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1. Introduction  

 

In various industrial applications of robotic manipulators such 

as contour following, grinding, deburring edges as well as assembly 

related tasks, the manipulator end-effector is required to make 

contact with the environment. During the execution of such tasks, 

the motion of end-effector is constrained by the environment. For 

the successful execution of such type of tasks robot position as well 

as contact forces should be controlled accurately. Many researchers 

have investigated this problem in recent years. As a result, two 

approaches to achieving compliant motion have emerged. The first 

approach, usually called hybrid position/force control, is based on 

the observation that when the robot end-effector is in contact with 

the environment, the cartesian-space of the end-effector coordinates 

may be naturally decomposed into a position subspace and a force 

subspace. The objective of hybrid position/force controller is to 

track a position (and orientation) trajectory in the position subspace 

and a force (and moment) trajectory in the force subspace. The 

second approach to compliant motion for robots is called 

impedance control, and proposes that the control objective should 

not be the tracking of position/force trajectories, but rather should 

involve the regulation of the mechanical impedance of the robot 

end-effector which relates position and force. Raibert and Craig1 

developed a hybrid scheme which decomposes a task space into two 

orthogonal subspaces: position and force. Lozano and Brogliato2 

proposed an adaptive force/position control scheme, based on a 

particular decomposition of the robot jacobian and environment 

stiffness matrices. By extending the method of,1 Yoshikawa and 

Sudou3 proposed dynamic hybrid position/force control scheme, 

which takes into consideration the manipulator dynamics and the 

constraints on the end-effector specified by the given task. Kwan4 

proposed a new robust adaptive control scheme for simultaneous 

force/motion control of constrained rigid robots including motor 

dynamics. Queiroz et al.5 presented an adaptive position/force 

controller for robot manipulators during the constrained motion 

without velocity measurements. Xiao et al.6 utilized the force/torque 

and vision sensors simultaneously to propose a hybrid 

position/force controller such that the end-effector moved along a 

path on an unknown surface with the aid of a single camera 

assumed to be uncalibrated with respect to the robot coordinates. 

Kouya et al.7 presented a general study of an adaptive force/position 

control using the strict-feedback backstepping technique, based on 

passivity and applied to a robotic system. Roy and Whitcomb8 

presented an adaptive force control algorithm with low-level 

position/velocity controllers for robot arms in contact with surfaces 

of unknown linear compliance. Cheah et al.9 proposed a motion and 

force tracking controller for robots with uncertain kinematics and 

dynamics. Kang et al.10 proposed a method to reduce impulsive 

contact force between manipulator and its environment. 

Recently, neural network (NN) due to their versatile features 
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such as learning capability, nonlinear mapping and parallel 

processing have gained considerable popularity among control 

community. The most useful property of neural network in control 

is their ability to approximate arbitrary linear or nonlinear mapping 

through learning. Due to this property neural network have been 

proven to be suitable tool for controlling complex nonlinear 

dynamical systems. The basic idea behind neural network based 

control is to learn unknown nonlinear dynamics and compensate for 

structured/unstructured uncertainties existing in the dynamic model. 

Many neural network based control schemes are available for 

control of robot manipulators.11-13 They derived successfully control 

algorithms with stable tracking while approximating the unknown 

dynamics of the manipulators with neural network that are 

universally considered to be fine approximators and trained them 

online removing any preliminary offline training. Shenghai et al.14 

presented a new neural network controller for the constrained robot 

manipulators in task space. The controller consisted of a model-

based term and a neural network on-line adaptive compensation 

term. Karayiannidis et al.15 considered the problem of force/position 

tracking for a robotic manipulator in compliant contact with a surface 

under non-parametric uncertainties. Panwar and Sukavanam16 

designed an optimal hybrid motion and force control scheme for a 

constrained robotic manipulator with unknown dynamics. Zhao and 

Cheah17 proposed a vision-based neural network controller for 

robots with uncertain kinematics, dynamics and constraint surface.  

In this paper, a neural network (NN) based adaptive control 

scheme for hybrid force/position control of rigid robot manipulators 

is presented. A feedforward neural network is employed to learn the 

parametric uncertainties, existing in the dynamical model of the 

robot manipulator. The neural network controller achieves the 

stability in the sense of Lyapunov for desired interaction force 

between the end-effector and the environment as well as regulate 

robot tip position in cartesian space. 

The paper is organized as follows. In Section 2, robot 

dynamical model and its decomposition is presented. A review of 

feedforward neural networks is presented in Section 3. In Section 4, 

the neural networks based controller design is presented. Numerical 

simulation results are included in Section 5 followed by the 

conclusion in Section 6. 

