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NOMENCLATURE 

 

P = far field sound pressure (Pa) 

rf = position vector for the excitation  

rp = position vector for the acoustic responses 

rs = position vector for the structural responses  

R = radius for far-field location (m) 

Ss= surface of source (radiator) 

Sv= surface of control volume 

W = radial dependent transverse displacement (m) 

Φ = flexural mode shape of the uniform disk 

Γ = modal sound radiation of the uniform disk 

Λ = modal sound radiation of the disk containing radial slots 

Π = acoustic power from the disk vibration (W) 

Ψ = flexural mode shape of the disk containing radial slots 

φ = azimuthal angle for far-field location (rad) 

η = structural modal participation factor 

θ = cone angle for far-field location (rad) 

 

 

1. Introduction 

 

Structural vibration and sound radiation due to the vibration 

have been studied by many researchers so far.1-15 Also, out-of-plane 

(flexural) vibration is a major source of sound radiation from many 

mechanical, electrical or structural components having annular or 

circular disk shape. In many cases, intentional or unavoidable 

asymmetries in the geometry are introduced and these asymmetries 

substantially alter the vibration of plates along with sound radiation 

due to the vibration. This study focuses on the vibro-acoustic 

characteristics of the thin annular disk containing narrow radial 

slots. If acoustic characteristics of asymmetric disk were clearly 

defined, unavoidable asymmetries, such as crack, in the annular or 

circular components could be easily detected by acoustic test only. 

Further, effective locations for the excitation(s) and response(s) for 

this test can be easily determined based on the characteristics. 

Structural eigensolutions for the out-of-plane modes of the disk 

with free-free boundary condition have been calculated with 

perturbation method based on the thin plate theories. The results are 

examined with numerical analysis and experiments. Sound 

radiations due to the modal vibrations have been calculated using 

pre-developed analytical solution and also verified with a numerical 

method. Based on the results, acoustic responses for a harmonic 

excitation are obtained using the modal expansion technique. In 

addition, the same problem has been solved numerically using 

boundary element method to confirm analytical solution. Finally, 

interaction between the sound radiations from two split vibration 
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modes is investigated and an analytical formulation for sound 

powers is proposed. 

There are many articles on the structural dynamics of circular or 

annular disk containing radial slots.1-6 Mote1 investigated stability 

of annular disk having radial slots using finite element method. Yu 

and Mote2 claimed that radial slots introduce geometric asymmetry 

that splits some, vibration modes but not all. Honda et al.3 

investigated structural response of asymmetric circular disk to a 

concentrated harmonic force moving around the disk using mode 

expansion procedure. Shen and Mote4 examined the vibration of 

circular plates with evenly spaced radial inclusions that split some 

of the repeated vibration modes and expressed the eigenfunctions of 

repeated modes of asymmetric disk as superposition of a subset of 

the uniform disk. Rim and Mote5 studied unstable phenomenon 

(kick-off) of a circular saws having radial slots with stability 

analyses based on finite element method, experiments and 

numerical analyses. Lee6 investigated modal vibration of annular 

disks containing narrow radial slots and claimed that vibration 

modes as well as natural frequencies are affected by the slots when 

the slot length is above a certain limit and perturbation method 

proposed by Yu and Mote can not precisely predict eigensolutions 

of the disks with slots. 

Sound radiations from annular disks containing radial slots have 

not been adequately examined though limited acoustic studies have 

considered either flexural vibration modes or rigid body piston 

motions of thin disks.7-13 For instance, Thompson7 computed self 

and mutual radiation impedances of a uniformly vibrating annular 

or circular piston by integrating of the far-field directivity function. 

Lee and Singh8 proposed a polynomial approximation for modal 

acoustic power radiation from a thin annular disk using the far-field 

sound pressure and radiation impedance approach. Levine and 

Leppington9 developed an analytical solution for active and reactive 

powers from a planar annular membrane given axisymmetric 

motions. Rdzanek and Engel10 suggested asymptotic formulas for 

power from a thin annular disk with clamped edges. Wodtke and 

Lamancusa11 investigated a circular plate using finite element 

analysis and then calculated the radiation via the Rayleigh integral 

formula. Finally, Lee and Singh13 expressed acoustic powers from 

vibrating annular disks as the linear combinations of self and 

mutual radiation powers. However, none of these studies has 

examined radiation from an annular disk with radial slots. 

