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Abstract
Application of electric current pulses while deforming a material, commonly referred to as electric-assisted forming (EAF), is 
known to have desirable effects over its formability. In the finite element simulation of this electric-assisted deformation, the 
time-temperature profile is obtained by providing various temperature dependent thermo-physical properties of the material.
 Out of all the required properties for such analysis, effective heat transfer coefficient and Joule heat fraction are sensitive to 
the microstructure of the material, geometry of the specimen and the ambient conditions. Generally, these coefficients are 
identified by iterative FE simulations. A clear methodology to estimate these parameters has not been established yet. In the 
present work, a procedure is developed using a genetically evolved meta-model of the time-temperature profile, which is 
experimentally obtained from the pulsed current assisted uniaxial tension and compression tests. For this purpose, various 
multi-objective optimization techniques such as BioGP, EvoNN and cRVEA have been utilized to estimate the temperature 
profile in each case. It is shown that the tri-objective optimization procedure predicts the experimental temperature profile 
with greater accuracy (within ± 5%) and is best suited to obtain the thermal modelling parameters of electric-assisted defor-
mation, than other optimization techniques used in this work.

1  Introduction

Electric-assisted forming (EAF) is a modern manufactur-
ing method in which application of electric current pulses 
favourably assist the deformation process [1, 2]. Reduction in 
the flow stress and enhancement of the ductility are observed 
with electric-assisted deformation [3, 4]. Other advantages 
of this process include elimination of springback either par-
tially or completely [5–7], reduction in anisotropy effects 

[8] and suppression of micro-cracks due to self healing [9]. 
The experimentally observed behaviour during the applica-
tion of electric current is correlated to the combined effect 
of Joule heating and localized interaction between the elec-
trons and the microstructure of the materials. This change 
in mechanical behaviour due to the application of electric 
current is termed as electroplasticity. In the literature, the 
electroplastic effect has been attributed to a combination of 
multiple effects such as electron-momentum transfer [10], 
weakening of atomic bonds due to charge imbalance near 
the defect sites [11] and magentoplastic effect [12] along 
with secondary effects such as skin and pinch effect [13]. 
The simplest explanation for the observed electric-assisted 
mechanical behaviour is the associated Joule’s heating. The 
existence of an independent interaction between moving 
electrons and dislocations, in addition to the Joule heating 
is well established [4, 14, 15]. It has also been demonstrated 
that the secondary effects such as skin and pinch effect [13, 
16] have negligible contribution towards the drop in flow 
stress observed due to electroplasticity in thin sheets. There-
fore, the observed stress drop (Eq. 1) during EA forming can 
be represented as the superposition of thermal effect due to 
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Joule’s heating and the independent effect of electric current 
over the dislocation motion.

where (Δ�)exp represent the experimentally observed stress 
drop, the subscript ‘T’ and ‘J’ in R.H.S refers to the linearly 
decomposed stress components due to thermal and electro-
plastic effect, respectively. The superposition of the effects 
are represented schematically in the Fig. 1 , in case of a 
single pulse current assisted deformation.

Consensus on the governing mechanism of this inde-
pendent effect (pure electroplastic effect) is still lacking in 
the literature [17, 18]. The stress drop due to electroplastic 
effect ( Δ�J ) in Eq. 1 can be obtained by subtracting the con-
tribution of the thermal effect from the overall stress drop 
observed during the electric-assisted deformation process. 
Therefore, it is critical to predict the thermal contribution 
accurately in order to model electroplastic effect. Modelling 
of electroplastic deformation has gained attention recently 
to underpin the mechanism of electroplasticity [19–21]. The 
modelling approaches should accommodate both the thermal 
as well as electroplastic effect in their framework [22, 23]. 
Since the stress drop due to Joule’s heating is a function of 
temperature, accurate prediction of temperature history is 
crucial in the estimation of the thermal contribution.

In an electric-assisted forming process, the combination 
of electrical and mechanical loads affect the resistance of the 
deforming sample. To account for this change in resistance, 
a coefficient, �,1 is used in the present analysis. A portion of 

(1)(Δ�)exp = (Δ�)T + (Δ�)J

the Joule heat generated is lost to the environment and can 
be quantified by using an effective heat transfer coefficient 
( heff  ). Estimation of these two parameters, namely Joule heat 
fraction and effective heat transfer coefficient are critical in 
decomposing the total stress drop using Eq. 1.