 

 

2. Dynamics of Rigid Robots 

 

2.1 Robot Dynamical Model and its Properties 

Based on Euler-Lagrange equations, the revolute rigid robot 

dynamics with environment contact can be expressed as 

 ������ � ����, �	 � � 
��� � � 
 ��  (1) 

where ���� � ���� represents the inertia matrix, ����, �	 � � ���� 

represents the centripetal-coriolis matrix, 
��� � �� represents the 

gravity effects, � � �� represents the torque input vector and 

�� � ��  represents the interaction torque due to contact with the 

environment. The robot dynamics given in Eq. (1) has the following 

useful properties. 

Property 1: The inertia matrix is symmetric and positive 

definite.  

Property 2: The matrix �	 ��� 
 2����, �	 � is skew symmetric.  
The interaction force �� � ��  at the end-effector is related to the 

interaction torque �� � �� in the joint space through 

 �� � �������  (2) 

where ���� � ����  is the Jacobian matrix. The end effector 

position and orientation in cartesian space is related to the joint 

space by 

 � � ����  (3) 
 

 �	 � �����	   (4) 

where � � �� is the position and orientation vector and ���� is a 
kinematic transformation of a robot. The interaction force �� � �� 

in task space is proportional to environmental deformation �� 
 ��� 
through 

 �� � ���� 
 ���  (5) 

where the stiffness matrix �� � ���� is assumed to be constant and 

�� � �� is the coordinate of the point of contact. Practically 
stiffness matrix can be considered as constant for hard and 

homogeneous surfaces. By rearranging the terms Eq. (5) can be 

rewritten as 

 �� � ��
��� � � �

��� �� 
 ���  (6) 

where � � ��, �� � ��	�, � � ������ � ��  and is of full rank 
and �� � R
�	����  depends linearly on the rows of � . �  is the 
dimension of the subspace in the task space ���� where the forces 
are to be controlled. Since there are only   � � 6� control inputs 
in the system, it is not possible to control force (six dimensions) and 

position (six dimensions) of the robot in all dimensions. The best, 

we can do is to control only a small subspace of the whole space. To 

be more specific, we can control �  forces, �� 
 ��  cartesian 
positions and � 
 ��  redundant joint velocities. The total 

dimension of the subspace is � � �� 
 �� � � 
 �� �  . 
The following general assumptions are made. 

Assumption 1: The Jacobian ���� is of full rank. 
Assumption 2: The stiffness matrix K is a known constant 

matrix. 

 

2.2 Decomposition of Robot Dynamics 

In this subsection, the robot dynamics is decomposed into force, 

position and redundant joint subspaces. The following identities are 

used in the decomposition process 

 # � �
� � �	  (7) 
 

 # � �
� � �	  (8) 

where 

 �
 � ��$���%	�  (9) 
 

 �
 � ��$���%	�  (10) 
 

 �	 � # 
 ��$���%	��  (11) 
 

 �	 � # 
 ��$���%	��  (12) 
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where �
 and �
 are penrose pseudo inverse and �	 and �	 are 

projectors i.e., idempotent matrices. 

Using Eq. (7) and Eq. (4), �	  can be decomposed as 
 �	 � �
��	 � �	�	 � �
�	 � �	�	   (13) 

Using Eq. (6) and Eq. (8), �	  can be decomposed as  
 �	 � �
��	 � �	�	 � �
�	 � �	�	   (14) 

Taking the first derivative of Eq. (4), we get 

 �� � ��� � �	�	   (15) 

Using Eq. (7) together with Eq. (15), ��  is decomposed as follows 
 �� � �
��� � �	�� � �
��� 
 �	�	 � � �	��   (16) 

Differentiation of Eq. (14), leads to 

 �� � �
��� � �	�� � �
�� � �	��   (17) 

Substituting Eq. (13), Eq. (14) and Eq. (16) into Eq. (1), we get 

     �&�
'�
�� � �	�� 
 �	�	 ( � �	�� )  
                        � ����
$�
�	 � �	�	 % � �	�	 � � 
 � � 
 �� (18) 

This is exactly equivalent to Eq. (1) and there is a clear 

decomposition of force ��� , position ��	��and redundant joint 
velocity ��	��. 

