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Abstract
The stress–strain curves and recrystallization behavior of materials during high-temperature deformation can generally 
be modeled using the Zener–Hollomon parameters expressed as a function of strain, temperature, and activation energy. 
However, reports of the effects of the activation energy with respect to the variation in the strain rate during hot deformation 
on the modeled stress–strain curves are limited. Therefore, in this study, the effect of the activation energy on the stress–
strain curves was analyzed. For this purpose, uniaxial compression tests at temperatures of 900–1200 °C and strain rates of 
0.001–1  s−1 were performed using a nickel-based A230 alloy. Using the measured stress–strain curves, constitutive modeling 
based on the Zener–Hollomon parameters was performed. To analyze the effect of the activation energy at different strain 
rates on the modeling accuracy, two types of models derived using the strain-rate-dependent and strain-rate-independent 
activation energies were established. Then, two types of flow stresses were calculated using the models, and their accuracies 
were compared using the average absolute relative error. In addition, the dynamic recrystallization (DRX) behavior was 
modeled by applying the derived Zener–Hollomon parameters. Finally, the established DRX kinetic model was applied to 
finite element simulations to predict the microstructure of the deformed specimen. As a result, it was found that the volume 
fraction of DRX grains and the grain size, which greatly affect the mechanical properties of the material, can be predicted.

Keywords Dynamic crystallization · Zener–Hollomon parameter · High-temperature deformation · Microstructure 
improvement · Microstructure modeling

List of symbols
Z  Zener-hollomon parameter
Q  Activation energy (KJ/mol)
R  Gas constant (8.314 J/mol K)
T  Absolute temperature (K)
Tp  Temperature sensitivity 

parameter
Dave  Average grain size (µm)
D0  Initial grain size (µm)
σ  Flow stress (MPa)
σc  Critical stress (MPa)
σp   Peak stress (MPa)

σss  Steady sate stress (MPa)
έ  Strain rate  (s− 1)
εc  Critical strain
εp  Peak strain
ε0.5  Strain when volume fraction 

of DRX grains reaches 50%
εss Steady state strain
XDRX  Volume fraction of dynamic 

recrystallized grains
DDRX  Averaged equivalent diam-

eter of DRX grains (µm)
θ  Strain hardening rate
A, B, C, n’, γ, k, β, α, n1, n2, n3  Material constants.

1 Introduction

The deformation behavior of metals and alloys at high tem-
peratures is very complex [1]. However, because microstruc-
ture control is an important factor for improving the mechan-
ical properties of the final products, studies to understand 
and predict microstructural changes are of major interest in 
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the field of high-temperature forming processes. In general, 
metals and alloys with low stacking-fault energies (SFEs) 
undergo dynamic recrystallization (DRX) [2]. As the strain 
increases, work hardening, dynamic recovery (DRV), and 
DRX occur in a complex manner. Work hardening refers to 
the phenomenon in which the stress increases owing to an 
increase in the dislocation density. DRV, in contrast, refers 
to the dissipation of dislocations, which is accompanied by 
a decrease in the dislocation density and internal energy.

Liu et al. [3]. and Adam et al. [4]. reported the DRX 
mechanism of A230 alloys depends on the deformation 
temperature and strain rate. A230 alloys generally have a 
face-centered cubic (FCC) crystal structure combined with 
a low SFE, and DRX is promoted during hot deformation 
owing to the limited dislocation mobility. After reaching the 
peak in the flow stress, the stress softening stage, in which 
the dislocation density is reduced by the DRX mechanism, 
is reached. Softening occurs as a result of dislocation anni-
hilation and rearrangement at high-angle grain boundaries 
(HAGBs), which results in the formation of fine recrystal-
lized grains [5]. Therefore, a microstructure with fine grains 
can be obtained via DRX during hot deformation processes 
[6].