Generally, these two coefficients are identified by iterative 
FE simulations to match the experimentally measured tem-
perature history [5, 23]. In addition to these coefficients, the 
temperature history is influenced by several other thermo-
physical parameters such as specific heat capacity, thermal 
and electrical conductivity. Most of these parameters are 
temperature dependent that complicates the estimation of 
thermal coefficients through classical gradient optimization. 
In addition to that, EA forming involves application of mul-
tiple electrical pulses and the optimization process should 
simultaneously minimize the error in predicting the tempera-
ture history over multiple electrical pulses. This is a classical 
problem for using heuristic optimization algorithm [24–26]. 
The substantial growth of the multi-objective evolutionary 
algorithms over the years enables us to carry out such work 
in a more sophisticated manner [27–29]. Evolutionary algo-
rithms can be used to avoid manual iteration [30, 31], that 
may yield less accurate results. A detailed review on such 
modelling strategies can be found in the literature [32, 33] 
and formulation of some of these strategies are discussed by 
Chakraborti [34].

In the present work, distinct optimization techniques 
namely, bi-objective genetic programming (BioGP) [35, 36], 
evolutionary neural network (EvoNN) [37] and constrained 
version reference vector evolutionary algorithm (cRVEA) 
[38, 39] have been used to identify the input thermal mod-
elling parameters of a coupled thermal-electrical-structural 
analysis of an electric assisted deformation process. For 
this purpose, two different modes of electric assisted (EA) 

Fig. 1   Representation of change 
in the mechanical behaviour 
during the electric-assisted 
forming

1  In the past analyses, the coefficient � is referred as Joule heat frac-
tion. The same terminology is used for this coefficient in the present 
work, henceforth.
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deformation are selected in this work namely, (1) EA tension 
and (2) EA compression. In the subsequent sections, a brief 
introduction of the thermal modelling in EA deformation 
is presented followed by the development of training and 
optimization strategies. The training and optimization proce-
dure is performed using a commercially available software, 
MATLABTM . The implications and necessity of the heuris-
tic optimization is further discussed through the simulation 
results obtained using the optimized coefficients.

2 � Methodology

Electric-assisted forming (EAF) involves simultaneous 
application of electric current during plastic deformation. 
The test set up used for conducting electric-assisted defor-
mation experiments is schematically shown in the Fig. 2. 
Insulation between the platens and other machine compo-
nents is provided to prevent any unintended current flow to 
the rest of the experimental setup. A thermal camera (non-
contact type) or a pair of thermocouple wires (contact type) 
is employed to record the temperature history during EA 
deformation. A schematic representation of electric-assisted 
deformation behaviour is shown in the Fig. 1.

Modelling of electric-assisted deformation process 
requires a coupled multifield analysis to accommodate the 
electro-thermo-mechanical behaviour of the materials [40]. 
The temperature of the specimen evolves with the appli-
cation of current and influences the mechanical behaviour, 
accordingly. Accurate prediction of temperature history is 
critical to decouple the thermal effect (Eq. 1) in modelling 
electroplasticity. The importance of accurately estimating 
Joule heat fraction and effective heat transfer coefficient, and 
the necessity of multi-objective evolutionary algorithms for 
optimization of error minimization have been highlighted in 
the previous section.

Application of electric current during the plastic deforma-
tion increases the temperature of the specimen due to Joule’s 
heating. When the applied current is in pulsed form, heating 

of the specimen takes place during the ‘pulse on’ duration. 
When the pulse is switched off, specimen tends to cool as a 
result of heat lost to the ambient environment. The pulsating 
time-temperature behavior of electric-assisted deformation 
can be defined using three parameters, (1) peak temperature 
( Tp ), (2) background temperature ( Tb ) and (3) rate of cooling 
( �T ) to the ambient temperature. These parameters are sche-
matically shown in Fig. 3 in a typical time temperature pro-
file of EA deformation. All the three parameters evolve with 
time during the pulse application. The subscripts i, (i+1) 
and (i+2) refer to the number of pulses applied in sequence.

A robust model should be able to predict ( Tp ), ( Tb ) and 
( �T ) with reasonable accuracy in each pulse cycle. In other 
words, the error between the modelled and experimental 
results of these three parameters should be minimized simul-
taneously for accurate prediction of the temperature history. 
Using this approach, three objective functions are proposed 
for the optimization procedure, as shown in Eqs. 2, 3 and 
4. The objective functions are essentially the normalized 
root mean square error (NRMSE) terms in each of the three 
defined parameters. The task associated with each of the 
objective functions is shown in the Table 1.

