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1. Introduction  
 

Since 2000, we have been developing robotic colonoscopes 
based on a link mechanism,1 radial wheel,2 a pneumatic impulsive 
device,3 a tendon-driven clamping mechanism,4 a paddling-like 
mechanism,5 and an inchworm-like mechanism.6 There has also 
been a lot of effort to develop robotic colonoscopies by using a 
flexible chain,7,8 a clamping segment with inflatable balloons,9 a 
robotic legged capsule,10 a snake-like mechanism11 and a parallel 
manipulator-integrated endoscope.12 In addition, in-vitro and in-
vivo tests have been performed in other institutes.13-15 In particular, 
inchworm-like locomotion has been popularly employed as a bio-
mimetic approach. It has been shown that inchworm-type devices 
have the capability to overcome the flexibility and the slipperiness 
of a colon. Usually, they utilize flexible bellows for elongation and 
contraction, and suction based clampers for clamping and releasing. 
Therefore, at least three pneumatic lines are required to supply the 
air for each chamber: the front clamper, the bellows and the rear 
clamper.13,16 For perfect clamping, some extra time is required, 
and a red mark remains. That can lead to an erroneous diagnosis. 
In order to reduce red marks and the loss of locomotion capability 

due to extra suction and insufflation, the suction based clampers 
are replaced by legs based clampers in this article. In addition, a 
previously developed one pneumatic line based inchworm-like 
mechanism for in-pipe inspection is adopted to reduce the friction 
force between the pneumatic lines and the locomotion 
environment.17 To find optimized operation parameters, the 
velocity under variation of suction and blowing time is 
investigated with a theoretical approach. Then, experiments under 
in-vitro and in-vivo condition are carried out with some optimized 
parameters. 

 
 

2. Robot system 
 

2.1 Robot structure 
As in Fig. 1, the robot consists of two main modules: the 

bellows and two clampers (front and rear). As previously mentioned, 
realizing perfect clamping on a slippery colon is far from easy; this 
is the main obstacle to overcome in the development of a reliable 
robotic colonoscope. For our proposed robotic colonoscope, we 
employ a six-leg based clamper that can be folded and unfolded 
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robotic colonoscope was embodied. After we fabricated the robotic 
colonoscope, the robot system consisting of a proportional valve, a 
vacuum generator and an air compressor was constructed to operate 
it. Next, a performance test on the robotic colonoscope system in 
the pipe was carried out. In particular, the velocity of the robot 
according to suction and insufflation time was investigated based 
on a theoretical analysis. This was then compared to experimental 
results to confirm the viability of the design.  

This investigation indicated that the velocity of the robot could 
be satisfactorily controlled by adjusting the amount of time at which 
air was supplied. After we tested the locomotion performance, the 
robotic colonoscope was tested under in-vitro condition. Due to the 
viscoelastic characteristics of the colon, the velocity in a straight 
path of the explanted colon was 33 mm/s, a reduction value of 41% 
compared to that in the pipe. In the curved path, the velocity 
decreased as the radius of the curved course decreased since the robot 
was under more resistance force. In the sloped path, robot velocity 
varied from 33 mm/s to 12 mm/s depending on the angle of the slope 
path. Owing to the strong performance of the locomotive mechanism, 
the developed robotic colonoscope maneuvered successfully in the 
colon of a live swine with a speed of 8.5 mm/sec. 

 
 

REFERENCES 
 

1. Kim, K. D., Lim, H., Kim, B. K., Park, J. O., and Hong, Y. S., 
“A Locomotive Mechanism for Colonoscope,” Transaction of 
the KSME, Vol. 26, No. 7, pp. 1296-1301, 2002. 

2. Kim, K. D., Lee, S. J., Kim, B. K., and Park, J. O., “Radial Type 
Locomotive Mechanism with Worm for Robotic Endoscope,” 
Transaction of the ICASE, Vol. 8, No. 3, pp. 220-225, 2002. 

3. Kim, B. K., Lee, J. H., Lim, Y. M., Park, J. O., Kim, S. H., and 
Hong, Y. S., “Locomotive Colonoscope,” Proceedings of the 
32nd International Symposium on Robotics, pp. 1829-1833, 
2001. 

