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1. Introduction  
 

There are two types of washing machines -- front-loading or 
drum types and top-loading types. The front-loading washer is 
mostly used in Europe while the top-loading washer is very popular 
in Asia. The top-loading washing machine can be further classified 
two subtypes -- an automatic washing machine, shown in Fig. 1(b), 
and a semi-auto washing machine, shown in Fig. 1(c).  

Yet, for all types of washing machines, vibration and noise 
negatively affect the lifetime and reliability of the operation and 
capacity of the machine.1 Although the vibration of a washing 
machine occurs mostly when the laundry is washed and dewatered, 
the spinning process during dewatering is more critical than the 
washing process because the spinning process has a higher 
rotational speed.2,3 The twisting and crumpling of the laundry 
during dewatering results in an unbalanced mass that induces 
vibrations. These vibrations can be reduced to a small degree by 
bellows in the spin component; however, to reduce the vibrations 
most effectively, installation of an automatic balancer on top of the 
spin component is necessary.3 The automatic balancer uses balls or 
a liquid similar to salt water to create motion in the direction that 
will most neutralize the vibrations within a tube of the balancer. 

Recently, much research has been focused on automatic 
balancers. For example, Wlerzba et al.4 developed a ball balancer 
for vibration reduction, and Kang et al.5 studied the fluid drag force 
on a ball balancer. There has also been extensive research on liquid 
balancers. Oh et al.3 modeled the dynamics of a washing machine 
system with an automatic balancer and demonstrated its 
performance using both experimental and computational analysis. 
Leonardo-Sot et al.6 proposed a dynamic model with two degrees of 
freedom (DOF) using a Leblanc balancer that described two waves: 
one was synchronous with the rigid body motion while the other 
was a backward traveling wave. In another set of experiments, Jung 
et al.7 researched the technical difficulties and solutions for a 
washing machine at two stages. In addition, Chen et al.8 studied the 
effects of a hydraulic balancer and proved the existence of an 
unstable region through simulation and experiment. Bae et al.9 
researched the effects of a variety of parameters on the vibration of 
a washing machine using a numerical method and proposed a 
design to improve the machine’s performance. 

Although many researchers have dynamically modeled and 
analyzed washing machines with automatic balancers and have 
proposed improved designs, no report exists (to the authors’ 
knowledge) on the design optimization of a liquid automatic 
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balancer for vibration reduction of a washing machine using 
numerical optimization techniques. In this study, we determined the 
optimal dimension of layers and amount of salt water necessary for 
an automatic liquid balancer to minimize the maximum 
displacement of a low-speed spin cycle while satisfying the design 
constraint on the maximum displacement of a high-speed spin cycle. 
The automatic liquid balancer for this study was installed in a semi-
automatic washing machine, which was composed of both wash and 
spin components, as shown in the Fig. 2. The spin component was 
composed of dewatering equipment, including a spin basket, a 
motor unit, and an automatic balancer. The spin basket was 
connected to the bellows and allowed for 3-D rigid body motion. 
The automatic liquid balancer was filled with salt water and had six 
equally-spaced layers, as shown in Fig. 3. Note that the vibration 
reduction ability of the automatic balancer was known from 
previous research to depend on the shape of the layers and the 
amount of salt water. 

2. Design Problem Formulation 
 
The vibration caused by an unbalanced mass has a strong effect 

on the washing machine at lower RPMs (or an early spinning stage) 
because the washing machine passes through a resonant RPM at 
lower RPMs. At higher RPMs, even if the unbalanced mass is 
balanced by the automatic balancer, vibration occurs due to the 
centrifugal force of the rotating spin basket. Thus, we want to 
minimize the vibrations at lower RPMs while keeping the 
vibrations at higher RPMs within an allowable range. Note that, in 
this study, we quantified the amount of vibration of the machine by 
the maximum displacement of the spin component. Hence, we 
formulated a design optimization problem that minimized the 
maximum displacement of the spin component at a lower RPM 
while satisfying the design constraint on the maximum 
displacement of the spin component at a higher RPM. The 
dimension of the layers positioned in the balancer and the amount 
of salt water inside the balancer were selected as design variables. 