 

 

3. Feedforward Neural Network 

 

Mathematically, a two-layer feedforward neural network (see 

Fig. 1) with   input units, � output units and * units in the hidden 

layer, is described by Eq. (19). The output vector z is determined in 
terms of the input vector x by the formula 
   -� � ∑

 

�
��� $/��0�∑

 

�
��� 1��2� � 3��� � 3��%, 4 � 1,2. . . . , �  (19) 

where 0�. �  are the activation functions of the neurons of the 
hidden-layer. The inputs-to-hidden-layer interconnection weights 

are denoted by 1�� and the hidden-layer-to-outputs interconnection 

weights by /��. The bias weights are denoted by 3�� , 3��. There are 

many classes of activation functions e.g. sigmoid, hyperbolic 

tangent and Gaussian. The sigmoid activation function used in our 

work, is given by  

 0�2� � 1 �1 � 6	��⁄   (20) 

By collecting all the NN weights 1��, /�� into matrices of weights 

��, 8�, we can write the NN equation (19) in terms of vectors as 

 - � 8�0���2�  (21) 

with the vector of activation functions defined by 0��� �
$0����, 0���� … 0����%� for a vector � � ��. The bias weights are 

included as the first column of the weight matrices. To 

accommodate bias weights the vectors 2  and 0�. � need to be 
augmented by replacing 1 as their first element e.g 2 �
$1, 2�, 2� … 2�%�. 

 

3.1 Function Approximation Property 

Let :�2� be a smooth function from �� ; ��. Let <� = ��be 

a compact simply connected set then for 2 � <�, and an > ? 0 there 
exists some number of hidden layer neurons * and weights 8 and 

� such that18  
 :�2� � 8�0���2� � >  (22) 

The value of > is called the NN functional approximation error. In 
fact, for any choice of a positive number ε�, one can find a NN 

such that ε B >� in U� . For a specified value of ε�  the ideal 

approximating NN weights exist. Then an estimate of :�2� can be 
given by 

 :D�2� � 8E �0��D �2�  (23) 

where 8E  and �D are estimates of the ideal NN weights that are 
provided by some on-line weight tuning algorithms. 

 

 

4. Neural Network Based Controller Design 

 

In this section, a neural network based controller is designed. 

Let us define filtered tracking error 

 F � �
$�
��	 
 1�� � �	��	 
 1��% � �	�G	   (24) 

where 

 1� � �	
� 
 HFJ, 1� � �	� 
 H�G  (25) 

 

  �J � � 
 �� , �G � � 
 �� , �G � � 
 ��  (26) 

where q� , x� , F� and their derivatives are the desired bounded 
values for q, x, F and their derivatives respectively. λ  is a positive 
constant. 

Differentiating Eq. (24) and using Eq. (25) and Eq. (26), the 

robot dynamics Eq. (18) can be written in terms of F as 
 �F	 � ��F � � 
 �� 
 :�2�  (27) 

where  :�2� � �'�
&�
1	�  � �	1	� 
 �	�	 )  �  �	��� 
 M( � ��$ �
 

��
1� � �	1�� � �	�	�% � 
 is termed as robot nonlinear function 
and choose 2 � $F, �, �, �	 %.  Also M � �N�
 NO�⁄ $�
��	 
 1�� �
�	��	 
 1��% � N�	 NO⁄ . To accomplish the desired goal, the 

following controller is proposed 

 � � �� � :D�2� 
 ��F  (28) 

where :D�2�is an estimate of robot nonlinear function, �� � ��
� is 

a positive definite gain matrix. With the controller in Eq. (28), the 

closed loop error dynamics becomes 

 

 

Fig. 1 Feedforward Neural Network 
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 �F	 � 
��F 
 :J�2� 
 ��F  (29) 

where :J�2� � :�2� 
 :D�2� is the functional estimation error. The 
functional estimation :D�2�  with a feedforward neural network 
(FFNN) may be given as 

 :D�2� � 8E �0��D �2�  (30) 

Using this FFNN functional approximation, the closed loop error 

dynamics Eq. (29) becomes 

          �F	 � 
��F 
 ��F 
 8�0���2� 
 > � 8E �0��D �2�  (31) 

For notational convenience, define the matrix of all NN weights as 

P Q N4RST8, �U  and the weight estimation errors as 8V � 8 

8E , �J � � 
 �DR NPJ � P 
 PW   

Define the hidden layer output error for a given 2 as 0G � 0 

0X � 0���2� 
 0��D �2�. Adding and subtracting 8�0��D �2� in Eq. 
(31), we get 

�F	 � 
��F 
 ��F 
 8�'0���2� 
 0&�D �2)( 
 > 
 8V �0&�D �2) 
  (32) 