(2)�1 =

√

√

√

√
1

n
Σn
i=0

(

(Tp)exp − Tp

(Tp)exp

)2

,

Fig. 2   Schematic diagram of an electric-assisted forming setup

Fig. 3   A representation of time-temperature profile showing the three 
variables (1) peak temperature ( Tp ), (2) background temperature ( Tb ) 
and (3) rate of cooling ( �T ) in each of the applied pulses

Table 1   Task associated with the objective functions

Objectives Task

Peak temperature error ( �1) Minimization
Background temperature error ( �2) Minimization
Error in cooling rate ( �3) Minimization



2290	 Metals and Materials International (2023) 29:2287–2303

1 3

Two sets of experimental data, EA tension and EA com-
pression, are used to verify the accuracy of the predicted 
coefficients from the data driven modelling. Evolutionary 
approaches namely BioGP (bi-objective genetic program-
ming) [41, 42] and EvoNN (Evolutionary Neural Network) 
[43, 44] are used to generate the training models for the 
objective functions for subsequent optimization. In EvoNN, 
a Pareto trade-off is established between the accuracy and 
complexity of the models by using the evolution process 
like crossover, mutation, selection at the lower part of the 
algorithm and linear least square method at the upper hand 
to converge mathematically [43, 45]. Instead of neural nets, 
genetic programming trees are used in BioGP model in the 
optimal trade-off process. As a result, multiple models are 
generated. The appropriate model for subsequent analysis is 
chosen by imposing additional criterion, such as corrected 
Akaike information criterion for EvoNN [46, 47] and pos-
session of minor error model for BioGP [45]. Upon suc-
cessful validation and testing of the trained models, multi-
objective optimization is carried out using BioGP, EvoNN 
and cRVEA (constraint-based reference vector evolutionary 
algorithm) detailed elsewhere [36, 38, 39, 48, 49], to obtain 
the optimum solutions. The steps followed in the present 
work is shown in a flowchart (Fig. 4).

2.1 � Experimental Dataset of Electric‑Assisted 
Deformation

The data set of electric-assisted tension test is obtained from 
the reference [50], where the effect of pulsed current on the 
mechanical behaviour of AA 5052-H32 was studied. The 
tensile specimen dimensions were as per ASTM E8 stand-
ard except the width, which was reduced from 12.5 to 9 
mm. The electric-assisted tension tests were carried out at a 
constant crosshead speed of 2.5 mm/min with a nominal cur-
rent density of 110 A/mm2 . The current pulses were defined 
with pulse duration of 0.5 s, background current of 0 A and 
background time of 29.5 s. The temperature of the specimen 
reaches a peak value during the pulse duration and at the 
instant of pulse switching off (during the background time), 
the temperature decreases by transferring heat to the envi-
ronment. The ambient temperature during the experiment 
is reported as 25 °C. Temperature evolution due to Joule’s 
heating during EA deformation was measured using both a 
K-type thermocouple spot welded on to the sample and an 

(3)�2 =
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infrared thermal imaging camera. The resulting temperature 
profile for the first 7 pulses is shown in Fig. 5a. It should be 
noted that the first current pulse was applied just before the 
movement of the crosshead.

The second data set involves pulsed current assisted com-
pression of AA 6061-T6 alloy in the reference [51]. The 
compression specimen was as per ASTM E9 standard (with 
approximate length to diameter ratio of 1.5), with a length 
of 15 mm and diameter of 10.2 mm. The electric assisted 
experiments were performed at a constant displacement rate 
of 2.0 mm/min with a nominal current density of 90 A/mm2 . 
The ambient temperature during the experiment is reported 
as 17 °C. Temperature history during the electric-assisted 
compression test was measured using a FLIR-T621 infra-red 
thermal imaging camera. The resulting temperature profile 
is shown in Fig. 5b. The first current pulse was applied after 
the specimen deformed by 2 mm (after 60 s of start of the 
test).