Fig. 1 illustrates the example disc with 4 identical narrow radial 

slots. The disc is assumed to be stationary with free-free boundaries 

and made of an undamped, isotropic material. Also, Table 1 

provides geometric dimensions and material properties of the 

sample disc. 

 

Table 1 Disk dimensions and material properties 

Outer Radius a 139.0 mm 

Inner Radius b 82.5 mm 

Thickness h 3.2 mm 

Slot Length Ratio α =(a-r0)/(a-b) 0.09 / 0.45 

Slot Sector Angle ε 1.1° 

Mass Density ρd 7905.9 kg/m3 

Young’s Ratio E 205 GPa 

Poisson’s Ratio ν 0.295 

Plate Stiffness Db 611.2 Nm 

 

Primary assumptions are as follows: (1) Structural and acoustic 

systems are linear time-invariant. (2) The complicating effects such 

as fluid loading and acoustic scattering from the disc edges are 

negligible. (3) Free and far field sound pressure at an observation 

point (rp) is generated by only the vibratory motions at the normal 

surfaces and inner or outer radial surfaces do not contribute to total 

far-field sound pressure. Chief objectives of this article are as 

follows. (1) Examine the effects of narrow radial slots on the vibro-

acoustics of an annular disk. (2) Suggest semi-analytical solutions 

for sound radiation due to modal vibration of annular disks with 

radial slots. (3) Investigate the interactions between sound 

radiations from any two split modes. 

 

 

2. Modal Characteristics 

 

2.1 Structural Characteristics 

The equation of motion and vibration modes for the flexural 

vibration of a uniform annular disk can be expressed as follows.2 
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Here, λ is non-dimensionalized eigenvalue, and w is displacement 

of transverse vibration, Jn and Yn are the Bessel functions of first 

and second kinds and In and Kn are modified Bessel functions of 

first and second kinds. Also, n is the order of the Bessel function 

representing the number of nodal diameters and m is the order of 

eigenvalues representing the number of nodal circles. In addition, 

for the free-free disk, boundary conditions at inner and outer edges 

can be expressed as follows: 
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Fig. 1 Annular disk containing 4 identical narrow radial slots 
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Eigenvalues and corresponding mode shapes of a uniform 

annular disk can be determined from Eq. (1) and (2). In this case, all 

the modes having more than one nodal diameter have repeated 

natural frequencies. 

According to the previous studies, radial slots introduced in the 

disk split some, but not all, repeated natural frequencies into two 

distinct values. Natural frequency parameters for an annular disk 

containing narrow radial slots given in Fig. 1 can be approximated 

using natural frequencies and vibration modes of the uniform disk 

without any radial slot as Eq. (4).2 
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Here, λmn is natural frequency parameter for mode (m, n) of disk 

with slots, (λu)mn is natural frequency parameter for the same mode 

of the uniform disk, (wu)mn is the corresponding vibration mode, ε is 

a uniform sector angle for each slot, ∇2 is bi-harmonic operator. 

Also, it was claimed that the vibration mode corresponding to one 

of the split eigenvalues has its nodal line on the slots and mode for 

the other natural frequency has its anti-nodal line on the slots. 

Consequently, vibration modes for the two split eigenvalues can be 

expressed as follows assuming no changes in the w(r) with the 

inclusion of slots.2 
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Here, c means the split mode that has anti-nodal line on the slot and 

s means the split mode that has nodal line on the slot. 

Eigenvalues for two sample disks are obtained using Eq. (4) and 

compared with numerical data along with those of uniform disk 

without any slot. First, non-dimensional eigenvalues for selected 

modes of three disks with free-free boundaries are compared with 

finite element data in Table 2. In the finite element method, first 9 

out-of-plane modes have been identified with a model that includes 

2104 solid brick elements and 4512 nodes.16 As one can see in the 

table, the differences between data sets from two approaches 

increase with α. Only when α < 0.09, the differences between two 

set are less than 1.0% and Eq. (3) and (4) can be used to obtain 

eigenvalues of disks with slots. Recently, the author6 investigated 

above approach explained in Eq. (4) and (5). According to the result, 

modal strain energy distributions are globally affected by the 

introduced radial slots contrary to the basic assumption for Eq. (4) 

and (5) when α = 0.45.6 Consequently, these variations should be 

taken into account to get correct eigenvalues which are very close 

to the numerical values in Table 2. So, when α = 0.45, the 

numerical values will be used in further investigations in this study.  