Design optimization requires an analysis procedure whereby the 
responses of interest are evaluated for a specified design point. In 
this study, the responses of interest were evaluated by performing 
laboratory experiments as described in the next section. Then, to 
obtain an optimal design result using the experimental data, we 
adopted the strategy of meta-model-based design optimization. For 
this method, a design of experiments (DOE), meta-modeling, and 
an optimization algorithm are sequentially applied. The DOE, meta-
modeling, and optimization algorithm employed in this study are 
presented in Sections 4.1, 4.2, and 4.3, respectively. 

Denoting the meta-models of the maximum displacements at 
lower RPMs and higher RPMs as lowerD%  and ,higherD%  respectively, 
our design problem can be formulated as 

Find  x  (1) 
 

( )to minimize lowerD x%  (2) 
 

( )satisfying higherD δ≤

≤ ≤L U

x

x x x

%
 (3) 

where x is a vector of design variables, and superscripts L and U are 
the lower and upper limit values, respectively. In Eq. (3), δ is the 
allowable displacement. 

 
 

3. Experimental Analysis 
 
In this study, the responses of interest, the maximum 

displacements at lower and higher RPMs, were obtained by 
carrying out laboratory experiments. At the top of the spin basket, 
the displacement is almost always highest within our operating 
range. Thus, we measured the displacement at the top of the spin 
basket. The same washing machine was used for all of the 
experiments, but the liquid balancer was changed in order to obtain 
data showing only the design change effect of the liquid balancer. 
To impose consistent loading, the same artificial unbalanced mass 

 

(a) Front-loading (b) Auto top-loading (c) Semi-auto top-loading

Fig. 1 Types of washing machines 
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Fig. 2 The structure of the semi-automatic washing machine used 
in this study 

 

Fig. 3 An automatic liquid balancer 
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was set at the same position for each experiment. Then, the 
experiments were conducted five times for each design and the 
average was taken to be the response value of interest. This process 
was employed to reduce the effect of random experimental error.  

The procedure of measuring the responses of interest -- the 
maximum displacements at lower and higher RPMs -- using a 
super-high speed camera is as follows: 

1. Install a super-high speed camera to film the spin 
component where an artificial unbalanced mass is attached, 
as shown in the left photo of Fig. 4. 

2. Record the vibrations of the spin component using the 
super-high speed camera until the rotational speed of the 
spin component reaches the maximum value. 

3. Transfer the recorded video file to a personal computer to 
measure the maximum displacements. 

4. Find the video frames that show the vibrations of the spin 
component at the lower and higher RPM settings. 

5. Measure the difference between the initial position and the 
maximally displaced position in each video frame using 
measurement software, as shown in the right photo of Fig. 4. 
These differences represent the maximum displacements at 
the lower and higher RPMs. 

 
 

4. Optimization Strategy 
 
To effectively implement the meta-model-based design 

optimization, a commercial process integration and design 
optimization (PIDO) software, PIAnO,10 was employed in this study. 

 
4.1 Design of Experiments  

The design of experiments (DOE) process is a scientific 
approach to planning experiments that allows one to conduct the 
experiments most efficiently and then to analyze the system using 
statistical methods. The DOE is often used to determine which 
design variables (or factors) have significant influence on a 
response variable (or a characteristic variable), and thus, which 
design variables should be selected to achieve the best solution. 

There are a variety of methods for locating the experimental 
points including full factorial design (FFD), fractional factorial 
design, central composite design (CCD), and Box-Behnken design 
(BBD) methods. In this study, we adopted the 33 design method, 
which utilizes three factors (or three design variables) at three 
different levels arranged in a factorial experiment.11,12 Twenty-

seven factor combinations are shown in Fig. 5 and listed in Table 1. 
To reduce the effect of random experimental error, we conducted 
experiments at each factor combination five separate times and then 
took the average to be the maximum displacement for the low- and 
high-RPM settings, as described in Section 3. Experimental results 
scaled by the minimum value at each RPM setting are also listed in 
Table 1.  

