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1. Introduction  
 

Free-formed surfaces are widely used in modern industrial 
products such as automobiles, electric or electronic goods, 
household items, and so on. These are represented by 3 dimensional 
CAD modeling systems that use parametric or nonparametric 
mathematical expressions, and finally manufactured by CNC 
systems. However, conventional CNC systems such as robotics, 
machine tools, and other automation devices deal with axis motion 
along a straight-line or circular path, because they only provide 
linear and circular interpolation with respect to the parametric 
surface. For these systems, very long CNC programs containing a 
great number of linear segments are often needed. In this case, the 
large storage space and the long computing time required by these 
programs are the main problems that need to be addressed. Another 
drawback is that the velocity is not continuous at the conjunction of 
the line segments. There is also a conflict between the accuracy and 
efficiency, which is inherent in the segmentation process. The 
conflict arises from the fact that higher accuracy results in smaller 
segments. Since this are traced by the existing linear or circular 
interpolator on a one-at-a-time basis, their processing induces 
repeated acceleration-deceleration cycles on the CNC machine, thus 
resulting in machining inaccuracies and substantially increasing the 
whole machining time. Therefore, studies have been performed on 

the development of general interpolators which can express various 
lines and curves in a block, control the motion smoothly.1 This is 
done by transferring the information of the parametric curves into 
the CNC systems, which then interpolate the parametric curves. 

NURBS models have long been favored in CAD systems2 
because they offer an exact uniform representation of both 
analytical and free-form parametric curves. Most researchers have 
developed a variety of interpolation algorithms for parametric 
curves using Taylor’s expansion. The most representative method is 
to use a first-order approximation of Taylor’s expansion and the 
derivative of the parametric curve, and to get equal chord lengths.3-5 
However, since the first-order approximation leads to a high 
truncation error, other researchers have studied methods of reducing 
the interpolation errors using a second-order approximation of 
Taylor’s expansion and varying federate.6-8 Parametric interpolators 
with confined acceleration/deceleration were also proposed using 
the second-order approximation of Taylor’s expansion.9-13 Lin et 
al.14 developed a dynamics-based NURBS interpolator with real-
time look-ahead algorithm. Liu et al.15 proposed a NURBS 
interpolator with the integration of the machining dynamics. Du et 
al.16 presented an adaptive NURBS interpolator with 
acceleration/deceleration control scheme by considering a preset 
jerk range. These parametric interpolators for ACC/Dec and 
machining dynamics also used the second-order approximation of 
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Taylor’s expansion. Cheng et al.17 also studied a contour error 
reduction for the NURBS curve with a fuzzy feedrate regulator 
using the second order approximation of Taylor’s expansion. 

Whatever interpolation algorithms are used, the first-order 
approximation of Taylor’s expansion leads to a high interpolation 
error and the second-order approximation results in a complicated 
calculation and inaccurate feedrate. The proposed algorithm 
interpolates the NURBS curve using the NURBS equation itself.18 
A temporary incremental value is calculated using the proportional 
difference equation from the previous incremental value and the 
previous chord length, and the final current incremental value is 
determined after recursively updating the temporary incremental 
value using the NURBS equation. The proposed interpolator was 
compared with a Taylor’s expansion interpolator to evaluate its 
performance. The variables of the proposed interpolator that 
determine the accuracy and calculation time were varied, and its 
performance was evaluated in comparison with the first-order as 
well as second-order approximations of Taylor’s expansion. The 
feedrate errors and calculation times were simulated in the 
performance evaluation.  

 
 

2. NURBS representation 
 
NURBS curves2 are represented parametrically by the following 

Eq. (1): 
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where Ni,k(u) is a blending function defined by the recursive 
formula: 
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where [ui, …, ui+k] is the knot vector, u the parameter, P(u) the 
vector to a point defined at some value of u, Bi(u) the control points, 
in the 3-D case, Bi = {Xi, Yi, Zi}T, n the number of control points-1, 
and wi the weight factors. The blending function in Eqs. (2) and (3) 
has recursive characteristics that constitute the basic concept of the 
proposed interpolation algorithm.  

 
 

3. NURBS interpolation algorithm  
 

3.1 NURBS interpolation with Taylor’s expansion 
The purpose of interpolating the parametric curves is to find the 

incremental value of the parameters as follows: 

 1j j ju u u+ = + Δ  (4) 

where uj is the current parameter, uj+1 is the next parameter, and Δuj 
is the incremental value. The interpolated points are calculated by 
substituting the updated parameter into the corresponding 
mathematical model. Most existing parametric interpolators are 
based on Taylor’s expansion. The first-order approximation of 
Taylor’s expansion for calculating uj+1 is as follows: 
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where ΔT is the sampling interval (sec), and Vj is the instantaneous 
speed (mm/sec). The second-order approximation of Taylor’s 
expansion is 
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As shown in Eq. (6), the second-order approximation of Taylor’s 
expansion is so complex that it leads to a large computation load. In 
the following section, the NURBS interpolation algorithm using the 
recursive characteristics of the NURBS equation is presented. 