Figure 1 shows the microstructure development during 
DRX. When the accumulated strain reaches a critical value, 
nuclei are rapidly generated in the deformed microstructure 
and at grain boundaries. Thereafter, as the accumulated 
strain increases, DRX grains are continuously generated at 

the grain boundaries of both the DRX grains and initially 
formed grains; thus, the DRX fraction increases. The micro-
structural changes arising from DRX cause a decrease in 
the flow stress, which is maintained until it reaches a steady 
state.

DRV and DRX are the main causes of the stress softening 
mechanism in the high-temperature deformation process. In 
addition, DRX is known to be an important mechanism for 
refining the microstructure and reducing stress [7]. There-
fore, over the past half century, many studies have been 
conducted to simulate the high-temperature deformation 
properties of various materials [8–15].

For example, Chen et al. [16]. and Quan et al. [17]. studied 
the DRX behavior of 42CrMo steel during hot deformation to 
establish a DRX kinetic model, and Yin et al. [18]. investigated 
the microstructural evolution of GCr15 steel using physical 
experiments and the finite element method. The growth of 
austenite grains and the DRX of GCr15 steel were modeled 
using linear regression and genetic algorithms. In addition, 
Lin et al. [19]. established a constitutive equation for 42CrMo 
steel based on the classical stress-dislocation relationship 
and kinematics of DRX. Later, Zeng et al. [20]. studied the 
hot deformation and DRX behavior of Nb-containing TiAl 
alloys and established an Avrami-type equation to predict the 
volume fractions of DRX grains. However, in the constitu-
tive equation for high-temperature deformation, the effect of 
the activation energy with respect to the strain rate has not 
been sufficiently reported, and the empirical evaluation of the 

Fig. 1  Schematic of microstruc-
ture development during DRX
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microstructure prediction via the related DRX kinetic models 
has been insufficient.

In this study, the high-temperature deformation characteris-
tics of A230 alloy, which is widely used in various industries, 
were analyzed. The deformation behavior of the A230 alloy 
was measured using the Gleeble test at various temperatures 
and strain rates. Based on the measured data, stress–strain 
curves were modeled using the Arrhenius hyperbolic sine 
equation proposed by Garofalo et al. [21, 22]. To compare the 
effects of the differences in activation energy with respect to 
strain rate on the modeling accuracy, strain-rate-independent 
and strain-rate-dependent models were established, and the 
results reveal that the strain-rate-dependent models is more 
accurate than the strain-rate-independent model at high stress 
levels.

In addition, models that can predict the volume fraction and 
size of DRX grains were derived based on the Zener–Hollo-
mon parameters. To confirm the accuracy of the established 
DRX kinetic model, finite element (FE) simulations with a 
built-in kinetic model were performed under the same defor-
mation conditions. The results confirm that the DRX behavior 
of the material can be predicted via FE simulation.

2  Materials and Experimental Procedures

2.1  Material and Uniaxial Compression Tests

Table 1 shows the chemical composition of the A230 alloy 
used in this study. Nickel-based A230 alloys are known to have 
excellent high-temperature strength, oxidation resistance, and 
thermal stability [3]. The initial material was fabricated into 
cylindrical specimens with a diameter of 8 mm and a height of 
12 mm for uniaxial compression tests. A Gleeble 3800 system 
was used for the compression tests at a constant strain rate and 
temperature. In the Gleeble tests, the heating rate was set to 
10 °C/s. After reaching the target temperature, compression 
was performed after 5 min. The other Gleeble test conditions 
are listed in Table 2.

2.2  Microstructural Characterization

The compressed specimens were cut parallel to the compres-
sion direction and mounted using carbon powder. Thereafter, 
mechanical polishing was performed first with diamond abra-
sives (3 and 1 µm sequentially) and then with colloidal sus-
pensions. The polished surfaces were analyzed using electron 
backscattered diffraction (EBSD). In the EBSD measurements, 

the surface of each specimen was scanned in step sizes of 0.8, 
0.4, and 0.2 µm at magnifications of 500, 1000, and 2000, 
respectively. The grain orientation spread (GOS) values were 
used to discriminate between the DRX grains and non-DRX 
grains. The GOS parameter refers to how much the orientation 
of pixels within a grain differs from the average orientation of 
the grain, and is derived using Eq. (1) [23–27].