 

Table 2 Eigenvalues for the sample disks with free-free boundary 

condition 

Mode 

Indices

Non-dimensional Eigenvalues (λ2 = ωn a
2(ρd h/Db)

1/2) 

α = 0.09 α = 0.45 α = 0 

m n q Analytical Numerical Analytical Numerical Analytical Numerical

0 2 c 3.95 3.93 3.94 3.71 
3.96 3.93 

0 2 s 3.96 3.93 3.96 3.80 

0 3 - 10.79 10.70 10.79 10.10 10.79 10.72 

0 4 c 20.20 20.03 20.16 18.74 
20.24 20.30 

0 4 s 20.24 20.04 20.26 18.80 

 

Modal displacements in the disk with slots were also 

investigated revealing that the effects of slots on the mode shapes 

depend on mode types.6 For example, Ψ02,c, Ψ02,s and Ψ04,s have 

only small distortions in the limited areas and can be approximated 

by Φ02 and Φ04. 
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Fig. 2 Normalized modal displacement. (a) Ψ04,c inner (b) Ψ04,c 

outer (c) Ψ03 inner (d) Ψ03 outer. Key: , α = 0.0; ▫ ▫ ▫, α = 0.09; 

◦ ◦ ◦, α = 0.45 

 

On the other hand, Ψ03 and Ψ04,c include global shifts and can not 

be appropriately represented by Φ03 or Φ04 when α is above a 

certain limit.6 Modal displacements at inner and outer edges in Ψ04,c 

and Ψ03 are compared in Fig. 2. As one can see in the figure, the 

displacement at inner and outer edge for Ψ04,c globally shift in 

opposite direction and those for Ψ03 shift in same direction. In both 

cases, the amount of shifts are proportional to α and when α = 0.09, 

Ψ04,c and Ψ03 are almost same as Φ04 and Φ03 respectively.  

According to the previous studies,4,6 Ψmn,q can be approximated 

as a linear combination of Φmns. Here, q is the split index used in 

Eq. (5). Same approach is used for Ψ03 and Ψ04,c with α = 0.45 

where the two modes can not be reasonably approximated with Φ03 

or Φ04 only. The expansions for two modes can be expressed 

following equation. 
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Ψ03 and Ψ04,c calculated by Eq. (6) are compared with numerical 

data in Table 3 where modal displacements based on Eq. (6) match 

the numerical data well. So, linear combinations in Eq. (6) 

approximate Ψ04,c and Ψ03 with reasonable accuracy and sound 

radiation due to modal vibration will be calculated based on these 

expressions.  

 

Table 3 Vibration modes distorted by the radial slots 

Mode Indices Vibration Modes 
Remarks 

m n q Analytical Numerical 

0 3 - 

  

 

0 4 c 

  

 

 

2.2 Modal Sound Radiation 

For a planar source, the far and free field sound pressure can be 

expressed as Eq. (6) based on the plane-wave approximation within 

the short-wavelength limits along with reference to Fig. 3.14 
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Fig. 3 Sound Radiation from the flexural vibration of a thin annular 

disc in spherical coordinate system  

 

Here, ρ0 is mass density of air, c0 is sound speed and k is acoustic 

wave number. Sound pressure due to the (m, n)th flexural mode of a 

thin annular disk without any slot can be expressed as following 

equation within the shot-wavelength limit:12-14 
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Here, kr=kmnsinθ, and ( )W r�  is the variation of the surface velocity 

on the normal surfaces in the radial direction. Further, Jn is the 

Bessel function of order n.  