 
3.2 NURBS interpolation with recursive method 

In this research, the recursive characteristics of NURBS were 
used to develop a NURBS interpolator. The chord length sj 
between points P(uj+1) and P(uj) on the NURBS curve is 
expressed as in Eq. (7). 

 1( ) ( )j j js u u+= −P P  (7) 

The current chord length sj is similar to the adjacent lengths sj-1 and 
sj+1, and this is the basic idea used to determine the incremental 
value Δuj-1 in order to make the chord lengths constant. Fig. 1 
shows how to determine any incremental value Δuj from the 
previous incremental value Δuj and the previous chord length sj-1. 
The desired chord length is d, which is the resolution of the CNC 
system, and P(uj) is a point vector interpolated by Δuj-1. As shown 
in Fig. 1, the incremental value Δuj is updated m times from 

1j
uΔ  to 

.
mj

uΔ  As the incremental value is updated, the interpolated chord 
length becomes closer to the desired chord length, d.  

The updating rule uses the recursive characteristics of NURBS 
that the adjacent chord lengths are similar. Assuming that chord 
length has a linear relationship with the incremental value in a very 
small local region, the first temporary incremental value 

1j
uΔ  can 

be calculated as follows: 

 
11 1: : ,j j ju s u d− −Δ = Δ    j > 1 (8) 

where 1 1( ) ( ) .j j js u u− −= −P P  Since the previous incremental value, 
Δuj-1 gives the chord length sj-1, the chord length d is proportional to 

1
.juΔ  Eq. (8) is rearranged as in Eq. (9). 
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Fig. 1 The concept of interpolation 
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However, as the temporary incremental value 
1j

uΔ  does not give 
the exact chord length d, an updated value 

kj
uΔ can be successively 

calculated using the generalized equation in Eq. (10). 
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P  cannot be calculated 
from the NURBS equations. This problem can be solved as shown 
in Eq. (11). 
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Accordingly, Eqs. (9), (10), and (11) determine the parameter uj 
successively, such that the curve segment sj (length of movement in 
each sampling time interval T) is constant and, thus, can be used in 
the feedrate or velocity control. The number of iterations, m, affects 
not only the calculation time, but also the accuracy of the 
interpolation. If m in Eq. (10) is large, the calculation time is long 
but the interpolation is precise. Otherwise, the calculation time is 
short and the interpolation is not precise. Eqs. (9), (10), and (11) are 
used for determining the current incremental value from the 
previous one and the previous chord length. However, there is no 
previous incremental value and chord length available for 
determining the initial incremental value Δu0. Therefore, the total 
sum of the lengths between the adjacent control points and the 
difference between umax and umin were used to estimate the previous 
incremental value and the previous chord length for the calculation 
of the initial incremental value. The total sum of the lengths 
between the adjacent control points is expressed in Eq. (12). 
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If us is the difference between the maximum and the minimum knot 
values, a proportional expression for the first temporary incremental 
value, 

10uΔ  can be written as follows: 

 
10: :su t u d= Δ  (13) 

Eq. (13) can be rewritten as Eq. (14). 
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If 
10( )uP  is the interpolated point with 

1 10 min 0u u u= + Δ  from the 
NURBS equation, the chord length between the starting point and 

10( )uP  is as follows: 

 
1 10 0 0( )s u= −P B  (15) 

Consequently, the generalized equation to determine the initial 
incremental value can be written as Eq. (16). 
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initial incremental value 0uΔ  is equal to 0 .
l

uΔ  The parameter l in 
Eq. (16) is the number of iterations required for determining Δu0, 
and it must be greater than m in Eq. (10) because the previous 
incremental value and the previous chord length for determining the 
initial incremental value are roughly calculated in Eq. (14).  

Since the incremental value Δuj in Eq. (10) is determined during 
machine motion, the iteration number m must be selected 
considering the calculation time. If m = 2, the incremental value Δuj 
is determined using the NURBS equation once, because Eq. (9) 
does not use the NURBS equation, but the already known previous 
incremental value Δuj-1 and chord length sj-1. Therefore, the number 
of times the NURBS equation is used to determine the incremental 
value Δuj is m-1. The variable n = m-1 is defined as the recursive 
order, which means the number of times the NURBS equation is 
used for the interpolation. If m = l, the interpolation using Eq. (16) 
for Δu0 has a greater error than that using Eq. (10) for Δuj because 

10uΔ  is roughly calculated in Eq. (14). Thus, l needs to be greater 
than m. Even if l is greater than m, the motion control is alright, 
because the initial incremental value is determined before the start 
of the motion. This makes the calculation time of the initial 
incremental value Δu0 sufficient. Therefore, Δu0 can be calculated 
by means of an algorithm using a tolerance value, as described in 
section 3.3, instead of the fixed iteration number l in Eq. (16). 

