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Abstract
Creep-strength-enhanced ferritic steels have been introduced for high-temperature components. The high accuracy of creep 
life prediction and new high creep-strength alloys are needed for safe long-term operation. In this paper, a data-driven method 
was used to overcome the limitations of the simple-parameter life prediction method that does not consider the complex 
interactions that occur between many input variables. The explainable artificial intelligence technology, such as the Shaply 
additive explanation value(SHAP), enables intuitive understanding of the effect of individual variables on creep life and helps 
to quantitatively evaluate the effect. The artificial intelligence model was optimized using a genetic algorithm, and a method 
for proposing an optimal alloy composition with a desired creep life could be presented. In this paper, the maximum expected 
creep life of 58,640 h in the standard component range of ASME SA213 T92 under the conditions of 650 °C and 100 MPa 
was predicted, and a new alloy composition having a creep life of over 100,000 h under the same conditions is proposed.

Keywords Creep · 9% Cr steel · Explainable artificial intelligence technology · Genetic algorithm

1 Introduction

The 9%–12% Cr series heat-resistant steel is commonly used 
at high-temperature–high-pressure components of thermal 
power and chemical plants, such as boiler tubes, pipe, steam 
turbine rotor and reactor vessel [1]. These components are 
designed considering various types of deterioration dam-
age mechanisms for prolonged safe operation at high tem-
perature. Among the high-temperature damage mechanisms, 

creep is one of the most basic characteristics for determin-
ing the allowable stress in the design. There is a concerted 
research effort for developing an alloy design with improved 
creep strength [2–4] and a reliable creep life prediction 
method [5, 6].

The Larson–Miller parameter (LMP) method is repre-
sentative of various methods proposed for creep life pre-
diction and is widely used by researchers and engineers 
because it can predict creep life through the simple formula 
[LMP = Operating Temp. × (C + log (Life)], where C is a 
constant] [7]. However, Masuyama et al. [8] applied the 
LMP method to Grade 91 steel in various manufacturing 
processes and alloy compositions, and confirmed that the 
prediction accuracy strongly depends on the LMP materials’ 
constant value. In addition, Masuyama et al. [8] proposes 
using C = 31 as the optimal LMP constant value.

Even when C = 31 was applied to the LMP constant value 
in a Grade 92 alloy, which is a similar grade produced under 
various composition and heat-treatment conditions, it was 
confirmed that a large value of the LMP prediction spread 
(Fig. 1). This means that the lifetime prediction method 
using a few simple parameters is reliable when the data used 
were produced within a certain range of conditions, but in 
the case of data obtained from various compositions and 
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manufacturing conditions, it is judged that deterioration in 
prediction accuracy is unavoidable. It is difficult to consider 
many variables using the parameter method. In addition, 
because it is almost impossible to examine the interdepend-
ence between all the variables, few models can be used in 
complex prediction fields, such as alloy design [9].

As one of the efforts to overcome these limitations, data-
based artificial intelligence (AI) learning techniques are 
attracting attention. Badeshia et al. [10] showed the appli-
cability to various fields such as welding as well as creep 
life prediction using a neural network model. Recently, 
results using various machine learning models have also 
been reported [11, 12]. However, in the case of a data-driven 
model, it is difficult to understand the effect of changes in 
individual input features on the target like a “black-box” 
intuitively; hence, there is a limit to interpreting the deci-
sion-making results of the model [13].

Recently, efforts are being made to solve this problem by 
using explainable AI (XAI) technologies [14], which largely 
use either model-specific or model-agnostic techniques. 
Model-specific XAI methods work by inspecting or hav-
ing access to the model internals. Model-agnostic methods 
work by investigating the relationship between input–out-
put pairs of trained models. It is depend on the relationship 
between input–output pairs of trained models and are very 
useful for cases when there is no theory or other mechanism 
to interpret what is happening inside the model [15]. For 
example, it could provide a how an input image is recon-
structed in a specific layer through layer-level visualization 
in convolutional nearest-neighbor (CNN) algorithm[16–18]. 
Partial dependence plots (PDP) and individual conditional 
expectation (ICE) plots give information of visualization the 
interaction between a target response and input features of 
interest [19, 20].