To examine the accuracy of our experiment method, we 
calculated the coefficient of variation (CV) among five repeated 
experiment results at each factor combination. The CVs for the 
maximum displacement at a lower RPM and at a higher RPM were 
found to range between 0.2% and 2.4% and between 0.9% and 
5.0%, respectively, which confirms the accuracy of our experiment 
method. 

 
4.2 Meta-modeling  

Meta-modeling is the process of creating an approximate 
continuous function using a discrete set of data. There are two kinds 
of meta-models: regression models and interpolation models. We 
chose a regression model to approximate the maximum 
displacements in order to smooth out the random errors contained in 
the 27 experimental results listed in Table 1. 

In this study, we generated three popular regression models: a 
full quadratic polynomial regression (PR) model, a simple cubic PR 
model, and a radial basis function regression (RBFr) model. Then, 

Fig. 4 Maximum displacement measurement using a super-high
speed camera 
 

 

 
Fig. 5 Experimental layout of the 33 design 
 
Table 1 27 Factor combinations and experimental results 

NO Width Height Salt Water #1 #2 #3 #4 #5 AVR #1 #2 #3 #4 #5 AVR

1 -1 -1 -1 1.067 1.026 1.000 1.026 1.062 1.036 1.314 1.373 1.275 1.333 1.373 1.333

2 -1 -1 0 1.077 1.128 1.077 1.077 1.077 1.087 1.216 1.373 1.353 1.373 1.412 1.345

3 -1 -1 1 1.103 1.051 1.087 1.067 1.077 1.077 1.333 1.275 1.275 1.373 1.275 1.306

4 -1 0 -1 1.221 1.215 1.241 1.231 1.246 1.231 1.392 1.373 1.353 1.373 1.373 1.373

5 -1 0 0 1.113 1.103 1.118 1.097 1.077 1.102 1.333 1.412 1.392 1.373 1.373 1.376

6 -1 0 1 1.287 1.292 1.292 1.282 1.272 1.285 1.529 1.667 1.569 1.627 1.569 1.592

7 -1 1 -1 1.328 1.374 1.359 1.338 1.333 1.347 1.275 1.333 1.353 1.275 1.314 1.310

8 0 1 0 1.262 1.256 1.282 1.256 1.292 1.270 1.333 1.216 1.196 1.255 1.275 1.255

9 0 1 1 1.385 1.369 1.374 1.385 1.359 1.374 1.412 1.373 1.392 1.353 1.333 1.373

10 0 -1 -1 1.256 1.287 1.292 1.277 1.282 1.279 1.020 1.039 1.000 1.059 1.039 1.031

11 0 -1 0 1.277 1.282 1.272 1.231 1.282 1.269 1.137 1.137 1.176 1.157 1.176 1.157

12 0 -1 1 1.205 1.179 1.169 1.221 1.179 1.191 1.176 1.137 1.078 1.137 1.176 1.141

13 0 0 -1 1.621 1.615 1.641 1.631 1.641 1.630 1.392 1.373 1.333 1.353 1.392 1.369

14 0 0 0 1.595 1.579 1.590 1.590 1.585 1.588 1.333 1.373 1.392 1.373 1.353 1.365

15 0 0 1 1.590 1.600 1.590 1.595 1.595 1.594 1.353 1.373 1.373 1.392 1.373 1.373

16 0 1 -1 1.179 1.169 1.231 1.221 1.210 1.202 1.392 1.373 1.333 1.392 1.392 1.376

17 0 1 0 1.231 1.277 1.231 1.262 1.256 1.251 1.196 1.255 1.176 1.196 1.216 1.208

18 0 1 1 1.426 1.415 1.379 1.385 1.395 1.400 1.510 1.471 1.353 1.412 1.373 1.424

19 1 -1 -1 2.056 2.026 2.036 2.041 2.021 2.036 2.784 2.843 2.863 2.882 2.824 2.839

20 1 -1 0 1.974 1.995 2.005 1.944 1.969 1.977 2.118 2.176 2.196 2.137 2.235 2.173