2.2 � Finite Element Modelling of EA Deformation

The electrical assisted tension and compression are simu-
lated using finite element method to validate the temperature 
history obtained experimentally. Joule’s law to estimate the 
heat transfered when passing current through a conductor 
is given as,

where I, Re and t represent amount of current, effective 
resistance offered by the conductor and time of the current 
flow, respectively. As mentioned in the introduction sec-
tion, the specimen is subjected to electrical and mechanical 
loading simultaneously during electric-assisted deforma-
tion. The combination of electrical and mechanical loads 
affect the resistance of the deforming sample. To account 
for this change in resistance, a coefficient, � , Joule heat 
fraction2 has been used in the present analysis. This yields, 
Re = �R , where ‘R’ is the resistance of the material prior to 
the application of electric pulse. The temperature experi-
mentally measured in the sample is due to the net effect of 
Joule heating and heat losses to the ambience. The thermal 
balance (ignoring the conversion of plastic work to heat) of 
such specimen under electric-assisted deformation could be 
represented as,

(5)QJH = I2Ret,

2  The fraction � used in earlier publications did not explicitly used 
to scale Re . This could possibly yield an incorrect understanding 
Qtot = VI = � I2Rt + (1 − � )VI . Theoretically, such linear decomposi-
tion is not possible. It is best to describe � as the ratio of Qactual with 
the ideal Q under no change in mean free path of moving disloca-
tions.
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where � , V, cp and k represent the material properties such 
as density, volume, specific heat capacity and thermal 

(6)ΔQ̇ = Q̇JH − Q̇Conduction − Q̇Loss

(7)𝜌VcpΔṪ = 𝜁I2Rt − kAcs∇T − heff As(T − TA)

conductivity, respectively. ΔṪ  , Acs , ∇T  , heff  , As , T and 
TA represent increase in specimen temperature with time, 
cross section area of the specimen, temperature gradient in 
x, y and z directions, surface area, effective heat transfer 
coefficient (combining convective and radiative heat loss), 
instantaneous temperature of the specimen and the ambient 
temperature, respectively.

Fig. 4   Steps followed in the pre-
sent work to obtain the optimum 
modelling parameters
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Fig. 5   Experimentally recorded time-temperature profile in case of (a) Electric-assisted tension [50] and (b) Electric-assisted compression [51]

Fig. 6   Specimen geom-
etry modelled in the case of 
(a) electric-assisted tension 
(b) electric-assisted compres-
sion in the finite element 
software. The specimens are 
meshed with appropriate mesh 
sizes and the required boundary 
conditions are applied (Initial 
electrical potential [V = 0]). 
Heat transfer regions considered 
in the simulations are shown in 
the figures
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A coupled thermal-electrical-structural analysis is per-
formed to simulate the electric-assisted deformation in com-
mercially available finite element software, ABAQUSⓇ . The 
specimens are meshed using eight-node general purpose 
continuum elements, C3D8, which are compatible with the 
electrical load and thermo-mechanical boundary conditions. 
The thermal properties of the material such as specific heat 
and thermal conductivity are defined as temperature depend-
ent in the analysis [52, 53]. Appropriate boundary conditions 
such as initial temperature field and areas for heat transfer 
are specified. The transient thermo-mechanical simulations 
are carried out on the actual time scale to predict the heat 
transfer from the specimens with accepted accuracy. As 
shown in the Fig. 6, the specimens used in the respective 
experiments are modelled to scale. As reported in the refer-
ence [50], a part of the specimen grip area is insulated dur-
ing EA tension. Therefore, the heat transfer coefficient ( heff  ) 
to accommodate heat losses was applied to the exposed area 
only (Fig. 6). Whereas, the film coefficient was assigned to 
the entire specimen (including top, bottom and side surface 
of the specimen) to model the heat losses in EA compres-
sion. In both the cases, electrical load was applied in form 
of current density on top side of the specimen to simulate 
the EA deformation. The bottom side of the specimen was 
grounded to ensure the flow of the electric current. The 
thermo-physical properties such as specific heat (J kg−1 K −1 ) 
and thermal conductivity (W m −1 K −1 ) of both the materials 
used for the present work are obtained from the reference 
[52] and [53],  respectively (Table 2).

The definition of � and heff  in the modelling framework 
is not straight forward as these two parameters are closely 
interrelated. Change in the magnitude of either of these coef-
ficients would affect the evolution of the temperature profile. 
It should also be noted that the thermal properties of the 
samples are transient due to the change in specimen temper-
ature and geometry during EA deformation process. These 
would affect the heat transfer from the specimen surface and 
in turn the time-temperature history. With multiple pulses 
being applied during EA deformation process, there are too 
many data points in the entire time-temperature profile that 

Table 2   Thermo-physical 
properties of AA 5052-H32 [52] 
and AA 6061-T6 alloy [53]

Alloy Specific heat (J kg−1 K −1) Thermal conductivity (W m −1 K −1)

AA 5052-H32 (tension 
sample)

0.41 ∗ T + 903 929 − 0.627 ∗ T + 1.48 ∗ 10−3 ∗ T
2

AA 6061-T6 (compression 
sample)