4. Menciassi, A., Park, J. H., Lee, S., Gorini, S., Dario, P., and Park, 
J. O., “Robotic Solutions and Mechanisms for a Semi-
Autonomous Endoscope,” Proceedings of IEEE/RSJ International 
Conference on Intelligent Robots and Systems, pp. 1379-1384, 
2002. 

5. Park, S. H., Park, H. J., Park, S. J., and Kim, B. K., “A Paddling 
Based Locomotive Mechanism for Capsule Endoscopes,” 
Journal of Mechanical Science and Technology, Vol. 20, No. 7, 
pp. 1012-1018, 2006. 

6. Kim, B. K., Lim, H. Y., Park, J. H., and Park, J. O., “Inchworm-
Like Colonoscopic Robot with Hollow Body and Steering 
Device,” JSME Int. J., Vol. 49, No. 1, pp. 205-212, 2006. 

7. Lee, J. S., Kim, B. K., and Hong, Y. S., “A Flexible Chain-based 
Screw Propeller for Capsule Endoscopes,” Int. J. Precis. Eng. 
Manuf., Vol. 10, No. 4, pp. 27-34, 2009. 

8. Hong, Y. S., Kim, J. Y., Kwon, Y. C., and Song, S. Y., 
“Preliminary Study of a Twistable Thread Module on a Capsule 

Endoscope in a Spiral Motion,” Int. J. Precis. Eng. Manuf., Vol. 
12, No. 3, pp. 461-468, 2011. 

9. Hoeg, H. D., Slatkin, A. B., and Burdick, J. W., “Biomechanical 
modeling for the small intestine as required for the design and 
operation of a robotic endoscope,” IEEE International Conference 
on Robotics and Automation, pp. 1599-1606, 2000. 

10. Valdastri, P., Webster, R. J., Quaglia, C., Quirini, M., Menciassi, 
A., and Dario, P., “A New Mechanism for Mesoscale Legged 
Locomotion in Compliant Tubular Environments,” IEEE 
Transactions Robotics, Vol. 25, No. 5, pp. 1047-1057, 2009. 

11. Hu, H., Wang, P., Zhao, B., Li, M., and Sun, L., “Design of a 
novel snake-like robotic colonoscope,” Proceedings of the IEEE 
International Conference on Robotics and Biomimetics, pp. 1957-
1961, 2009. 

12. Peirs, J., Reynaerts, D., and Van Brussel, H., “Design of 
miniature parallel manipulators for integration in a self-
propelling endoscope,” Sensors and Actuators, Vol. 85, pp. 409-
417, 2000. 

13. Dario, P., Carroza, M. C., Lencioni, L., Magnani, B., and 
D’Attansio, S., “A Micro-robotics System for Colonoscopy,” 
Proceedings of the IEEE International Conference on Robotics 
and Automation, pp. 1567-1572, 1997. 

14. Ozaki, K., Wakimoto, S., and Suzumori, K., “Novel design of 
rubber tube actuator improving mountability and drivability for 
assisting colonosocope insertion,” Proceedings of the IEEE 
International Conference on Robotics and Automation, pp. 
3263-3268, 2011. 

15. Trovato, G., Shikanai, M., Ukawa, G., Kinoshita, J., Murai, N., 
Lee, J. W., Ishii, H., Takanishi, A., Tanoue, K., and Ieiri, S., 
“Development of a colon endoscope robot that adjusts its 
locomotion through the use of reinforcement learning,” 
International Journal of Computer Assisted Radiology and 
Surgery, Vol. 5, No. 4, pp. 317-325, 2010. 

16. Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M. 
C., and Dario, P., “Analysis and development of locomotion 
devices for the gastrointestinal tract,” IEEE Transactions on 
Biomedical Engineering, Vol. 49, No. 6, pp. 613-616, 2002. 

17. Lim, J. W., Park, H. J., An, J. M., Hong, Y. S., Kim, B. K., and 
Yi, B. J., “One pneumatic line based inchworm-like micro robot 
for half-inch pipe inspection,” Mechatronics, Vol. 18, pp. 315-
322, 2008. 

 