The Taylor series expansion of 0���2�about �D �2 gives us 
 0���2� � 0��D �2� � 0���D �2��J �2 � Y��J �2��  (33) 

with �J �2 � ��2 
 �D �2 , 0��-̂� � �N0�-� N-�⁄ |���̂ , the Jacobian 

matrix and Y�\��denoting terms of second order in \.  
Denoting 0���D �2� � 0X�, from Eq. (33) we have 
 0G � 0X���J �2� � Y��J �2��  (34) 

Using Eq. (34), in Eq. (32) yields  

 �F	 � 
��F 
 ��F 
 8E �0X��J �2 
 8V �0X 
 /  (35) 

Where the disturbance terms are  

 / � 8V �0X��J �2 � 8�Y��J �2�� � >  (36) 

The following bound on disturbance terms /�O�can be found with 
]!, ]�and ]� as positive constants

13 

 ^/�O�^ � ]! � ]�_ZJ_
"

� ]�^P^"^r^  (37) 

 

4.1 Neural Network Weight Update Law 

Let the desired trajectory be bounded and assume the disturbance 

term / to be zero. With positive definite design parameters �� and 


�, the adaptive NN weight update law is given as 

 8E	 � 
��0XF� , �D	 � 

�2�0X�8E F��  (38) 

Proof: Consider the following Lyapunov function candidate 

 b � �1 2� ⁄ F��F � �

�
OF�8V ���

	�8V � � �

�
OF��J �
�

	��J�  (39) 

The time derivative of the Lyapunov function gives 

   b	 � �1 2� ⁄ F��	 F � F��F	 � OF�8V ���
	�8V	 � � OF��J �
�

	��J	 � (40) 

Using Eq. (35) and / � 0 we get  
 b	 � �1 2� ⁄ F��	 F � F��
��F 
 ��F 
 8E �0X��J �2 
 8V �0X� 
 

                        �OF�8V ���
	�8V	 � � OF��J �
�

	��J	 �  (41) 
 

 b	 � �1 2� ⁄ F���	 
 2���F 
 F���F 
 F�8E �0X��J �2 
 F�8V �0X  
 

                                  �OF�8V ���
	�8V	 � � OF��J �
�

	��J	 �  (42) 

Now using Property 2, together with 8V	 � 
8E	 , �J	 � 
�D	  and 
adaptive learning rule Eq. (38), we have  

       b	 � 
F���F 
 F�8E �0X��J �2 
 F�8V �0X � OF�8V �0XF�� 
 

�OF��J �2F�8E �0X���                                                       (43) 
 

               b	 � 
F���F � OF�
8V �0XF� � 8V �0XF�� 
 

 �OF�
�J �2F�8E �0X�� � �J �2F�8E �0X���                 (44) 
 

 b	 � 
F���F  (45) 

Since b ? 0 and b	 � 0 , this shows stability in the sense of 

Lyapunov so that F�O�, �J  and 8V  (and hence �D ,, 8E ) are bounded. 

Now from Eq. (24), using Eq. (6), we get2 

 F � �
$�
���	 
 1�� � �	��	 
 1��% � �	�G	   (46) 

Using Eq. (8), we get 

 F � �
$�	 
 �
1� 
 �	1�% � �	�G	   (47) 

 

 F � �
�	 
 �
��
1� � �	1�� � �	�	 
 �	�	�  (48) 

Now using Eq. (13), we get 

 F � �	 
 �
��
1� � �	1�� 
 �	�	�  (49) 

Due to physical constraints. (Since we consider revolute joints only) 

� is bounded. Therefore from Eq. (25) F, 1� and 1�are bounded too. 

Also �� is bounded. Thus we see that �	  is bounded. Differentiating 
F in Eq. (49) and using Property 1, it can be similarly argued that, 
for a revolute joint robot, F	  is also bounded. Hence F ; 0 as O ; ∞. 

Now � and � are bounded and are of full rank. Multiplying Eq. (24) 

by ��, we get  
 ��F � �	 
 1� ; 0 since F ; 0  (50) 

Now multiplying Eq. (24) by �, we get 
 �F � �	��	 
 1�� ; 0  (51) 

Now using Eq. (24), Eq. (49) and Eq. (50), we get 

 �	�G	 ; 0  (52) 

Now from Eq. (50) and Eq. (51) using Eq. (25) and Eq. (26), we get 

�J	 � H�J ; 0  and �	�G	 � H�	�G ; 0 . Now �J  and �	�G  can be 

considered as the outputs of filters of the form 1/�\ � H�  with 
inputs of �J	 � H�J ; 0  and �	�G	 � H�	�G ; 0  respectively. Hence 
we see that the force error �J ; 0 , position error, �	�G ; 0  and 
redundant joint velocity error �	�G	 ; 0. 