0.1 ∗ T + 140 25.2 + 0.398 ∗ T + 7.36 ∗ 10−6 ∗ T
2

Table 3   Objective function values in case of electric-assisted ten-
sion—obtained from parametric FE simulation

Input Objective function

� heff  ( × 103 W 
m −2 K −1)

�1 �2 �3

0.4 0.025 NA NA NA
0.4 0.25 NA NA NA
0.5 0.025 0.05264 0.12643 0.57252
0.5 0.05 0.00075 0.03884 0.22563
0.5 0.075 0.06310 0.20699 0.06250
0.5 0.1 0.00188 0.00763 0.19892
0.5 0.125 0.14864 0.16110 0.24999
0.5 0.15 0.00768 0.00448 0.31609
0.5 0.25 0.02641 0.00456 0.45030
0.55 0.0375 0.16311 0.10043 0.38751
0.55 0.125 0.08875 0.10948 0.22087
0.6 0.025 0.37365 0.02313 0.78853
0.6 0.05 0.02290 0.00281 0.37475
0.6 0.1 9.6E-07 8.8E-05 0.13216
0.6 0.15 0.00025 2.7E-05 0.27019
0.6 0.25 0.00390 0.00397 0.42920
0.65 0.0375 0.38160 0.12346 0.64194
0.65 0.075 0.16488 0.05948 0.17579
0.65 0.125 0.04229 0.08027 0.16443
0.7 0.025 1.81288 0.00331 1.00535
0.7 0.0375 0.45820 0.07660 0.73235
0.7 0.05 9.15247 0.02971 1.59795
0.7 0.1 0.00379 0.00157 0.07532
0.7 0.15 0.00049 0.01371 0.22430
0.7 0.25 0.00047 0.05177 0.40910
0.75 0.025 0.00489 0.21357 0.65917
0.75 0.125 0.15887 0.21902 0.11483
0.8 0.025 4.85971 0.00765 1.21787
0.8 0.05 0.60366 0.01045 0.66391
0.8 0.1 0.04409 0.03731 0.12438
0.8 0.15 0.00945 0.08545 0.17967
0.8 0.25 0.00433 0.29459 0.39043
0.9 0.025 4.04265 0.13838 1.43001
0.9 0.0375 0.84222 0.30031 1.08770
0.9 0.05 1.70187 0.05146 0.81135
0.9 0.1 0.21359 0.22955 0.19824
0.9 0.15 0.05628 0.68149 0.14270
0.9 0.25 0.02492 0.98264 0.36796
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limits the use of iterative gradient optimization to predict 
the modelling parameters. Given the complexity involved 
in the prediction of these coefficients, as mentioned earlier, 
it is best to use a heuristic approach to solve this problem.

Heuristic approaches require input data over a wide range 
of input variable values. In the present case, the two input 
variables are � and heff  . It has been shown in the literature 

that � ranges from 40-90 % for such analyses [13, 54]. The 
value of heff  depends on various factors such as ambient 
temperature and the experimental conditions. The coupled 
electrical-thermal-structural finite element simulations were 
carried out with combination of the selected parameters and 
the obtained results were used as data input for the genetic 
algorithm formulation.

Table 4   Objective function values in case of electric-assisted com-
pression—obtained from parametric FE simulation

Input Objective function

� heff  ( × 103 W m −2 K −1) �1 �2 �3

0.4 0.1 NA NA NA
0.4 0.8 NA NA NA
0.5 0.1 NA NA NA
0.5 0.8 NA NA NA
0.6 0.10 0.01823 0.18388 0.40608
0.6 0.25 1.00634 1.02446 0.16110
0.6 0.5 0.05709 0.02344 1.29552
0.6 0.75 5.00574 5.00099 0.52273
0.6 0.8 5.00578 5.00097 0.84517
0.65 0.375 0.21997 0.17076 0.19628
0.65 0.625 0.28654 0.15221 0.18761
0.65 0.775 0.29764 0.13939 0.20280
0.7 0.1 0.10654 0.13490 0.84516
0.7 0.225 0.00289 0.02470 0.39937
0.7 0.25 0.00461 0.02415 0.43646
0.7 0.5 1.00817 1.00636 1.54050
0.7 0.8 1.01568 1.00697 0.40674
0.75 0.125 0.27358 0.31899 1.40273
0.75 0.375 0.15278 0.22010 0.24991
0.75 0.625 0.22077 0.19915 0.18326
0.75 0.775 0.23700 0.16434 0.20338
0.8 0.1 0.50081 0.16597 1.78981
0.8 0.25 1.00026 1.07284 0.63990
0.8 0.5 0.00985 0.09946 0.16568
0.8 0.75 1.00462 1.10168 0.40450
0.8 0.8 0.02084 0.10298 0.18361
0.85 0.125 0.39237 0.41372 1.61411
0.85 0.625 0.16086 0.30361 0.17977
0.85 0.775 0.09039 0.35873 0.29299
0.9 0.1 1.17632 0.37040 2.04190
0.9 0.25 1.00660 1.31900 0.70722
0.9 0.5 0.00631 0.30580 0.17616
0.9 0.75 0.01033 0.39184 0.17667
0.9 0.8 0.00824 0.48261 0.18136