Local interpretable model-agnostic explanations (LIME) 
[21] and Shaply additive explanations (SHAP) [22] are 

representative models widely used in practice. Among 
them, the SHAP technology [23] is a representative AI tech-
nique that can be explained by analyzing the relationship 
between an input variable and the model-predicted value 
by using the SHAP value of the individual input variable. 
The SHAP value used in this paper is a concept originating 
from a method to properly evaluate the contribution of par-
ticipants to the prize money obtained through cooperation 
between game participants during the game. SHAP informs 
the importance of each input feature on the target value and 
also confirms information about the direction and magni-
tude of an effect, making it possible to easily understand and 
explain the machine learning model.

Model analysis was performed using the permutation 
feature importance tool, which is a model-agnostic tech-
nique. The permutation feature importance is defined as the 
decrease in a model score when a single feature value is 
shuffled randomly [24]. This procedure breaks the relation-
ship between the feature and the target, and thus a drop in the 
model score is indicative of how much the model depends on 
the feature. Permutation importance does not reflect on the 
intrinsic predictive value of a feature by itself, but on how 
important this feature is for a particular model [25].

The ensemble method, which is known to exhibit excel-
lent performance in model building and optimization, was 
used for the final model selection through learning [26–28]. 
In particular, supervised learning algorithms perform the 
task of searching the hypothesis space for optimization tasks 
to solve specific problems [29]. However, it is very difficult 
to find a hypothetical hypothesis in a complex multidimen-
sional space even if the hypothesis space contains parame-
ters that are very suitable for solving a specific problem. One 
useful method for solving this is ensembles, which combine 
multiple hypotheses to form a better hypothesis.

In this paper, the effect of alloying elements on the creep 
life of the ASME SA213 T92 material [30] is analyzed using 
XAI technology, and the maximum creep life is predicted 
using model optimization and genetic algorithm (GA) meth-
ods. By using an AI-based alloy design technology, based 
on the composition of ASME SA213 T92, we propose a 
new alloy composition with a creep strength of 100,000 h 
at 650 °C and 100 MPa. This method is to guide the next 
phase of experiments by gaining insights from previously 
completed experiments to effectively reduce the time and 
cost of materials discovery.

2  Data and Method

2.1  Datasets and Data Preprocess

Table 1 shows the alloy composition, heat-treatment condi-
tions. and creep life of 133 types of martensitic heat-resistant 

Fig. 1  Larson-Miller plot of creep rupture data
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steels used in this study with a content range of 7.9%–12.9% 
Cr [31]. The data consisted of 21 input features (variable) 
and one target (output) variable, and all data were normal-
ized by the Min–Max scaling method to minimize the influ-
ence of the size and distribution of data values. In addition, 
the temperature data was used by converting it to T = 1000 K 
considering the diffusion theory and having a relatively 

larger value than the alloy component. This transformation 
contributes to model performance improvement [32].

To secure prediction accuracy in data-based learning, 
it is important to have low multicollinearity between input 
features. This was reviewed in the preprocessing process of 
the learning data and the representative results are shown 
in Fig. 2a and b. There is a low correlation between Cr, C, 

Table 1  Detail of the input 
features

Creep Life, hrs : 0.6 ~ 167723 (average : 730)

Alloy elements, wt% Range Mean Alloy elements, wt% Range Mean

C
Mn
S
Mo
Ni
V
N
B

0.004 ~ 0.23
0.27 ~ 0.92
0.001 ~ 0.02
0.04 ~ 2.99
0.01 ~ 2.00
0.01 ~ 0.28
0.001 ~ 0.165
0.0003 ~ 0.051

0.109
0.506
0.008
0.905
0.278
0.146
0.0367
0.0012

Si
P
Cr
W
Cu
Nb
Al
Co

0.01 ~ 0.86
0.001 ~ 0.029
7.915 ~ 12.9
0.01 ~ 3.93
0.01 ~ 0.87
0.005 ~ 0.312
0.001 ~ 0.057
0.008 ~ 2.5