Here, J(i) is the number of pixels in grain i, and ωij is the 
misorientation angle between the orientation of pixel j and the 
mean orientation of grain i. The deformed grains have high 
GOS values because of the internal lattice distortions, whereas 
the DRX grains have low GOS values. The critical GOS value 
to distinguish between DRX and non-DRX grains generally 
ranges from 1° to 5° depending on the material and deforma-
tion conditions. In this study, DRX grains and non-DRX grains 
were distinguished using a GOS of 3° [28, 29].

3  Results and Discussion

3.1  Stress–Strain Behavior

Figure 2 shows the true stress–strain curves for the A230 
alloy. Overall, the flow stress decreases with increase in tem-
perature, which is characteristic high-temperature deformation 
behavior. This is because the mobility of the grain boundaries 
increases as the temperature increases [25, 26]. Therefore, both 
DRX and DRV occur. In addition, the low strain rate leads to 
a reduction in the flow stress because it provides sufficient 
time for the nucleation and growth of DRX grains [4, 27]. 
For all temperature conditions, the stress increases up to the 
peak stress as a result of the high work-hardening rate result-
ing from the increasing dislocation density at the beginning 
of deformation. After reaching the peak stress, the flow stress 
gradually decreases as the strain increases, and a steady state 
in which work hardening and dynamic softening are balanced 
can be clearly observed. However, the steady-state period 

(1)GOS(i) =
1

J(i)

∑
j

�ij

Table 1  Chemical composition 
of the A230 alloy

Chemical composition (wt%)

Fe Mn Si Cr C Al Nb Co Ti Mo La B W Ni

3 0.5 0.4 22 0.1 0.3 0.5 5 0.1 2 0.02 0.015 14 Bal

Table 2  Experimental conditions for the Gleeble test

Condition

Temperature (°C) Strain Strain rate  (s−1)

900, 1000, 1100, 1200 approx. 0.9 0.001, 0.01, 0.1, 1
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does not occur under some conditions at low temperatures and 
high strain rates. In contrast, at 1200 °C at all strain rates and 
1100 °C at strain rates of 0.001 and 0.01  s−1, work hardening 
after the steady state had been reached can be clearly seen. 
This is because the DRX goes to completion at a low strain 
level owing to the high temperature and low strain rate, so the 
newly generated dislocations begin to accumulate again in the 
DRX grains [28]. In general, the stress that was increased by 
the secondary work hardening is reduced again as secondary 
DRX occurs [29].

3.2  Stress–Strain Modeling Using the Zener–
Hollomon Parameters

The Arrhenius hyperbolic sine equation (Eq. (2)) has been 
widely used for modeling the relationship between the defor-
mation conditions (temperature and strain rate) and flow stress 
at high temperatures [29, 30].

(2)Z = �́�exp

(
Q

RT

)
= Csinh(𝛼𝜎)n

Fig. 2  True stress–strain curves of the A230 alloy measured at a 900, b 1000, c 1100, and d 1200 °C
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Here, έ is the strain rate, Q is the activation energy (kJ/
mol), R is the gas constant (8.314 J/mol K), T is the absolute 
temperature, σ is the flow stress, and C, α, and n are material 
constants. When the stress level is high or low, the relationship 
between the strain rate and stress can be defined by Eqs. (3) 
and (4) [31].

Here, A, B, n', and β are material constants. Unlike Eqs. (3) 
and (4), Eq. (2) can be used for constitutive modeling over all 
stress ranges. Therefore, in this study, stress–strain modeling 
was performed using Eq. (2).

