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NOMENCLATURE 

 

vs = wheel speed (m/s) 

D = wheel diameter (mm) 

a = grinding depth (mm) 

vw = workpiece speed (m/s) 

b = width of cut (mm) 

Fv = vertical force (N) 

Fh = horizontal force (N) 

Qc = critical energy  

k =  thermal conductivity 

ρ = material density 

Ti = room temperature (16oC) 

Tboiling = boiling temperature (100o C) 

r = surface covering rate  

Ag = real contact area 

l = length of contact area 

 

 

1. Introduction  

 

Grinding has traditionally been associated with small rates of 

material removal and fine finishing operations. Using an approach 

known as creep-feed grinding, a large-scale metal removal similar 

to milling can be achieved. Using this approach, higher material 

removal rates can be performed by selection of higher depth of cut 

and lower workpiece speed. The correct selection of the cutting 

conditions and the wheel specifications can provide a greater 

material removal rate and a finer surface quality. 

In creep-feed grinding, the wheel depth of cut can reach as 

much as 6 mm. Higher cutting speed can cause the increase of force 

and cutting power, as well as a great heat generation in the grinding 

zone.1 The heat can be reduced by using a high coolant flow rate 

and adequate pressure, which contributes to the reduction of the 

generated heat and easily remove the chips from the grinding 

zone.2,3 

One of the most important applications of creep-feed grinding is 

the production of the aerospace parts used in jet engines such as 

turbine vanes, and blades where parts should have high strength to 

the fatigue loads and creep strains (see Fig. 1).4 These parts are 

made from nickel-based super-alloys such as Inconel, Udimet, Rene, 

Waspaloy, and Hastelloy. They provide higher strength to weight 

ratio, and maintain high resistance to corrosion, mechanical thermal 

fatigue, and mechanical and thermal shocks. 
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Milling and broaching of these parts made of Nickel and Cobalt 

based super alloys are too difficult, and in some new materials with 

high toughness and hardness are impossible. An example of creep-

feed grinding of the turbine blade with a shaped wheel is shown in 

Fig. 2.  

 

 

Fig. 1 Turbine blade 

 

 

Fig. 2 Creep-feed grinding 

 

The grinding process can cause the surface impairment such as 

surface burning mainly by the thermal damage.5 Therefore, the 

main limitation of creep-feed grinding is found to be the surface 

burning. Therefore, the selection of working conditions to avoid the 

burning is very important.6 These conditions can be defined by 

determining the grinding forces. The complex relationship between 

grinding forces and process parameters could not be easily 

expressed by analytical model. The analytical models are usually 

based on many assumptions and the coefficients are determined 

experimentally at specific configurations. Therefore, it is highly 

difficult to develop a comprehensive analytical model that considers 

all factors affecting the grinding forces.  

Neural network architecture has become more and more 

important as an effective learning technique in pattern recognition, 

since it has strong abilities to learn, to self-organize information, 

and need only few specific requirements. These advantages have 

attracted much interest in research on machining processes.7-9 

Therefore, neural network model can be developed for a better 

understanding of the effects of process conditions on the grinding 

forces. 

The objective of this paper is to determine process parameters, 

which satisfies the given limits, and maximizes the productivity at 

the same time. Neural network models can be combined with 

optimization methods in order to determine optimum grinding 

parameters. The experimental data obtained by a series of 

experiments performed on a Rene 80 supper alloy is first used to 

train a network. The implemented neural network algorithm of the 

force model is then used to predict the vertical and horizontal 

components of the grinding force. The predicted grinding forces 

will be further applied to the selection of the working conditions in 

avoidance of the workpiece burning and maximizing the material 

removal rate. 

 

 

2. Artificial Neural Network 

 

Neural networks are computational systems to simulate human 

brain in a simple and objective way. They have been used in diverse 

applications such as control, robotics, pattern recognition, 

forecasting, and manufacturing to model systems. Neural networks 

consist of a number of highly interconnected processing elements 

known as neurons. The neurons calculate the sum of computed 

weighted inputs and then apply a linear or non-linear function 

called transfer function to determine the outputs. The network is fed 

with a large amount of training data that represent the pattern 

attempting to be modelled. The weights are computed by an 

iterative method during the training process. 