Table 5   Parameters of EvoNN and BioGP for electric-assisted ten-
sion and electric-assisted compression

Processes Electric-assisted ten-
sion

Electric-assisted 
compression

 Parameters BioGP EvoNN BioGP EvoNN

Hidden nodes NA 8 NA 7
Max depth 6 NA 6 NA
Max root 8 NA 8 NA
Max rank 20 20 20 20
Kill interval 5 7 5 7
No. of preys 500 500 500 500
No. of predators 50 50 50 50
Grid size 60*60 60*60 60*60 60*60
No. of generations 20 75 20 75

Table 6   Training error in dataset of electric-assisted tension

Training error in dataset of electric-assisted tension

 Model Generation Model structure �1 �2 �3

BioGP 20 Root=6 0.0729 0.0491 0.0578
Depth=8
Root=8 0.0885 0.095 0.0542
Depth=10
Root=10 0.09786 0.0634 0.0533
Depth=10

EvoNN 75 Hidden 0.0925 0.0499 0.1227
nodes=8
Hidden 0.0916 0.0685 0.1238
nodes=10
Hidden 0.1089 0.0685 0.1367
nodes=12
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3 � Results and Discussion

The dataset of the three objective functions ( �1 , �2 and 
�3 ) were trained using bi-objective genetic programming 
(BioGP) and evolutionary neural Network (EvoNN) models. 
The three parameters Tp , Tb and �T identified in each of the 
pulse cycles were used to calculate the objective functions 
(Eqs. 2, 3 and 4) and are presented in Tables 3 and 4, respec-
tively. Few iterations in FE simulations failed to converge 

numerically and are indicated as “NA” in the table. Such non 
convergent solutions were used to identify the lower bound 
of parameters in numerical iterations.

3.1 � Training using BioGP and EvoNN

As a general practice in data driven modelling approaches, 
a fraction of the input data is used to train the models and 
rest is utilized to test and validate the trained models [55, 
56]. Around 70 % of the data collected (Tables 3 and 4) was 
utilized to train both the models (BioGP and EvoNN). Ten 
percent of the simulation data was employed for validation. 
Finally, the effectiveness of the developed models was tested 
with the remaining 20 % data. The parameters of different 
algorithms are iterated to prevent either overfitting or under-
fitting of the data (Table 5).

Table 7   Training error in dataset of electric-assisted compression

Error in data driven modelling of electric-assisted compression

 Model Generation Model structure �1 �2 �3

BioGP 2 Root=6 0.0809 0.0769 0.0840
Depth=8
Root=8 0.0799 0.0760 0.0877
Depth=10
Root=10 0.08151 0.0738 0.0671
Depth=10

EvoNN 75 Hidden 0.0854 0.0871 0.040
nodes=7
Hidden 0.1231 0.1201 0.0525
nodes=8
Hidden 0.1061 0.116 0.0478
nodes=10

Fig. 7   Correlation coefficient results generated from EvoNN and BioGP in case of (a) Electric-assisted tension and (b) Electric-assisted com-
pression

Table 8   RMSE between the trained dataset and the simulation results 
in case of electric-assisted deformation

Processes EAT EAC

 Objective functions BioGP EvoNN BioGP EvoNN

�1 0.09370 0.08184 0.08965 0.13520
�2 0.03018 0.03271 0.14112 0.09960
�3 0.02936 0.15642 0.05064 0.06253
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Using the above parameters, each of the objectives, �1−3 
(Eqs. 2–4) are trained with both BioGP and EvoNN. The 
optimized training parameters (Table 5) are used to generate 
the surrogate models. The input variables for all the three 
objectives are � and heff .