 

 

5. Simulation Studies 

 

The simulation has been performed for a two link rigid planar 

robotic manipulator as shown in the Fig. 2. The mathematical 

model of the manipulator is expressed as 

e���   ������   ���
f e���

���f � e����   ��������   ����
f e�	�

�	�f � e
�
�
f � �����

� 
 ������� 

where the mass matrix and gravity terms are given as follows 

              ��� � g�
��� � g�

���� � ��� � 2g�g���h�  

              ��� � g�
��� � g�g���h� 
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              ��� � g�
��� � g�g���h�  

              ��� � g�
���  

              ���� � 
g�g���q	 �S�  
              ���� � 
g�g����q	 � � q	 ��S�  
              ���� � g�g���q	 �S�  
              ���� � 0 
 
              
� � ��� � ���g�S#h� � ��g�Sh�  
              
� � ��g�S#h�� 

where h� � cos ��, h� � cos��,  h�� � cos��� � ���  and m� �
sin��,  m� � sin��, m�� � sin��� � ���. 

The parameter values for the manipulator model are set to be 

�� � 15.61 kg, �� � 11.36 kg,  g� � 0.432 m, g� � 0.432 m,   g# 

� 9.8 m/s�. 

The contact force only occurs in the �� direction and is given by 

� � x�� 
 ���� where x � 10$ and ��� � 0.61 m.  

Also, �
 � 1/x,  �	 � $0 0 ; 0 1%,  �
 � �	�, and �	 � 0. 
The desired force �� � 20 N. The desired trajectory ���  in �� 

direction is 0.5$1 
 6���
O�%. 
The controller parameters are H � 100,  �� � 200#�. 

The architecture of the FFNN is composed of 7 input units and 

1 bias unit, 5 hidden sigmoidal units and 1 bias unit and 2 output 

units. The NN weights may be simply initialized to zero and errors 

may be kept arbitrarily small. The learning rate in the weight tuning 

algorithm is �� � 100#%, 
� � 100#&.  

 

 

Fig. 4 End-effector Trajectory Tracking with Known Dynamics 

 

 

Fig. 5 Joint Velocities with Known Dynamics 

 

 

Fig. 6 Joint Trajectories with Known Dynamics 

 

Fig. 2 Two Link Robot Manipulator Contacting a Surface 

 

Fig. 3 Force Tracking with Known Dynamics 
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The simulation of the whole system is shown for 15 seconds. 

The performance of the controller with known dynamics is evident 

from Fig. 3-6. The position trajectory and force tracking errors are 

quickly convergent to zero and the tracking is stable. However, the 

incorrect knowledge of the system parameters causes steady state 

error to increase. This is evident from Fig. 7-8. The parameter 

 

Fig. 10 End-effector Trajectory Tracking with NN Learned 

Dynamics 

 

Fig. 11 Joint Trajectories with NN Learned Dynamics 

 

Fig. 12 Joint Velocities with NN Learned Dynamics 

 

Fig. 7 Force Tracking with Incorrect Dynamics 

 

Fig. 8 End-effector Trajectory Tracking with Incorrect Dynamics 

 

Fig. 9 Force tracking with NN Learned Dynamics 
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values for system parameters in the controller for incorrect 

dynamics are taken as �� � 14 kg, �� � 10 kg, g� � 0.4432 m,
g� � 0.4432 m . Thus the variation of parameters from its true 

values adversely affects the performance of the controller The 

ability of the FFNN to learn the unknown dynamics is evident from 

Fig. 9-12. The trajectory and force tracking steady state errors are 

convergent to zero as compared to Fig. 7-8. Finally the tracking of a 

time varying force trajectory taken as F� � 20�1 
 0.5 sin t�  is 
shown in Fig. 13 with known dynamics and Fig. 14 with NN 

Learned dynamics. 

 

 

6. Conclusion 

 

In this paper, a neural network based adaptive control scheme 

for hybrid force/position control for rigid robot manipulators. 

Firstly the robot dynamics is decomposed into force, position and 

redundant joint subspaces. Based on this decomposition, a 

controller is proposed that achieves desired interaction force 

between the end-effetor and the environment as well as regulate 

robot tip position in Cartesian space. A feedforward neural network 

is employed to learn the existing unknown dynamics of redundant 

robot manipulator, which requires no preliminary learning. The 

stability of the system is proved using Lyapunov function, 

generated by weighting matrices. Finally simulation is carried out 

for a two link rigid robot manipulator to illustrate the control 

methodology. The simulation results show that the feedforward 

neural network with the on-line updating law can compensate the 

full robot dynamics effectively. 
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