Neural Network modelling consists of two main steps: training 

and verification. During the training process, specified inputs 

together with the corresponding solved outputs are introduced to the 

neural system. A learning algorithm is implemented to adjust the 

weights between neurons in a way that the error between neural 

system outputs and targets comes to prescribed minimum. The goal 

of this learning algorithm is to get the outputs that are calculated 

using the weights of the neural network as close as possible to the 

desired output patterns for the training data. Thus, the system of 

neural networks learns these patterns and develops the ability to 

make predictions for newly introduced inputs.  

The verification step is implemented to confirm the accuracy of 

the neural system in precisely predicting the solution to the new 

patterns. This is done by considering some verification data with 

known outputs to form the test set. 

 

 

3. Experimental procedure 

 

A series of experiments were performed on various wheel 

speeds, workpiece speed, and depth of cuts. The workpiece material 

is supperalloy Rene80. Workpiece dimensions are 30X20X12 mm 

made by investment casting process and the proper heat treatment 

was done for all samples. Creep-feed grinding was performed on 10 

mm width of all experiments and grinding speed is set to 20, 25 and 

30 m/s. Depth of cut was set to 1, 2 and 3 mm, and the workpiece 

speed was set to 0.5, 0.75, 1.0, and 1.25 mm/s. Vertical and 

horizontal components of grinding forces were measured by a 

dynamometer (Fig. 3). 

In this work, a grinding wheel that is based on aluminium oxide 

with white synthetic bonding is used. The abrasive grit size number 

is 80. A continuous dressing with rate of 0.0004 mm/rev was 
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performed on the grinding wheel by a diamond roll. The wheel 

dressing is a parameter with a great impact on the grinding wheel 

topography and thus on the heat generation in the cutting process. 

Continuous dressing can minimize the wear and the frictional heat. 

 

 

 

 

 

 

 

 

 

Fig. 3 Workpiece setting 

 

In creep-feed grinding, the supply of coolant is usually the key 

requirement to keep the grinding zone temperature at a low level.10 

Therefore, the grinding area has to be cooled with the appropriate 

coolant. Nozzle pressure was set to 12 bar (100 litre/min) and the 

coolant was sprayed in contact area between the wheel and the 

workpiece.  

Compared to up grinding, down grinding have lower normal 

(tangential) force ratio and less spindle load. This causes the 

generation of small wheel wear and lower grinding energy. Our 

primary results showed that up grinding causes the vibration of the 

workpiece and the fixture. This causes the creation of small hole on 

the workpiece surface. In the other hand, a better surface quality 

and a reduction of grinding forces by 12% were obtained in down 

grinding. Therefore, in this study, the experiments were performed 

in down grinding. Table 1 lists the working conditions of our 

experiments. Table 2 shows the composition of Rene 80 nickel 

based super alloy used in our experiments. The maximum vertical 

and horizontal forces measured with the dynameter are listed in 

table 3. 

 

Table 1 Experiment settings 

Devices conditions 

Grinding machine 
Micro-cut 4-250 CNC- Machine capacity : 

400 l * 300 w * 600 h-Machine power 48 KW 

Grinding method Down grinding 

Grinding wheel 
1- 54A80H15VPMF904W 

(400mm*32mm*127mm) 

Grinding speed vs=20 m/s , 25 m/s , 30 m/s 

Workpiece speed vw=1.25 mm/s, 1 mm/s, 0.75 mm/s, 0.5 mm/s 

Depth of cut a = 1 mm, 2 mm, 3 mm 

width of cut b = 10 mm 

Dressing Continuous dressing with rate of 0.0004 mm/rev 

Workpiece 
Material Rene80 12x30x20 with 42 Rockwell 

hardness 

Coolant Synthetic Fluids 

Nozzle pressure 

of coolant 
12 Bar, 100 litre/min 

 

Table 2 The composition of RENE 80- Ni based super alloy 

 C Cr Co Mo W Ti Al Zr B S(Max) Ni 

Standard 
0.15 

0.19 

13.7 

14.3 

9 

10 

3.7 

4.3 

3.7 

4.3 

4.8 

5.2 

2.8 

3.2 

0.02 

0.1 

0.01 

0.02 
0.007 Balance

Our 

material 
0.17 14.1 9.5 4.0 4.0 5.1 3.0 0.06 0.015 0.01  

Table 3 The maximum vertical and horizontal forces measured with 

the dynamometer 

Experimental resultsWorking conditions NO 

Fh (N)Fv (N)vw (mm/s) a (mm) vs (m/s)D (mm)
 