0.300
0.014
8.776
0.509
0.074
0.043
0.0122
0.1025

Normalizing tempera-
ture, °K holding time, 
hr

1123 ~ 1453
0.17 ~ 15

1012
1.89

Tempering tempera-
ture, °K holding time, 
hr

892 ~ 1133
0.5 ~ 30

722 2.96

Test conditions
Stress, MPa 18 ~ 510 161 Temperature, oK 723 ~ 977 603

Fig. 2  Distributions between 
input features. Scatter plot 
between Cr and Carbon a, Cr 
and W b. Pair plot of Creep life 
with carbon and W c, d 
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and W alloy components, and all other features show similar 
trends, confirming that the issue related to multicollinearity 
is not significant. The distribution of creep life according 
to C and W content is shown in Fig. 2c, d, and the creep 
life is very irregularly distributed, which means that it is 
difficult to find a specific correlation between individual 
features and creep life. For actual creep life prediction, all 
the features must be considered at the same time, and this is 
almost impossible through the conventional simple regres-
sion method. The LMP stress relationship for all the data is 
shown in Fig. 3. The creep life distribution is large even at 
the same stress, which shows that in the case of the current 
data set, the LMP stress method has the potential to cause a 
large error in creep life prediction. It may be difficult to use 
the LMP method as a creep life prediction model because 
it is predicted that the creep strength can have a very wide 
distribution from 41 to 232 MPa under the condition that the 
LMP value is 30. To overcome these limitations, this work 
tried to interpret data using various data-driven AI methods.

2.2  Model Selection and Evaluation

For the optimal prediction model selection, traditional 
machine learning models such as the support vector machine 
(SVM) algorithm, the K-nearest-neighbor (KNN) algorithm, 
and the elastic net model were evaluated, and the random 
forest regressor and gradient boosting (GB) regressor were 
reviewed as boosting models. In addition, various latest 
machine learning models were used, such as the extra GB 
(XGB) regressor and the light GB (LGB) regressor, have 
shown many achievements in the data science competition 
field. The deep nearest-neighbor (DNN) regression model, 
which is a deep learning model, was also used for evaluation.

In the training process, the entire data were divided into 
training and test data at a ratio of 7:3, and the model was opti-
mized by automatically changing the parameters during the 

learning process with the pipeline hyperparameter turning 
method (ElasticNet model, 97,500 fit repeat; RandomForest 
model, 1200 fit repeat; GB model, 240 fit repeat; XGB model, 
576 fit repeat; LGB model, 1200 fit repeat; DNN model: 500 
fit repeat). For the DNN model, the model with three hidden 
layers (training R2 score, 0.922; test R2 score, 0.900) outper-
formed the complex model with four or more hidden layers 
(training R2 score, 0.922; test R2 score, 0.900) was evaluated. 
In the case of the DNN model, the performance strongly 
depends on the number of hidden layers. As a result of the 
evaluation, it was confirmed that the performance of the three 
hidden layer models was superior to that of a complex model 
with four or more. Thus, the data used in this paper were not 
sufficient for using the DNN model.

2.3  Ensemble Methods

The core of the ensemble model is to make a strong classi-
fier by combining several weak classifiers, but in this work, 
the ensemble model was implemented using a well-trained 
model. The SVM (test score, − 0.001), KNN (test score, 
− 0.068), ElasticNet (test score, 0.519) and RandomFor-
est (test score, 0.630) models that showed low performance 
during the model building process were excluded. The final 
ensemble model was built by selecting four models, GB, 
XGB, LGB, and DNN, which were evaluated for excellent 
performance.

2.4  Genetic Algorithm(GA)

In general, GAs are commonly used to generate high-quality 
solutions for optimizing search problems by relying on bio-
logically inspired operators, such as mutation, crossover, and 
selection [33]. A GA is a metaheuristic algorithm inspired 
by the process of natural selection that belongs to the larger 
class of evolutionary algorithms. The evolution usually starts 
from a population of randomly generated individuals and is 
an iterative process, with the population in each iteration 
called a generation. In each generation, the fitness of every 
individual in the population is evaluated, where the fitness 
is usually the value of the objective function in the optimi-
zation problem being solved. The more fit individuals are 
stochastically selected from the current population and each 
individual’s genome is recombined and possibly randomly 
mutated to form a new generation. The new generation of 
candidate solutions is then used in the next iteration of the 
algorithm [34].

Fig. 3  Lasson-Miller plot of the data used to train the model
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3  Results and Analysis

3.1  Model Building and Parameter Turning

After learning and parameter fine-turning using vari-
ous models, the model accuracy was evaluated with the 

coefficient of determination and the R2 value. The top four 
selected models are shown in Table 2. Because the training 
R2 scores for all models were over 0.9 and the test scores 
were over 0.88, the selected model was considered to be 
well-trained. In particular, the XGB model, which is a rep-
resentative tree-based model, was confirmed to have a very 
high training R2 value of 0.99; hence, there was a risk of 
overfitting. However, the predicted test R2 value was also 
fairly high at 0.943; thus, overfitting did not occur seriously. 
Nevertheless, it was necessary to lower the R2 value.