 
3.3 Determination of the initial incremental value using an 
algorithm 

The stepwise procedures for determining the initial incremental 
value of the NURBS curve parameter are as follows: 

Step 1: Select a tolerance value e (%) of the first chord length to 
the desired chord length d, and calculate 

10uΔ  from Eq. (14). 
Step 2: Set k = 2. 
Step 3: Calculate 0k

uΔ as follows: 
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Step 5: If 0 100 ,k
d s

e
d
−

× ≥  set k = k + 1, and go to Step 3. If 

not, select 0 0k
u uΔ = Δ  and finish the algorithm. 

 
 

4. Simulation results 
 
A simulation study was conducted to evaluate the performance 

of the proposed method with the NURBS curve of Fig. 2, and we 
focused on comparing this proposed algorithm with Taylor’s 
expansion. The desired chord length of the interpolation d was 0.4 
mm, the feedrate V was 200 mm/sec, and the sampling time T was 
0.002 sec. The personal computer employed has a 3.4GHz CPU. 

Fig. 3 shows the chord lengths with the constant incremental 
value Δuj = 0.0005. As shown in Fig. 3, the maximum and 
minimum cord lengths are 0.85 mm and 0.074 mm, respectively, 
and the chord lengths do not vary dramatically, but little by little, as 
the parameter uj increases, due to the recursive characteristics of the 
blending function in Eq. (3). The chord lengths should be the 
desired value of 0.4 mm, so that the NURBS interpolator with 
recursive method is used and compared with the Taylor expansion. 

To obtain the initial incremental value u0 in the simulation study, 
the algorithm in Section 3.3 was used with tolerance e = 0.01 %. 
Fig. 4 shows the chord lengths of the recursive NURBS interpolator 
with n = 2, in which the NURBS equation is used two times for 
interpolating. As shown in Fig. 4, the chord lengths are almost the 
same as the desired value 0.4 mm, and the proposed interpolator is 
very accurate. For the comparison between the proposed 
interpolation method and Taylor’s expansion, the feedrate was 
simulated. The first order approximation of Taylor’s expansion is 
compared with the proposed algorithm with n = 1, because the 
NURBS equation is used once. The performances of the algorithms 
are shown in Figs. 5 and 6, respectively. The feedrate of the first 
order approximation of Taylor’s expansion varies within [194.53, 
205.81] mm/sec, so that the maximum error is 5.81 mm/sec. The 
feedrate of the proposed interpolator with n = 1 varies within 
[199.66, 200.001] mm/sec, so that the maximum error is 0.34 
mm/sec. The feedrate error of the recursive method using the 
NURBS equation once is about 6 % of the first order approximation 
of Taylor’s expansion. As mentioned above, the proposed 
interpolator uses the NURBS equation in Eq. (10) and Taylor’s 
expansion uses the derivative of NURBS equation in Eq. (5). The 
calculation time of the derivative of NURBS is longer than that 
using the NURBS equation to determine the incremental value. The 
calculation time of the proposed method with n = 1 is 6.37 μsec, 
whereas that of the first order approximation of Taylor’s expansion 
is 25.15 μsec. 

The second order approximation of Taylor’s expansion is 
compared with the proposed algorithm with n = 2 using the NURBS 
equation twice, as shown in Figs. 7 and 8, respectively. As shown, 
the proposed method is much more accurate than Taylor’s 
expansion. The feedrate of the second order approximation of 
Taylor’s expansion varies within [199.8, 200.4] mm/sec, so that the 
maximum error is 0.4 mm/sec. The feedrate of the proposed 

interpolator with n = 2 varies within [199.99, 200.01] mm/sec, so 
that the maximum error is 0.01 mm/sec. The feedrate error of the 
recursive method using the NURBS equation twice is about 2.5 % 
of the second order approximation of Taylor’s expansion. Even 
though the proposed algorithm with n = 1 in Fig. 6 uses NURBS 
equation once, it interpolates the NURBS curve more precisely than 
the second order approximation of Taylor’s expansion in Fig. 7. The 
calculation time of the proposed interpolator with n = 2 is 9.54 μsec, 
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Fig. 2 NURBS curve for simulation 
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Fig. 3 The chord length with the constant incremental value (Δuj =
0.0005) 
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Fig. 4 The chord lengths with the proposed interpolation (n = 2) 
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whereas that of the first order approximation of Taylor’s expansion 
is 28.50 μsec. The proposed algorithm is much faster than the 
method based on Taylor’s expansion. 