105.6 306.8 1.25 2 30 395 1 

92.4 268.4 1 2 30 394.672 

83.1 235.3 0.75 2 30 394.273 

75.6 212.8 0.5 2 30 393.764 

73.4 206.4 1.25 1 30 393.035 

62.3 176.9 1 1 30 392.706 

55. 150.2 0.75 1 30 391.797 

146.7 128.3 0.5 1 30 392.308 

122.7 348.1 1 3 25 391.069 

97.4 276.2 1 2 25 390.6610 

67.1 193.2 1 1 25 390.2611 

100.3 291.6 0.5 3 25 389.8612 

80.2 225.1 0.5 2 25 389.1313 

51.4 141.7 0.5 1 25 388.4014 

107.2 307.4 0.5 3 20 387.6715 

83.4 241.7 0.5 2 20 386.9416 

53.7 151.3 0.5 1 20 386.2117 

62.6 176.3 0.75 1 20 385.4818 

73.4 208.6 1 1 20 384.9719 

 

 

4. Structure of neural network model 

 

In our approach, a three-layer neural network, one made up of 

an input layer, a hidden layer, and an output layer, was used to 

accurately model the grinding forces, providing a sufficient number 

of hidden neurons. The neuron number of the input layer of neural 

network is determined by the number of process parameters. The 

force model is developed using the presented experimental results 

that act as learning example. The four input variables used in the 

input layer are taken to be (1) the wheel speed, vs (m/s), (2) the 

wheel diameter, D (mm), (3) the grinding depth, a (mm), (4) the 

workpiece speed, vw (m/s). The wheel diameter is set as one of the 

input variables in the neural network model, since the variations in 

wheel diameter change the length of contact area, and, therefore, 

the grinding forces. 

The neuron number of output layer is determined by the number 

of the objective indexes. Therefore, the vertical force, Fv (N), and 

the horizontal force, Fh (N) are two variables in the output layers. 

Fig. 4 shows the connection paths to and from one hidden layer 

neuron. 

 

Fig. 4 Neural network structure used in modelling Grinding forces 

 

Among other transfer functions, the tan-sigmoid transfer 

function was selected as the activation function for the hidden 
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layers, and linear transfer function was selected for the output 

layers. These selections are based on the minimum error found by 

these functions compared to other functions. Using these two 

activation functions, a given output, Y, based on the inputs, X, and 

the connection weights, W1 and W2, is given by 

 
2 2 1 1

* ( * )Y B W f W X B= + +  (1) 

where B1 and B2 are bias of the neuron, which is simply an extra 

degree of freedom to adjust allowing the input-output relationship 

to be learned accurately during training.  

During training, a number of input-output pairs are given to the 

network and the weights of the connection paths are adjusted. The 

most common method to adjust the weights of the connection paths 

is through the back-propagation algorithm that is used in our work. 

In this approach, the effects of the errors are swept backwards 

through the neural network to obtain a square error derivative for 

each computational neuron. The gradient is then calculated for all of 

the square error derivatives allowing the weights to be updated 

using Levenberg-Marquardt method in each iteration. The process 

is repeated for all of the training examples in specified number of 

iterations. 

 

 

5. Modeling grinding forces using neural network 

 

The neural network model shown in Fig. 4 is used to predict the 

grinding forces. The node number of the hidden layer was 

determined by train trials and the final value obtained was three that 

made the configuration of neural network as 4–2–2. The learning 

rate is 0.01. Among the samples obtained by experimental results, 

16 samples were used to train the neural network. The remaining 

three samples were then used to test the performance of the neural 

network.  

 

Table 4 Comparison between the experimental and neural network 

results 

 

Neural Network 

results 
Working conditions NO 

%ErrorFh (N)Fv (N) vw (mm/s)a (mm) vs (m/s) D (mm) 
 

2.4665103.2689296.4755 1.25 2 30 395 1 

1.022093.6148267.5366 1 2 30 394.67 2 

0.704383.6190237.9509 0.75 2 30 394.27 3 

1.607374.3259210.5238 0.5 2 30 393.76 4 

1.746772.060704.4195 1.25 1 30 393.03 5 

1.017463.0056177.4305 1 1 30 392.70 6 

1.706447.4758131.2160 0.5 1 30 391.79 8 

.5044 122.947954.1182 1 3 25 391.06 9 

1.770098.9799283.6178 1 2 25 390.66 10 

0.6645101.2746290.0974 0.5 3 25 389.86 12 

0.333679.7719226.6018 0.5 2 25 389.13 13 

1.438352.094844.8586 0.5 1 25 388.40 14 

0.9484106.1859304.5912 0.5 3 20 387.67 15 

5.548656.9092159.1120 0.5 1 20 386.21 17 

2.760464.3662181.5197 0.75 1 20 385.48 18 

0.249973.5922208.9572 1 1 20 384.97 19 

The predicted and experiment results and process parameters 

are shown in Table 4. The result indicates that the neural network 

has a good performance, and it can accurately map the relationship 

between the grinding forces and process parameters. The 

implemented neural network algorithm is used to predict three 

testing examples. The testing results as compared to the 

experimental results are listed in table 5. It shows that the grinding 

forces can be forecasted effectively using the neural network. 