3.2.1  Calculation of n' and β

The material constant α in Eq. (2) can be obtained by dividing 
β by n'. Therefore, to calculate n' and β, the natural logarithms 
of Eqs. (3) and (4) are taken, yielding Eqs. (5) and (6), respec-
tively [32].

(3)Z = �́�exp

(
Q

RT

)
= A𝜎n

�

(ασ < 0.8)

(4)Z = �́�exp

(
Q

RT

)
= Bexp(𝛽𝜎)(ασ > 1.2)

(5)ln(�́�) +
Q

RT
= ln(A) + n

�

ln(𝜎)

(6)ln(�́�) +
Q

RT
= ln(B) + 𝛽𝜎

Thus, n' and β can be obtained by linear fitting to plots 
of ln(σ) vs. ln(έ) and σ vs. ln(έ) and taking the gradient as 
shown in Fig. 3. The temperature-dependent n' and β values 
were obtained by averaging with respect to temperature so 
that one value was obtained for each strain value. The strain-
dependent value of α was obtained by calculating α = β/n'.

3.2.2  Calculation of n and  Tp

By taking the natural logarithm of Eq. (2), we obtain Eq. (7).

Further, if the strain rate is constant, Eq.  (7) can be 
expressed as Eq. (8).

Figure  4 shows the linear relationship between 
ln[sinh(ασ)] vs. ln(έ), and ln[sinh(ασ)] vs. 1000/T at a strain 
of 0.5. By averaging the slopes of the linear fits shown in 
Fig. 4a and b, n and temperature sensitivity parameter (Tp) 
can be obtained. In the subsequent derivation, if the Tp val-
ues are averaged over the strain rate, the strain-rate-inde-
pendent material constants can be calculated. Otherwise, 
if the Tp values obtained at each strain rate are applied (not 
averaged), the strain-rate-dependent material constants can 
be calculated. Therefore, we analyzed the effect of both the 
strain-rate-dependent and strain-independent constants on 
the model accuracy.

(7)ln(�́�) = ln(C) + n[ln{𝑠𝑖𝑛ℎ(𝛼𝜎)}] −
Q

RT

(8)Q = R ∙
𝜕ln(�́�)

𝜕ln[𝑠𝑖𝑛ℎ(𝛼𝜎)]

||||T ∙
𝜕ln[𝑠𝑖𝑛ℎ(𝛼𝜎)]

𝜕(1∕T)

||||�́�

Fig. 3  Calculation of a n' by plotting ln(σ) vs. ln(έ) and b β by plotting σ vs. ln(έ). For simplicity, only the contents corresponding to a strain of 
0.5 are presented
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3.2.3  Calculation of Q, C, and Z

Using the previously derived values of n and Tp, the acti-
vation energy (Q) with respect to the strain can be calcu-
lated using Eq. (9) [33, 34].

In addition, by substituting the Q value into the equation 
below, the material constant C in Eq. (2) can be obtained.

Figure 5 shows the strain-rate-independent and strain-
rate-dependent values of Q and ln(C). For the strain-
rate-independent results (Fig. 5a and b), one Q and ln(C) 
value averaged over the strain rate exist for each strain 
value [35]. In contrast, the strain-rate-dependent results 
have strain-rate-dependent Q and ln(C) values for each 
strain value (Fig. 5c and d). As shown in the figure, the 
Q and ln(C) values are significantly affected by the strain 
rate. At low strain, the two material constants are similar. 
However, as the strain increases, the values at strain rates 
of 0.001 and 0.01  s−1 decrease sharply, whereas those at 
strain rates of 0.1 and 1  s−1 are maintained or increase.

The activation energy is a crucial material constant 
for determining the flow stress. Therefore, when there 
is such a large difference with respect to strain rate, the 
strain-rate-dependent Q and ln(C) values will yield more 
accurate results than the strain-rate-independent values. 
Table 3 lists the calculated Q and ln(C) values.