If, as in the case of Ψ02,q and Ψ04,s, global vibration modes are 

not seriously affected by the radial slots and can be reasonably 

approximated with Eq. (5), modal sound pressure due to the 

corresponding modes can be determined using following equation 

considering phase difference between the modes. 
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Here, γq is phase difference between two split modes which is 0 for 

q = c or π/2n for q = s. With Eq. (9), sound pressures can be 

calculated at pre-determined observation points on the surface of 

the sphere of Sv that surrounds the disk and is centered at the disk 

center as shown in Fig. 3. The modal sound radiations, Λmn,c and 

Λmn,s for the two split (m, n)th modes can be determined from the 

sound pressure distribution over the surface of the sphere.12 

On the other hand, if ( )w r�  and global vibration modes are 

affected by the slots as in the case of Ψ03 and Ψ04,c with α = 0.45, 

sound pressure at a given receiver position should be modified 

accordingly. Since the acoustic system is assumed to be linear time-

invariant, sound radiations due to Ψ03 and Ψ04,c that are linear 

combinations of Φmn can also be expressed as linear combinations 

of corresponding modal sound radiations(Γmn) as following 

equation. 
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Selected modal sound radiations (Λmn,q) calculated with Eq. (9) and 

(10) are compared with numerical data from finite element14 and 

boundary element analyses17 in Table 4 where two results match 

well each other. 

 

Table 4 Selected modal sound radiation patterns for the sample disk 

with α = 0.45 

Mode Indices Modal Sound Radiation Pattern 
Remarks

m n q Analytical Numerical 

0 2 c

 

 

0 2 s

 

 

0 4 c

 

 

0 4 s

 

 

 

In addition, from the far-field approximation, the modal sound 

powers Πmn.c and Πmn.s of (m, n)th mode is calculated using the 

following equation. 
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Here, Imn,q are the acoustic intensity on the surface of Sv is the 

control surface where modal sound pressure is calculated. 

 

 

3. Response to a Harmonic Force Fixed to the Disk 

 

3.1 Modal Formulation 

Modal response of annular disk with slots for a given harmonic 

excitation can be obtained using modal expansion technique. If the 

disk is excited by a multi-modal harmonic force at an arbitrary 

circular frequency ω and location rf = (rf, ϕf), several modes, 

including both split and repeated modes, are simultaneously excited. 

Based on the modal-expansion technique, velocity distribution (v) 

on the disk surfaces can be expressed in terms of modal velocity 

vectors of the disk as shown by the following equations. 
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In Eq. (12), VΨ is the velocity modal vector of the disk 

expressed as the modal displacement vector multiplied by the 

corresponding natural frequency (in rad/s) and ηl is the associated 

modal participation factor that can be expressed as follows: 
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Here, ωl and ζl are the natural frequency and modal damping ratio 

of mode l, respectively. 

Earlier, Lee and Singh expressed the far-field sound pressure 

from thin or thick annular disks due to a multi-modal force 

excitation using the structural modal participation factors and modal 

sound pressures.6,12 Applying the same procedure to the acoustic 

problem, the far-field pressure on a sphere (Sv) surrounding the thin 

disk given the surface velocity of Eq. (12) is expressed as: 
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Here, Λl is the modal sound radiation for mode l. 

Acoustic power spectra, Π(ω) of the disk due to an arbitrary 

harmonic excitation f(t) is also obtained from the far-field sound 

pressures on a sphere surrounding the disk as: 
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3.2 Steady State Response of a Pair of Split Modes 

3.2.1 Effects of Excitation Location  

If global vibration modes can be reasonably approximated with 

Eq. (5), 
, ,
( )mn q f fr ϕΨ  in Eq. (13) can be expressed as follows 

considering vibration shapes of two modes given in Eq. (5) and the 

assumptions in Section 1. 
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Consequently, contributions of two split modes on surface velocity 

and sound pressure due to a harmonic excitation at rf with circular 

frequency ω can be expressed as following equations. 
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As one can see from Eq. (17) and (18), surface velocity and sound 

radiation for the given excitation are significantly affected by the 

location of excitation. For instance, Ψmn,c does not contribute to 

total sound radiation when ϕf = 0 or ϕf = π/2 for the example case 

given in Fig. 1 and Table 1. 