 

Table 5 Evaluation of neural network for the new data 

 Neural Network resultsWorking conditions NO

%ErrorFh Fv vw a vsD 

0.350955.335 154.44 0.75 1 30392.307

0.874367.8428191.9255 1 1 25390.2611

1.014585.290 242.89 0.5 2 20386.9416

 

 

6. Optimal working conditions 

 

The optimal working conditions are obtained by maximizing 

the material removal rate (MRR). Increasing the depth of cut and 

workpiece speed causes the increase of MRR. However, this 

increases the workpiece temperature and cause the surface burning. 

Therefore, the constraint in our optimization model is the surface 

burning. 

The heat generated in the grinding zone is conducted to the 

workpiece, the grinding wheel, the coolant, and the grinding 

chips.11,12 The partition of the grinding heat to the different heat 

sectors varies with process conditions. In order to work within a 

safe regime without causing any thermal damage to the workpiece, 

the controlling factors when designing a grinding process have to be 

carefully defined.13 

The workpiece burning occurs with the abrupt increase of 

grinding force and a sudden rise of the workpiece temperature. The 

present coolant will cool the workpeice surface rapidly as the 

workpiece leaves the grinding zone. This is similar to the workpiece 

quenching phenomenon. These phenomena will cause the 

workpiece surface hardening and, therefore, cracks on workpiece 

surface. Thus, the workpiece temperature becomes one of the main 

factors affecting the surface quality.  

The grinding energy when the fluid begins to cause boiling is 

defined as the critical grinding energy for the workpiece burning. 

The critical issue in the creep-feed grinding is to prevent the coolant 

to boil. When the coolant reaches the boiling point, the proper heat 

transferring is prevented. Therefore, when the coolant reaches to the 

boiling point, more heat will build up in the grinding zone that 

causes the workpiece burning. Based on the researches done by 

Wang and Kou,14 the critical energy Qc of grinding can be defined 

as a function of boiling temperature:  

 
0.5 0.5
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where k, ρ, c, vw, D, a, vs, Ti, Tboiling, are thermal conductivity, 

material density, specific heat, workepiece speed, wheel diameter, 

depth of cut, wheel speed, room temperature (16oC), and boiling 

temperature (about 100o C), respectively. 

Indices w, f, and g represent the workpiece, fluid, and the grain, 

respectively. Rf is the partition of total energy Qt transferred to the 

fluid. In addition, r is surface covering rate r=Ag/Atotal where 

Atotal=l*b is total grinding surface, Ag is the real contact area, and l 

is the length of contact area ( ).l a D= ⋅  Malkin15 measured this 

ratio and found that this ratio is very small from 0.01 to 0.02. In our 

approach, the surface covering rate, r, is set to 0.01.  

To define safe working conditions, the total energy has to be 

defined. When the total energy is greater than the critical energy, 

the surface burning may occur. Assuming the uniform energy over 

the whole contact area, the total energy is defined by  

 s

t

Ft V
Q

lb

⋅

=  (3) 

where Ft is the tangential force, and b is the width of cut. The 

tangential force in down grinding is obtained from the horizontal 

grinding force Fh, and the vertical grinding force Fv by (Fig. 5): 

 sin cos
m m

Ft Fv    Fh θ θ= +  (4) 

where 
m

θ  is mean rotation of contact length / .
m

a Dθ =  
 

 

Fig. 5 Grinding forces 

 

Having the working conditions and material properties (Table 

6), the critical and total energies are calculated using equations 2 

and 3, respectively. Experimental results show that the workpiece 

surface is burned in case number 1 and 9 where the total energy is 

greater than the critical energy (Table 7). This shows a good 

agreement between the adaptive thermal theory and experiments 

results. Therefore, the adaptive thermal theory can be used to 

predict the occurrence of surface burning. 