Fig. 9 shows the feedrate of the proposed algorithm with n = 3 
that uses the NURBS equation 3 times for interpolation. The 
maximum error of the feedrate with n = 3 is 2.64e-4 mm/sec and 
the proposed algorithm converges with n = 4, so that the feedrate is 
approximately equal to 200 mm/sec for all curve lengths. The 

maximum error of the feedrate with n = 4 is 1.01e-5 mm/sec. The 
maximum feedrate error and the calculation time are listed in Tables 
1 and 2, respectively. As the recursive order n increases, the 
feedrate error dramatically decreases, but the calculation time 
increases only slightly, because using the NURBS equation once 
takes very little time. 

Another NURBS curve was simulated, as shown in Fig. 10, that 
varies the curvature more dramatically than that in Fig. 2. The 
second order approximation of Taylor’s expansion is compared with 
the proposed algorithm with recursive order n = 2, as shown in Figs. 
11 and 12, respectively. As shown, the feedrate errors of the two 
algorithms are larger than those in Figs. 7 and 8, respectively, 
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Fig. 5 Feedrate of the first-order approximation of Taylor’s 
expansion 
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Fig. 6 Feedrate of the proposed interpolation (n = 1) 
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Fig. 7 Feedrate of the second-order approximation of Taylor’s 
expansion 
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Fig. 8 Feedrate of the proposed interpolation (n = 2) 
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Fig. 9 Feedrate of the proposed interpolation (n = 3) 

 
Table 1 Comparison of the maximum feedrate error (mm/sec) 

The proposed algorithm Taylor’s expansion 
n = 1 0.34 1’st order 5.81 
n = 2 0.01 2’nd order 0.40 
n = 3 2.64e-4   
n = 4 1.01e-5   

 
Table 2 Comparison of the calculation time (μsec) 

The proposed algorithm Taylor’s expansion 
n = 1 6.37 1’st order 25.15 
n = 2 9.54 2’nd order 28.50 
n = 3 12.64   
n = 4 15.80   
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because the curvature of the curve is very small. The proposed 
method can reduce the feedrate error by using a higher recursive 
order, n. 

The interpolations were carried out by increasing the recursive 
order n from n = 3 step by step. The feedrate errors gradually 
decrease as the recursive order n becomes larger. Examples of the 
feedrate with n = 4 and n = 5 in the maximum curvature are shown 
in Fig. 13. Interpolating the NURBS curve in Fig. 10, the proposed 
algorithm converged at n = 6, that is to say, the feedrate is almost 

equal to 200 mm/sec in the case of all of the curve lengths. The 
maximum error of the feedrate is 8.5e-5 mm/sec with n = 6. 
However, it is very difficult to obtain a higher order derivative than 
the second one to reduce the truncation error for Taylor’s expansion, 
because of not only the complexity but the calculation time 
involved in differentiating the NURBS curve. In the case where 
Taylor’s expansion is used for the NURBS interpolation, only the 
first or second order approximation was used in all of the references. 
The proposed recursive method is very simple and the calculation 
time is also very short. Only the NURBS equation is successively 
used to update the incremental parameter, ∆uj and the error becomes 
smaller as the recursive order n adopted becomes higher.  

 
 

5. Conclusion 
 
The recursive method of NURBS interpolation is very simple 

and fast, because the proposed algorithm does not use Taylor’s 
expansion, but the recursive equation of the NURBS formula to 
determine the incremental parameter for the interpolation. 
Taylor’s expansion for NURBS interpolation that has been used 
by most researchers is very complicated and gives an unavoidable 
truncation error. However, the proposed recursive algorithm with 
very high accuracy can replace the conventional Taylor’s 
expansion for NURBS interpolation. A simulation study was 
conducted to demonstrate the advantages of the proposed 
interpolator compared with the method using Taylor’s equation. It 
can be seen that this interpolator using the new concept of 
interpolation is sufficiently fast and precise for modern CNC 
systems. The recursive method of NURBS interpolation is much 
simpler, faster and more accurate than the conventional Taylor’s 
expansion. 
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Fig. 10 Another example of a NURBS curve 
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Fig. 11 Feedrate of the second-order approximation of Taylor’s 
expansion 
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Fig. 12 Feedrate of the proposed interpolation (n = 2) 
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Fig. 13 Feedrate of the proposed interpolation (n = 4, n = 5) 
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