As evident from the Tables 6 and 7 , the error increases 
with the number of hidden nodes in the case of EvoNN, 
and root and depth in the case of BioGP model. Therefore, 
optimum values of these variables in the respective train-
ing models were carefully selected, which best represent 
the input dataset. The correlation coefficient generated from 
BioGP with the optimum number of depth and roots and 

EvoNN with optimum number of hidden nodes are shown 
in the Figs. 7 (a) and (b).

The input data set has a higher degree of non-linearity 
and complexity. When modelled using BioGP and EvoNN, 
the actual trend of data could be captured with reasonable 
accuracy. The correlation coefficient from both the model-
ling strategies is more than 85 % (Fig. 7). Thus, it can be 
concluded that both the strategies worked in a constructive 
way to capture all the important trends. The predictions from 
both the training models are satisfactory in each of the EA 
deformation processes.

Fig. 8   The predicted values of 
objective functions ( �1 , �2 and 
�3 ) from (a) BioGP (left side) 
and (b) EvoNN (right side) 
trained models are presented 
with corresponding value of 
objective functions—obtained 
from FE simulation in case of 
electric-assisted tension
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For validation purpose, the root mean square error 
(RMSE) between the trained data and the corresponding 
simulation results were calculated. The error values in both 
the training models are within 15 % in EA deformation 
modes (Table 8).

After validation, the trained models were tested with the 
remaining simulation results. The objectives estimated from 
the surrogate models were compared with the FE simulation 
results. It is observed (Figs. 8 and 9) that both EvoNN and 
BioGP capture the complexity of the objectives with reason-
able accuracy.

The trained surrogate models serve as input that would be 
minimized simultaneously to obtain the thermal coefficients.

3.2 � Optimization of the Trained Dataset

The identification of the objectives namely error in peak 
temperature, background temperature and cooling rate is 
based on the general understanding. Preliminary trials indi-
cated that the peak temperature was sensitive to � and the 
cooling rate ( �T ) was influenced primarily by heff  . There-
fore, it is pertinent to establish the sufficiency condition by 

Fig. 9   The predicted values of 
objective functions ( �1 , �2 and 
�3 ) from (a) BioGP (left side) 
and (b) EvoNN (right side) 
trained models are presented 
with corresponding value of 
objective functions—obtained 
from FE simulation in case of 
electric-assisted compression
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evaluating whether bi-objective optimization using only two 
of the three identified objectives could give optimum solu-
tion. For this purpose, BioGP and EvoNN (bi-objective opti-
mization processes) considering only two-objective func-
tions i.e., peak temperature error ( �1 ) and error in cooling 
rate ( �3 ), are used for the optimization of the trained dataset. 

The Pareto solutions obtained from the analysis is presented 
in the Fig. 10.

Each point in the Pareto front is associated with the 
respective error in the objectives. In such cases, a knee point, 
if available, is selected for the optimum solution among a 
group of solutions [30]. A sharp knee point is not obtained 
(Fig. 10) in the present analysis. Therefore, the optimum 
modelling parameters are identified based on the minimum 
distance from the origin ( 

√

�2

1
+ �2

3
 ) [37]. The obtained 

parameters along with the respective objective functions are 
tabulated in the Table 9. It is observed that the objective 
function values associated with the optimum solutions are 
higher than expected in each case.

The simulations of EA tension and compression carried 
out with the optimum values of � and heff  and the results are 
presented in the Fig. 11. The error in temperature history 
and the (Δ�)T predicted is appreciable. It is infered that two 
objectives are not sufficiently accurate to predict the thermal 
coefficients (Fig. 11).

Fig. 10   Pareto solutions 
obtained by (a) BioGP and 
(b) EvoNN optimization 
algorithms in case of electric-
assisted tension, (c) BioGP 
and (d) EvoNN optimization 
algorithms in case of electric-
assisted compression

Table 9   Modelling parameters obtained using bi-objective optimiza-
tion procedures

Parameters � heff �1 �3

Electric-assisted tension
BioGP/BioGP 0.59 0.146 0.07863 0.21627
EvoNN/EvoNN 0.90 0.194 0.19339 0.25561
Electric-assisted compression
BioGP/BioGP 0.65 0.54 0.30160 0.29043
EvoNN/EvoNN 0.76 0.44 0.21465 0.30062
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The optimization algorithms BioGP and EvoNN used 
here is limited to bi-objective optimization only. There-
fore, a constraint-based reference vector evolutionary algo-
rithm (cRVEA) is used for minimization of all the three 
objectives ( �1−3 ). The cRVEA algorithm uses the principle 
of generation of reference vectors in the multi-dimensional 
space, assignment of an individual to the reference vector, 