 

Table 6 Material properties of the coolant, Rene80, and the wheel 

 Coolant Rene80 Wheel 

( / )k w m C
�

 0.625 25.23 135 

3( / )kg mρ  991 8170 1750 

( / )c J kg C�  4071 962.964 720 

Table 7 The critical and total energies of experiments 

Experimental results Working conditions NO

Qt (W/mm2)QC (W/mm2)vw (mm/s) a (mm)vs (m/s)D (mm) 

13.57 12.47 1.25 2 30 395 1

11.88 12.44 1 2 30 394.672

10.64 12.43 0.75 2 30 394.273

9.68 12.41 0.5 2 30 393.764

12.67 14.83 1.25 1 30 393.035

10.77 14.81 1 1 30 392.706

9.48 14.80 0.75 1 30 392.307

8.05 14.77 0.5 1 30 391.798

11.14 10.31 1 3 25 391.069

10.46 11.43 1 2 25 390.6610

9.72 13.59 1 1 25 390.2611

9.17 10.28 0.5 3 25 389.8612

8.61 11.39 0.5 2 25 389.1313

7.42 13.57 0.5 1 25 388.4014

7.85 9.25 0.5 3 20 387.6715

7.23 10.21 0.5 2 20 386.9416

6.24 12.15 0.5 1 20 386.2117

7.28 12.19 0.75 1 20 385.4818

8.56 12.22 1 1 20 384.9719

 

 

7. Results and discussion 

 

The neural network developed in the previous section can now 

be used to predict the grinding forces and the total energy. In 

addition, the critical grinding energy of the workpiece burning is 

obtained by equation 2.  

The working conditions where the predicted total grinding 

energy and critical grinding energy lie together can be regarded as 

the critical working conditions under the limitation without 

occurrence of the workpiece burning. Therefore, the predicted 

grinding energy with the adaptive thermal models can be used to 

forecast the workpiece burning. 

The grinding energies variations versus working conditions are 

shown in Fig. 6 and 7. They show that the critical energy is almost 

unchanged with the different workpiece speed, but the total energy 

is increased by the workpiece speed. The critical energy becomes 

greater at smaller depth of cut and larger wheel speed. The larger 

critical grinding energy means that a greater heat generated in the 

grinding zone is permitted without workpiece burning. Moreover, 

the predicted total grinding energy becomes greater as grinding 

depth, wheel speed, and workpiece speed are increased. The greater 

the total grinding energy reveals the larger grinding heat and 

grinding forces generated during grinding process. The reduction of 

the depth of cut or the workpiece speed can lower the grinding 

energy.  

Based on the consideration of more working efficiency, the 

working conditions can be adjusted to obtain a higher material 

removal rate (MRR). The neural network was used to determine a 

set of optimal inputs. In the present case of optimization of creep 

feed grinding process, the cost function which is to be maximized, 

Chip geometry 

Workpiece 

Grinding 
wheel 

F
r
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is the MRR and the constraint is the surface burning. The 

optimization problem to maximize MRR while avoiding the surface 

burning can be defined by 

 

max *

. .

1 3

0.5 1.25

20 30

w

t c

w

s

MRR a v

S t Q Q

a

v

v

=

≤

≤ ≤

≤ ≤

≤ ≤

 (5) 

Critical energy and total energy Qt are calculated by equations 2 

and 3 respectively. The above optimization problem was solved by 

nonlinear constrained optimization and the optimal working 

conditions to maximize MRR are found to be a=2.665 mm, vs=20.5 

m/s, vw =1.05 mm/s for D=390 mm. The MRR with these 

parameters is 2.8 mm2/s. These parameters are now used 

experimentally for creep feed grinding of Rene 80 supper alloy. 
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v
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Fig. 6 Grinding energies Qt and Qc versus workpeice speed vw in 

different wheel speed v
s 

 

 

Fig. 7 Grinding energies Qt and Qc versus workpeice speed vw in 

different depth of cut a 

 

 

8. Conclusion 

 

In this paper, the parameters involved in the creep feed grinding 

of nickel-based superalloy materials are investigated. In order to 

predict the grinding forces using neural network, a series of 

experiments is performed on supperalloy Rene80 to define the 

appropriate working conditions. The neural network technique has 

been shown as an effective method to model the complex 

relationship between the process conditions and the grinding forces. 

The results indicate that the presented neural network of one hidden 

layer with three neurons was successful in predicting the grinding 

forces. The predicted grinding forces with the adaptive thermal 

models are used to optimize the MRR while avoiding the workpiece 

burning. The neural network model and optimization methods 

proposed in this paper show the great potential in complicated 

industrial applications. 
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