As mentioned earlier, the final ensemble model was built 
using four single models (Ensemble 4) to reduce the overfit-
ting tendency of the single model and to improve the model 
generality. Model optimization was performed through the 
ensemble method so that the excessively high training R2 
value of a single model was lowered without a decrease in 
the test R2 value. A model evaluation index and results are 
shown in Table 3. The Ensemble 4 model improved both the 
training and test R2 scores based on the DNN model. Com-
pared with the XGB model, it was possible to slightly reduce 
the training R2 score without decreasing the test R2 score.

The results of predicting the creep life of the test data 
using the single XGB model and the Ensemble 4 model are 
shown in Fig. 4. Both models predict the creep life well 
except for the short-term creep range of about 100 h.

3.2  Model Analysis Using Explainable Artificial 
Intelligence

To analyze the effect of individual features on the tar-
get value, the Pearson correlation coefficient (PCC) [35] 

Table 2  The main parameters of the selected artificial intelligence 
model and the R2 values of the train and test data prediction

Model Parameters R2 value

Train Test

DNN (D) Hidden layer: 26, 29, 31
Max.Jter. = 2,000,000, learning

0.922 0.900

XGB
(X)

Max pepth: 2,
No. of estimators = 5000

0.999 0.943

GB (G) Max depth = 2
No. of estimators = 5000

0.992 0.936

LGB (L) Max depth = 2
No. of estimators = 2800

0.924 0.88

Table 3  Ensemble model configuration and R2 value of each model

Model Ensemble R2 value

Train Test

Ensemble 1 DNN 0.922 0.900
Ensemble 2 DNN + XGB 0.979 0.943
Ensemble 3 DNN + XGB + GB 0.987 0.947
Ensemble 4 DNN + XGB + GB + LGB 0.982 0.942

Fig. 4  Predicted creep life using a final fine-turned model. a XGB model, b Ensemble 4 model
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considering the degree of linear correlation between two 
variables and the Spearman correlation coefficient that does 
not require the assumption of a linear relationship between 
the two variables has been used widely [36]. However, 
these analysis methods are useful in low-dimensional data 
space, but there are limitations in multidimensional analy-
sis. Hence, efforts are being made to solve these limitations 
through dimension-reduction techniques, such as principal 
component analysis (PCA).

In this work, the effect of input features on creep life fea-
ture importance was evaluated using XAI technology and it 
was intended to be used in the alloy development process as 
well as in model understanding and life prediction.

Feature importance was evaluated using SHAP and per-
mutation values based on the XGB and Ensemble 4 models, 
and the results are shown in Fig. 5a and b. The x-axis of 
Fig. 5a represents SHAP value magnitudes over all sam-
ples, and the base value means the average creep life of the 
training data set. The y-axis shows the mean absolute SHAP 
values ranging from top to bottom for the entire dataset, 
i.e., the average magnitude of each variable’s impact on 
the predicted creep life for all instances. How much impact 
on the model’s prediction for this the distribution of the 
impacts each feature has on the model output. As the input 
feature value increases, it is expressed in red (blue) when 
the SHAP value increases (decreases). For example, in the 
case of the Test_Stress feature with blue color, if the test 

stress is increased, the creep life can be reduced by up to 3.5 
SHAP value  (103.5) or more. Conversely, if it is decreased, 
the creep life is increased by more than 4 SHAP value  (104). 
In particular, increasing the normalization temperature (the 
N_Temp value is decreased in the figure) can significantly 
increase the creep life.

As a result of the feature importance analysis, in the case 
of the data set used in this work, it was evaluated that the 
normalizing temperature had the strongest effect on creep 
life, and that the alloying elements affected the creep life in 
the order of V, W, Mo, C, and Si. It was thought that it could 
be used as a very useful technology for the understanding of 
and developing alloy properties in the future.

3.3  Effect of Individual Features on Creep Lifetime 
Determination in Specific Compositions

Based on the artificial Based on the AI model learned 
through the SHAP decision plot, the contribution of individ-
ual input features to the creep life determination process of 
specific test data can be explained. The evaluation is based 
on the standard composition (Table 4) with 730 h, which is 
the overall creep life of the learning data and calculates the 
effect of individual features on the SHAP value.

For example, in Fig. 6, the 100th data (0.12C-0.41Si-
0.46Mn-12.1Cr-0.04Mo-0.01 W-0.23Ni-0.01 V-0.005Nb- 
0.013 N-0.0003B-0.05Co-0.817N_Temp-1.145Test_Temp) 

Fig. 5  A feature importance plot that can determine the influence of features on model prediction. a SHAP summary plot, b permutation impor-
tance plot
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consists of a combination of low Mo, V, and normalizing 
temperature, which decreases the SHAP value, and low Mn, 
high C, and low Test_Stress, etc., which increases the SHAP 
value compared to the standard component. Through the 
analysis of these individual results, it is possible to explain 
why it has a creep life of 2,355 h (SHAP value: 3.372).