21 1 -1 1 1.872 1.851 1.856 1.836 1.831 1.849 1.922 1.980 1.882 1.863 1.902 1.910

22 1 0 -1 1.692 1.682 1.692 1.687 1.641 1.679 1.333 1.216 1.235 1.275 1.353 1.282

23 1 0 0 1.538 1.559 1.569 1.538 1.569 1.555 1.373 1.314 1.392 1.392 1.431 1.380

24 1 0 1 1.538 1.528 1.538 1.533 1.538 1.535 1.235 1.216 1.275 1.255 1.235 1.243

25 1 1 -1 1.518 1.538 1.528 1.538 1.533 1.531 1.275 1.255 1.333 1.235 1.216 1.263

26 1 1 0 1.533 1.518 1.528 1.538 1.544 1.532 1.196 1.176 1.196 1.137 1.157 1.173

27 1 1 1 1.523 1.533 1.538 1.533 1.538 1.533 1.333 1.333 1.294 1.373 1.353 1.337

Maximum Displacement at a lower RPM Maximum Displacement at a higher RPM
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we compared the accuracy of each model and selected the 
regression model with the best accuracy for each response of 
interest. 

Since PR models are well known, only the RBFr model will be 
briefly described here. The RBFr model ( )y x%  predicts the y value 
at a design point x by taking the inner product of a vector of m basis 
functions ( ( ))h x  and a vector of m weights (w), as formulated in 
Eq. (4).13-16 

 ( ) ( )ty =x h x w%  (4) 

where 

 ( ) ( ) ( ) ( )1 2h h h
t

m= ⎡ ⎤⎣ ⎦h x x x xL  (5) 

In Eq. (4), the vector w can be evaluated by minimizing the residual 
sum of the squares, as formulated in Eq. (6): 

 ( ) ( )exp expminimize
tt = − −ε ε y Hw y Hw  (6) 

The least squares estimator for w is 

 ( ) 1

exp
t t−

=w H H H y  (7) 

In Eqs. (6) and (7), H is a matrix of m radial basis function values at 
nexp sampling points, as shown in Eq. (8): 

 ( )
2

2exp i
ih

r

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x
x  (8) 

In this study, we chose the Gaussian function as the radial basis 
function16 which can be expressed in term of Euclidean distance, as 
defined by Eq. (9): 

 ( )
2

2exp i
ih

r

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x
x  (9) 

where r is a user-defined parameter. 
To evaluate the accuracies of the three regression models that 

we chose, we utilized the coefficient of determination R2, as defined 
in Eq. (10): 

 
( ) ( )

( )

nexp
2

2 1
nexp

2

1

ˆ
1

i i
i

i
i

y y
R

y y

=

=

⎡ − ⎤⎣ ⎦
= −

⎡ − ⎤⎣ ⎦

∑

∑

x x

x
 (10) 

where ( )y x  and ( )y x%  denote an exact value and an approximate 
value, respectively. The closer the R2 value is to 1, the more 
accurate a regression model is. We evaluated the R2 values of three 
regression models (full quadratic PR, simple cubic PR, and RBFr) 
for the maximum displacements at a lower RPM and a higher RPM; 
the results are shown in Fig. 6 in %. For the low-RPM maximum 
displacement values (white bar in Fig. 6), all three models show the 
same R2 value of about 93%. However, for the high-RPM 
maximum displacement values (black bar in Fig. 6), the R2 value of 
the RBFr model is about 95% while the R2 values of two PR models 
are about 67%. Thus, we used the RBFr model to analyze the 
maximum displacements for both the low-RPM and high-RPM 
experiments. 
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Fig. 6 R2 values of three regression models 
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Fig. 8 ANOVA results 

 
4.3 Optimization Algorithm  

In order to obtain the results of the design optimization based 
on the meta-models, we integrated the RBFr model generated in 
Section 4.2 into an optimization algorithm in the PIAnO 
environment. For the optimization algorithm, we utilized an 
efficient gradient-based approximate optimization algorithm, called 
an enhanced two-point diagonal quadratic approximation method,17 
which is available in PIAnO.  