On the other hand, as in the case of Ψ04,c and Ψ03 given α = 

0.45, if the global vibration modes are severely affected by the slots 

and should be expressed as Eq. (6), modal participation factors for 

two split modes should be expressed as follows: 
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Corresponding contributions from the mode on surface velocity and 

sound pressure due to the harmonic excitation can be expressed as 

following equations.  
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3.2.2 Sound powers from self and mutual radiation terms 

If several structural modes are simultaneously excited, the total 

sound power Π of Eq. (15) at frequency ω can be decomposed into 

two groups: a. Π from the self-radiation of individual modes, and b. 

Π from the mutual radiation between any two (or more) structural 

modes. For the case of a uniform annular disk case, Eq. (15) 

suggests that coupling could exist between any two (m, n) modes. 

Thus, define the sound power generated by the coupling between 

the (mi ni, qi) mode and (mj nj, qj) mode as:13 
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Here, j j j

i i i

m n q

m n q
Π is the power from self radiation when mi = mj, ni = nj 

and qi = qj. Otherwise j j j

i i i

m n q

m n q
Π is due to the mutual radiation 

between (mi, ni qi) and (mj, nj qj) modes. By repeating the procedure 

given above, radiated powers associated with individual modes of 

the disk can be obtained along with sound powers due to the 

coupling effects between any two structural modes.  

Further, the total acoustic power due to multi-modal excitation 

could be obtained in terms of a linear combination of the sound 
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powers from self and mutual-radiation terms as follows:  

 ( ) ( ) ( ) j j j

i i i j j j i i j

m n q

m n q m n q m n q
ω η ω η ωΠ = Π∑∑  (23) 

The sound powers Π(ω) for the case of a unit harmonic force 

are calculated using Eq. (23) and compared in Fig. 4 with those 

with Eq. (15). The calculations based on the self and mutual 

radiation powers match well with the modal expansion technique. 

Therefore, one may easily calculate acoustic power for any arbitrary 

force using Eq. (22). Also, as one can see in the figure, at the 

contribution from Ψ04,s to the total acoustic power is very small 

compare to that from Ψ04,c. 
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Fig. 4 Π/f(ω)of the sample disk with α = 0.45 for rf = (0.139, π/6). 

Key: , By Eq. (15); ▫ ▫ ▫, By Eq. (23) 

 

3.3 Validation Studies 

Analytical solutions and numerical results are confirmed with 

experimental results for the sample case given in Fig. 1 and Table 1. 

Only the first 9 modes are considered in this verification procedure 

since the relevant upper frequency for acoustic radiation study is 

0.8 kHz. 

 

 

Fig. 5 Vibro-acoustic experiment setup for the validation study 

 

In modal experiments, the excitation force f(t) is applied in the 

normal direction by an impulse hammer at ϕ = ϕf at the outer edge 

of the disk as explained in Fig. 5. The resolution (∆f) of this 

experiment is set to be 1.0 Hz. Accelerance spectra, w��  /f(ω) for the 

sample disk with α = 0.45 and uniform disk are obtained using 

experimental setup given in Fig. 5 and natural frequencies (ωmn,q) 

and modal damping ratios (ζmn,q) are extracted from w�� /f(ω). 

Numerical and analytical mobility spectra w� /f(ω) for the sample 

disks are also calculated using Eq. (11) from analytical or numerical 

eigensolutions along with modal damping ratio from the 

experiments. Spectra at specific receiver locations rs = (0.139, π/4) 

and rs = (0.139, π/8) for a harmonic excitation at rf = (0.139, π/6) 

are obtained using three approaches and compared each other in Fig. 

6. As shown in the figure, three results match well in the vicinities 

of the peaks though some discrepancies are being found in the off-

resonant regions. So, it could be concluded that total procedure 

introduces above has reasonable accuracy in calculating structural 

responses of the disk for a given harmonic excitation. Also, note 

that contributions from Ψ04,c and Ψ04,s to the total vibration of the 

disk for the excitation at rf = (0.139, π/6) are almost same. But, as 

shown in Fig. 4, acoustic power from Ψ04,c is much bigger than that 

from Ψ04,s. So, it can be inferred that Ψ04,c is much more efficient in 

sound radiation than Ψ04,s. 
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Fig. 6 w� /f(ω) of the sample disk with α = 0.45 for rf = (0.139, π/6). 