convergence and divergence of individual by using APD 
(Angle penalized distance) to find out the optimum solu-
tions in the multi-objective optimization process [38, 
57]. The objectives trained by both BioGP and EvoNN 
models are optimized using this evolutionary algorithm, 
respectively. The Pareto solutions generated from the tri-
objective optimization procedure in electric-assisted ten-
sion are shown in the Fig. 12. Similar plots are obtained 
in case of electric-assisted compression. The optimum 
modelling parameters using BioGP/cRVEA and EvoNN/
cRVEA are identified based on the least distance from the 
origin, as explained above for bi-objective optimization. 
The obtained parameters along with the respective objec-
tive functions are tabulated in the Table 10.

The simulations are carried out with the optimized 
thermal coefficients of � and heff  and the obtained results 
are presented along with the experimental results in the 
Fig. 13.

It can be observed (Tables 9 and 10) that the objective 
function values in case of tri-objective optimization pro-
cess are lower compared to that of bi-objective optimization 

Fig. 11   FE simulation results 
of electric assisted tension test 
and electric assisted compres-
sion test carried out with the 
optimized modelling parameters 
obtained using (a), (c) BioGP 
and (b), (d) EvoNN are plotted 
with experimental results in 
respective conditions

Table 10   Modelling parameters obtained by tri-objective optimiza-
tion procedures

Parameters � heff �1 �2 �3

Electric-assisted tension
BioGP/cRVEA 0.55 0.124 0.07198 0.26185 0.19151
EvoNN/cRVEA 0.57 0.085 0.02822 0.10053 0.17822
Electric-assisted compression
BioGP/cRVEA 0.82 0.54 0.19128 0.3042 0.1657
EvoNN/cRVEA 0.89 0.77 0.17917 0.15617 0.21274
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process. As a result of it, the simulations carried out using 
the optimized thermal coefficients obtained by tri-objective 
optimization process match reasonably well with the experi-
mental results (Fig. 13). Thus, it can be concluded that the 
tri-objective optimization technique provides the best esti-
mation of thermal modelling parameters of EA deformation 
processes.

3.3 � General Trends of the Optimal Solutions

The optimal solutions obtained from tri-objective opti-
mization are within the acceptable range as per the past 
analyses of the EA process [5, 13]. The optimum modelling 

parameters predicted from the EvoNN/cRVEA, which pro-
duces near accurate time-temperature profile observed in the 
experiments, are tabulated and presented with that predicted 
iteratively in the reference [23, 54] in Table 11.

It is observed that the modelling parameters in both the 
cases indicate very good agreement with that of the refer-
ence. The time-temperature profile based on these optimum 
parameters predicted using GA and that obtained experimen-
tally are compared in Figs. 13(c) and (d), showing excellent 
similarity between both the time-temperature profiles. This 
further confirms that the new methodology of identifying the 
thermal modelling parameters using multi-objective optimi-
zation is both accurate and reliable.

4 � Conclusion

In the present work, it is shown that the evolutionary data-
driven modeling and optimization approaches could be uti-
lized to identify the thermal modelling parameters of the EA 
deformation process. Three objective functions are modeled 
using BioGP and EvoNN. In order to verify the sufficiency 
of the objective function in predicting � and heff  , the trained 
dataset were analyzed using both bi-objective and tri-objec-
tive optimization. The conclusions from the present work 
are summarized below:

•	 Thermal modelling parameters of electric-assisted defor-
mation as effective heat transfer coefficient and Joule heat 
fraction are successfully identified, using a genetic algo-
rithm based multi-objective optimization approach.

•	 Unlike the traditional iterative procedures, the model-
ling parameters are identified where the errors between 
the simulated results and the experimentally obtained 
time-temperature profile are the least using each of the 
optimization procedures.

•	 The results indicate that when all the three error (objec-
tive) functions i.e., peak temperature, background 
temperature and rate of cooling are simultaneously 
minimized, the simulated temperature profile could be 
predicted within the error range of ± 5 % of the experi-
mental profile with the obtained modelling parameters.

Considering the complexities involved in such a process, 
usage of genetic algorithm based approaches is justified 
as it remove any ambiguity involved in the identification 
of the modelling parameters. The proposed methodology 
provides best estimation of the parameters in both modes 
of electric-assisted deformation, clearly highlighting the 
benefits of using this novel approach.

Fig. 12   Optimized solutions generated from cRVEA optimization 
algorithm, trained by (a) BioGP, (b) EvoNN in electric-assisted ten-
sion test
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