 
 

5. Design Results 
 

5.1 Effects of design variables on the responses of interest  
To investigate the effects of the three design variables on the 

two responses of interest (the maximum displacements), we studied 
the analysis of means (ANOM) and the analysis of variance 
(ANOVA) using the 27 experimental data points sampled by the 3 
levels of FFD. The results of the ANOM, shown in Fig. 7, and the 
ANOVA, shown in Fig. 8, indicate that the width and height of a 
layer have stronger influences on the maximum displacements than 
the amount of salt water, at both the low- and high-RPM settings.  
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Table 2 Results of optimization based on meta-models 
  Lower Initial Optimal Upper

Design 
variables 

Width 0 0.5 0.191 1 
Height 0 0.5 0.386 1 

Salt Water 0 0.5 0.123 1 
Objective 1.0 0.881  
Constraint 0.93 1.000 1 

 
Table 3 Results of the validation experiment 

  Lower Initial Optimal Upper

Design 
variables 

Width 0 0.5 0.200 1 
Height 0 0.5 0.386 1 

Salt Water 0 0.5 0.125 1 
Objective 1.0 0.869  
Constraint 0.983 1.016 1 
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Fig. 9 Optimum and initial layers 
 
5.2 Results of optimization based on meta-models 

We successfully obtained optimization results using the meta-
model-based design optimization described in Section 4. Table 2 
lists the initial and optimal values of the three design variables, the 
objective function, and the constraint. Note that the design variable 
values are normalized between the lower limit value of 0 and the 
upper limit value of 1. Note also that objective values are scaled by 
the initial objective value, and the constraint values are scaled by 
the upper limit value. As shown in Table 2, the value of the 
objective function (the maximum displacement at a lower RPM) 
decreased by about 11.7% compared to its initial value while still 
satisfying the constraint on the high-RPM maximum displacement 
with the reduced values of all three design variables. 

 
5.3 Validation experiment 

In order to verify the validity of our meta-model-based design 
optimization results, we first adjusted the optimal design variable 
values to the values listed in Table 3 taking manufacturing into 
account and manufactured the layers according to the optimal 
design variable values listed in Table 3 and performed an additional 
experiment as described in Section 3. Photographs of the 
manufactured optimum and initial layers are shown in Fig. 9. The 
results of this validation experiment are listed in Table 3. As can be 
seen in Table 3, the objective value was found to decrease by about 
13.1% while still satisfying the constraint, which verifies the 
validity of our meta-model based design optimization results. 

Fig. 10 compares the scaled values of the objective function and 
constraint for the initial and optimal designs obtained by the 
experiment and the meta-models. This comparison indicates that the 
meta-models employed in this study are accurate enough to obtain 
an optimal solution. 
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Fig. 10 Comparisons of the scaled objective and constraint values 
between the real experiment and the meta-models 

 
 

6. Conclusions 
 
In order to reduce the vibrations of a washing machine, we 

formulated a design optimization problem that minimized the 
maximum displacement of the spin component in a low-RPM 
setting while satisfying the design constraint on the maximum 
displacement of the spin component in a high-RPM setting. The 
width and height of the layers positioned in the balancer and the 
amount of salt water inside the balancer were selected as design 
variables. In this study, the maximum displacements of the low-
RPM and high-RPM settings were obtained via laboratory 
experiments. Then, to determine the optimal design result using the 
experimental data, we employed meta-model-based design 
optimization, whereby a design of experiments (DOE), meta-
modeling, and an optimization algorithm were sequentially applied. 

We successfully obtained optimal results using the meta-model-
based design optimization and performed an additional experiment 
to verify the validity of our results by installing optimally designed 
layers. The maximum displacement of the lower RPM was found to 
decrease about 13.1% compared to its initial value while still 
satisfying the constraint on the maximum displacement of the 
higher RPM. 

We believe that the strategy of meta-model-based design 
optimization presented in this study can also be applied to a variety 
of design cases in which the responses of interest are evaluated by 
performing laboratory experiments. 
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