar 

moment of inertia Ip = 0.18 kg·m2, disk transverse moment of inertia 

It = 0.09 kg·m2, Young's modulus E = 2x1011 N/m2, and shaft speed 

Ω = 7000 rpm. Using these data, eleven stations (ten elements of 

equal length for the shaft and one for the disk) were employed in 

the transfer matrix program to generate the results. 

Fig. 3 shows the effect of axial force on the natural frequencies 

of a rotating shaft with and without a disk. The first natural 

frequency of a shaft without a disk decreases with increasing the 

compressive axial force and approaches zero at P=2.47EI/ℓ2 that is 

the static buckling load for the non-rotating cantilevered beam. The 

eigenvalues of the first mode of the system become positive real 

numbers if the axial force is greater than the static buckling load. 

This implies that the system loses the stability without oscillation 

like a non-rotating Euler beam and shows divergence instability. 

For a cantilevered shaft with a disk, the natural frequency for each 

mode was split into two whirl frequencies due to the gyroscopic 

effect of a disk. All these whirl frequencies decrease as the axial 

force increases until the first backward whirl frequency (1B) 

becomes zero at P = 2.47EI/ℓ2. Further increasing the compressive 

axial force, a new forward whirl frequency appears and increases 

while the existing first forward whirl frequency (1F) deceases 

continuously. This existing forward whirl frequency is now referred 

to as the second forward whirl frequency (2F) since a new lower 

forward whirl frequency appears for P > 2.47EI/ℓ2. The new first 

forward whirl frequency coalesces with the second forward whirl 

frequency at P=2.58EI/ℓ2. After coalescing, the eigenvalues of the 

first mode of the overhung rotor system become complex number 

and the negative logarithmic decrement appears as shown in Fig. 4. 

The figure presents the variation of the logarithmic decrement of 

the first mode of the overhung rotor for two different values of Q. 

As shown in the figure, the magnitude of the logarithmic decrement 

of the rotor system increases as the axial force increases after the 

first two forward whirl frequencies are coalesced at P=2.58EI/ℓ2 

and 2.82EI/ℓ2 for Q = 0.044 and 0.088, respectively. This implies 

that the overhung rotor system loses the stability by oscillation with 

increasing amplitude and shows flutter instability after coalescing. 

Therefore, the critical axial force for flutter instability of an 

overhung rotor can be determined from coalescing of the first two 

forward frequencies. The gyroscopic effect of a rotor not only 

increases the critical force by stiffening the shaft but changes the 

instability type from divergence to flutter. Similar phenomena were 

obtained by utilizing the finite element method for a shaft without a 

 

Fig. 3 Effect of axial force on the natural frequencies of the 

cantilevered overhung rotor (Q = 0.044) 

 

 

Fig. 4 Effect of axial force on the logarithmic decrement of the first 

mode of the cantilevered overhung rotor 

 

 

Fig. 5 Effect of the gyroscopic moment on the natural frequencies

of an overhung rotor under axial forces (Q = 0.088) 
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disk in reference6 and the lumped mass model for a rotor under 

periodic forces in reference.8 The change in whirl frequencies for 

the second mode of the system is less than 5 percent when the 

compressive axial force is under the static bucking load. 

The gyroscopic effect was further studied by increasing the 

moment of inertia of the disk and the rotating speed. As shown in 

Fig. 5, the stronger gyroscopic effect spaces the backward and 

forward frequencies further apart and moves the coalescing point 

between first two forward frequencies to a larger axial force of P = 

2.82EI/ℓ2 when the moment of inertia of the disk is doubled, and P 

= 3.52EI/ℓ2 when both the moment of inertia of the disk and the 

rotating speed are doubled. However, the first backward frequency 

disappears at the same axial force which is the static buckling load 

of a shaft. A cantilevered shaft with a lumped mass was also 

considered to eliminate the gyroscopic effect of a disk. The first 

natural frequency of the rotor becomes zero at the static buckling 

load and the divergence instability occurs like the cantilevered shaft 

without a disk. The mass of the disk reduces the natural frequencies 

of the system but has no effect on the critical axial force for 

divergence instability at all. Therefore, the critical axial force for 

divergence instability is independent of the rotating speed and the 

mass of the disk. Such a critical axial force can be directly obtained 

by using the conventional buckling formulation.   

 

3.2 Whirl Speed of an Overhung Rotor with an Intermediate 

Support under Axial Forces 

An overhung rotor system with an intermediate support as 

shown in Fig. 6 is considered to simulate a typical single-stage 

overhung compressor supported by a rigid long bearing and a rigid 

short bearing or by two rigid short bearings. The effect of the 

support location was investigated by using the same data chosen for 

the cantilevered rotor. Fig. 7 shows the dimensionless natural 

frequencies of the rotor under axial forces for two different 

boundary conditions when the intermediate support is located at the 

middle of the shaft. Similar graphs and phenomena to the ones 

without an intermediate support were obtained. When the left end is 

supported by a rigid short bearing, the first backward frequency 

becomes zero at P = 5.44EI/ℓ2 and the first two forward frequencies 

coalesce at P = 5.80EI/ℓ2. These two axial forces increase to 

6.27EI/ℓ2 and 6.67EI/ℓ2, respectively when the left end is supported 

by a rigid long bearing. The effect of the intermediate support on 

the critical force for instability can be determined by considering 

the axial force when the first backward whirl frequency disappears 

since the gyroscopic effect is constant for a given rotor operated at 

constant speed. 

Fig. 8 presents the axial forces that make the first backward 

frequency zero for various locations of an intermediate support. The 

dimensionless term of ε  denotes the ratio of ,
S

�  the length 

between the two supports, to the entire shaft length of .�  As can be 

seen in the figure, the difference between two different boundary 

conditions is less than 4% when the ratio of the length between two 

supports to the entire length of the shaft is less than 0.5. However, 

the difference increases sharply up to almost 100% as the support 

approaches to the free end of the shaft. Since these axial forces are 

independent of the rotating speed, the mass and the moment of 

inertia of the disk as observed in the previous case, they can be 

determined by considering the static buckling load for the 

corresponding system.  

 
(a) Fixed-hinged rotor 

 
(b) Hinged-hinged rotor 

Fig. 6 An overhung rotor model with an intermediate support 

 

 

Fig. 7 Effect of axial force on the whirl frequencies of the 

overhung rotor for two different boundary conditions 

 

 

Fig. 8 The dimensionless axial force when the first backward whirl 

disappears for various locations of an intermediate support 
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4. Conclusions  

 

The dynamic behavior of an overhung rotor under an axial force 

was studied by developing the transfer matrix for a flexible-shaft 

rotordynamic model. The following results were obtained by 

investigating the influence of the load force on the stability and the 

natural frequencies of overhung rotor systems.  

1) The gyroscopic effect of the rotor strongly influences the 

dynamic behavior of the shaft-disk system under axial forces. 

The gyroscopic effect not only stiffens the shaft, and thus 

increases the critical axial force, but also changes the instability 

type from divergence to flutter. 

2) The axial force that makes the first backward whirl frequency 

of the cantilevered overhung rotor with or without an 

intermediate support zero is independent of the rotating speed, 

the mass and the moment of inertia of the disk. Such an axial 

force can be determined by considering the static buckling load 

for a corresponding non-rotating Euler beam.  
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