(a) rs = (0.139, π/4) (b) rs = (0.139, π/8). Key: ▫ ▫ ▫, Numerical; 

, Analytical; - - -, Experiments 
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Fig. 7 w� /f(ω) of the sample disk with α = 0.45. (a) rs = (0.139, π/4) 

(b) rs = (0.139, π/8). Key: ▫ ▫ ▫, rf = (0.139, π/8); , rf = (0.139, 

π/6); - - -, rf = (0.139, π/4) 

 

The effects of excitation locations on the mobility spectra are 

studied using the analytical procedure introduced in Section 3.2.1. 

w� /f(ω) at two receiver positions used above for a unit harmonic 

excitation at three excitation locations, rf = (0.139, π/8), rf = (0.139, 

π/6) and rf = (0.139, π/4) calculated using Eq. (12) and (13) are 

given in Fig. 7 where the effects are clearly shown. So it is expected 
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that total surface vibration in the disk will be affected by the 

location of excitation. 

Acoustic frequency response functions, p/f(ω), for the sample 

disk with α = 0.45 are also calculated from analytical and numerical 

Λmn,q along with experimental ζmn,q with Eq. (19) or (21). The 

results for selected receiver position rp = (1, 0, 0) and excitation 

location rf = (0.139, π/6) are compared with experimental data in 

Fig. 8. As one can see in the figure, the results from three 

approaches show good agreements verifying the accuracy of the 

procedure given above. 
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Fig. 8 p/f(ω) of the sample disk with α = 0.45 at rp = (1, 0, 0) for rf 

= (0.139, π/6). Key: ▫ ▫ ▫, Numerical; , Analytical; - - -, 

Experiment 

 

Acoustic frequency response function at a receiver positions 

used above for the unit harmonic excitation at three excitation 

locations, rf = (0.139, π/8), rf = (0.139, π/6) and rf = (0.139, π/4) 

calculated using Eq. (22) are compared each other in Fig.9. As 

shown in the figure, sound pressure at a given receiver position is 

severely affected by the location of excitation.  
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Fig. 9 p/f(ω) of the sample disk with α = 0.45. Key: ▫ ▫ ▫, rf = 

(0.139, π/8); , rf = (0.139, π/6); - - -, rf = (0.139, π/4) 

 

 

4. Conclusions 

 

This article has examined the effects of narrow radial slots on 

the vibro-acoustic characteristics of thin annular disks. Pre-

developed analytical solution for eigensolutions of thin annular disk 

with radial slots has been checked numerically and experimentally. 

According to the results, when the length of slots exceeds a certain 

limit, the global vibration modes are affected by the slots and 

natural frequencies from analytical solution would include some 

errors.  

Modified vibration modes are expressed as linear combinations 

of modal vibrations of a corresponding uniform disk. Also, modal 

sound radiations from the modified vibration modes are expressed 

as the linear combinations of modal sound radiation of the uniform 

disk that are defined with pre-developed analytical solution. The 

results are verified with numerical data for selected modes showing 

that the procedure introduced here has reasonable accuracy in 

predicting sound radiation from the modal vibrations of disks with 

slots. Also, acoustic powers for the two split modes with same m 

and n could be calculated based on the modal sound radiations. 

Structural and acoustic responses of the disks for an arbitrary 

harmonic excitation are obtained from pre-defined modal vibration 

and modal sound radiation using modal expansion technique. 

Verification on the acoustic frequency response function at a 

specific receiver position and acoustic power spectra for a given 

excitation confirm the accuracy of the procedure. 

The procedure introduced in this article can be efficiently used 

to calculate modal and multi-modal sound radiations from thin 

annular disks containing narrow radial slots with reasonable 

accuracy. Also, the existence of asymmetries such as slots or holes 

can be detected by examining the acoustic radiation characteristics 

such as p/f(ω) or Π(ω) at a specific position.  

In a future study, this procedure will simultaneously consider 

both out-of-plane and in-plane components of the disc vibration. 

Modal interaction effects and sound radiation from coupled modes 

will also be studied. 
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