3.4  Analysis of the Influence of Alloying Elements 
on Creep Life Using XAI

As shown in the 22-dimensional data space (Fig. 2) includ-
ing 16-dimensional components, there is a limit to applying 
the traditional regression technique to the prediction of the 
target value according to a specific feature change due to the 
multiple variance effect. Accordingly, the analysis results for 
six alloy elements with high feature importance indices are 
shown in Fig. 7 using the SHAP dependence scatter plot of 
the XAI technology based on the XGB model.

Figure 7 predicts the creep life according to the amount 
of change in alloying elements and is expressed as a relative 
SHAP value with the base SHAP value (730 h creep life) 
set to 0. The vertical spread of the SHAP values at a fixed 
composition is due to interaction effects with all the other 
variables in the figure. This means that the effect of multi-
collinearity among all features is reflected.

In the case of V (Fig. 7a), when less than 0.05 wt% is 
added, creep life becomes shorter than the standard creep 
life value of 730 h, and after increasing linearly to 0.1 wt%, 
creep life is saturated even if it increases to 0.25 wt%. W (b) 
and Mo (c) are predicted to continuously increase the creep 
life by a factor of 10 with the addition range. Using C (d), a 
creep life higher than the average can be obtained when at 
least 0.1% is added and receives a low feature importance 
rating due to the lower creep life increase effect compared 
to W and Mo. In the case of Si and Ni, however, it was pre-
dicted that the creep life would be reduced as the amount 
added increased. Therefore, the use of the currently pro-
posed XAI technique can overcome the limitations of the 
existing experimental traditional method that can only con-
sider a few types of alloy composition changes.

3.5  Optimization of Alloying Elements Using 
Genetic Algorithm

The effect of individual features on the target (creep life) 
can be analyzed through the SHAP dependence scatter plot 
in Sect. 3.4, but conversely, determining the optimal feature 
that satisfies a specific target with an experimental method 
is impossible due to the large number of variables that must 
be considered.

For example, even if 10 values are changed for each input 
feature,  1021 combinations must be considered; therefore, the 
optimization process is very difficult. To solve this problem, 
in this work, the optimization process was performed using 
a GA. In this process, the values of the four main parameters 
were set as: crossover rate, 0.5; mutation rate, 0.1; popula-
tion size, 200; and number of generations, 2000.

3.5.1  Maximum Creep Life Prediction of the ASME SA213 
T92 Material at an Operating Temperature of 650 °C 
and 100 MPa

The combination of the optimal feature with the longest 
creep life in the range that satisfies the alloy composition 

Table 4  A standard alloy composition that provides a reference SHAP value

c Si Mn P s Cr Mo W Ni Cu V Nb N Al B Co N_Temp

0.05 0.19 0.56 0.011 0.016 11.86 0.27 0.46 0.48 0.22 0.26 0.06 0 042 0.045 0.012 1.336 0.77

Fig. 6  SHAP decision plot showing the effect of individual features 
on the size of the 100th data value
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Fig. 7  SHAP dependence plot showing the change in SHAP Value (Creep life) value according to the addition of important alloying elements. a 
V, b W, c Mo, d C, e Si, and f Ni
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and heat-treatment specifications (Table 5) of ASME SA213 
T92 was derived by applying the GA method based on the 
Ensemble 4 model (Table 6). The maximum creep life was 
predicted to be 58,640 h (4.76 SHAP value). From the point 
of view of domain knowledge, S has been treated as a harm-
ful element because it reduces creep ductility [37]. In terms 
of creep life, S addition is predicted to increase creep life.

It shows that domain knowledge must be used in the 
process of securing raw data and subsequent data-preproc-
essing because the alloy must be designed in consideration 
of various requirements from the viewpoint of materials 
engineering. As a result of the GA model prediction, it is 
recommended that Si, Ni, and Al have as low a value as 
possible; therefore, it was considered necessary to lower the 
prescribed value in terms of creep life.

Figure 8 presents the result of change in creep life predic-
tion according to changes in individual alloy composition 
based on the composition proposed to be optimal (Table 6).

In the case of W, it is predicted that the creep life increase 
effect starts to appear significantly from 1.8 wt% and for B 
from 0.003 wt%. Mo did not increase significantly, but the 
creep life continued to increase. Therefore, in the case of 
these alloy components, their maximum life is at the maxi-
mum allowable composition. By contrast, the maximum 
creep life was predicted at 0.23% for V, 0.09 wt% for C, and 
9.10% for Cr. The lifespan can be rapidly reduced at 8.6% 
Cr or less.

3.5.2  Development of a New Alloy with Over 100,000 h 
Creep Life at an Operating Temperature of 650 °C 
and 100 MPa

Co, which is being considered by many researchers [38, 39], 
was selected for the development of a new alloy with over 
100,000 h creep life at 650 °C and 100 MPa. As a result of 
predicting the optimum alloy composition having the maxi-
mum creep life using the GA model, it was confirmed that 

the chemical composition without Co addition in Table 6 as 
similar to the alloy composition in Table 7.

To evaluate the effect of Co addition on creep life, Cr 
was selected because it showed an interesting behavior 
in Fig. 8 and the analysis results using the GA model are 
shown in Fig. 9. Regardless of the addition of Co, the 
creep life trend according to the Cr content was predicted 
to be almost similar except near the maximum life, and 
it was found that the creep life was improved by about 
40,000 h with addition of 2.5% Co. This tendency was 
also found for other alloying elements. That is, Co does 
not have a clear interaction with other alloying elements, 
and it could be determined that it strongly contributes to 
the solid solution-strengthening effect.

Figure 10 predicts the change in creep life according to 
the amount of Co added. As the amount of Co increases, 

Table 5  Chemical composition range of ASME SA213 T92 code regulation

Element C Si Mn P S Cr Mo W Ni V Nb N Al B N_Temp T_Temp

Min 0.07 – 0.3 – – 8.5 0.3 1.5 – 0.15 0.04 0.03 – 0.001 1040 730
Max 0.13 0.5 0.6 0.02 0.01 9.5 0.6 2.0 0.4 0.25 0.09 0.07 0.02 0.006 1080 800

Table 6  The chemical composition with longest creep life in ASME SA213 T92 code regulation

C Si Mn P S Cr Mo W Ni V Nb N Al B N_Temp T_Temp Max.Life

650 °C 100 MPa 0.09 0.015 0.326 0.007 0.01 9.10 0.59 1.99 0.01 0.22 0.085 0.06 0.001 0.006 1078 734 58,640

Fig. 8  Flow chart of genetic algorithm
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the creep life increases, and the maximum creep life was 
found to be 114,800 h. These results suggest the possibility 
of developing an alloy with a new composition that can 
be used with a creep life of 100,000 h under the operating 
conditions of 650 °C and 100 MPa (Fig. 11).

4  Conclusions

Among the various AI models, the XGB model was opti-
mally selected as a single model, and the Ensemble 4 
model consisting of four models (i.e., DNN, GB, XGB, 
and LGB) was optimally selected for the Ensemble 4 
model. Based on this model, it was confirmed that creep 

Table 7  Proposed new alloy composition by applying the genetic algorism

C Si Mn P S Cr Mo W Ni V Nb N Al B Co N_Temp T_Temp Max.Life

650 °C 100 MPa 0.09 0.03 0.31 0.015 0.01 9.10 0.59 1.99 0.01 0.23 0.07 0.06 0.001 0.006 2.5 1078 734 114,800

Fig. 9  Creep life according to alloy element change predicted by Genetic algorism based on Ensemble 4 model. a W, b V, c Mo, d C, e B and f 
Cr
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life is affected in the order of normalization temperature, 
V, W, Mo, and C, as a result of feature importance evalu-
ation using SHAP and premature values.

The existing life prediction model could not suggest an 
alloy composition with a desired creep life, but it could be 
confirmed that using the GA method an optimized alloy 
composition can be obtained.

For example, by adding Co to the specified composition 
range of SAME SA213 T92, a new alloy having a creep 
life of 100,00 h at 650 °C and 100 MPa having the follow-
ing new composition was suggested: C, 0.09–Si, 0.03–Mn, 
0.31–P, 0.015–S, 0.01–Cr, 9.10–Mo, 0.59–W, 1.99–Ni, 
0.01–V, 0.23–Nb, 0.07–N, 0.06–Al, 0.001–B, 0.006–Co, 
2.5. In the future, various AI technologies, such as XAI 

technology, are expected to provide important information 
for the understanding of predictive models and the alloy 
development process, and for reducing the number of trial-
and-error cycles for developers.
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