(9)Q = RnTp
|||�́�

(10)ln[𝑠𝑖𝑛ℎ(𝛼𝜎)] =
ln(�́�)

n
+

Q

nRT
−

ln(C)

n

3.2.4  Modeling the Stress–Strain Curve Using the Zener–
Hollomon Parameters

By substituting the previously calculated material con-
stants into Eq. (2), the Zener–Hollomon parameters for 
each temperature, strain rate, and strain were calculated. 
Subsequently, the flow stresses were calculated by substi-
tuting the calculated Z and C values into Eq. (11), and the 
results for a temperature of 1200 °C are shown in Fig. 6a 
and b [36].

In the case of the strain-rate-independent results 
(Fig. 6a), the predicted stresses are similar to the experi-
mental values at low strain rates. However, there are many 
differences between the predicted and experimental values 
at high strain rates (0.1 and 1  s−1).

In addition, the strain-rate-dependent results yielded 
more accurate predictions than the strain-rate-independent 
results (Fig. 6b). For example, at strain rates of 0.001  s−1 
and 0.01  s−1, the trend in the flow stress caused by dynamic 
softening was accurately predicted, and the differences 
were negligible. In the case of high strain rates (0.1  s−1 and 
1  s−1), although there is a slight difference between the pre-
dicted and experimental values, the trends in the flow stress 
are similar. The difference between the two values is also 
improved compared with the strain-rate-independent result.

(11)� =
1

�
ln

⎧⎪⎨⎪⎩

�
Z

C

� 1

n

+

��
Z

C

� 2

n

+ 1

� 1

2
⎫⎪⎬⎪⎭

Fig. 4  Calculation of a n by plotting ln[sinh(ασ)] vs. ln(έ) and b Tp by plotting ln[sinh(ασ)] vs. 1000/T. For simplicity, only the contents corre-
sponding to a strain of 0.5 are presented
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Figure 6c and d show the differences between the pre-
dicted and experimental stresses for all deformation condi-
tions. In the case of the strain-rate-independent results, the 
error is relatively low in the low-stress range. However, as 

the stress level increases, the error also increases. This is 
because the dependency of the activation energy on the 
strain rate increases as the strain (or stress) increases, as 
shown in Fig. 5c. In contrast, the strain-rate-dependent 

Fig. 5  Calculated strain-rate-independent a deformation activation energy (Q) and b ln(C) and strain-rate-dependent c Q and d ln(C)

Table 3  Activation energies (Q) 
and ln(C) at different strain rates 
and strain values

Constants Strain rate  (s−1) Strain

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Activation energy (Q) 0.001 530 467 427 401 379 353 326 305
0.01 492 429 401 378 360 348 340 331
0.1 468 466 465 464 463 464 464 464
1 437 448 460 468 476 489 503 516
Average 482 452 438 428 419 414 408 404

ln(C) 0.001 44.0 38.1 34.3 31.8 29.7 27.3 24.7 22.6
0.01 40.3 34.5 32.0 29.9 28.4 27.3 26.6 25.9
0.1 37.4 37.3 37.4 37.4 37.4 37.6 37.7 37.9
1 35.8 36.5 37.5 38.7 38.7 39.8 41.0 42.1
Average 39.3 36.6 35.3 33.5 33.5 33.0 32.5 32.1
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result shows relatively high accuracy over the entire stress 
range.

To compare the accuracies of the strain-rate-independent 
and strain-rate-dependent models more closely, the correla-
tion coefficient (R) and the average absolute relative error 
(AARE) were calculated using Eqs. (12) and (13) [37].

Here, Ei, Pi, and n are the experimental flow stresses, 
predicted flow stresses, and total number of data points, 

(12)
R =

∑n

i=1
(Ei − E)(Pi − P)�∑n

i=1

�
Ei − E

�2 ∑n

i=1

�
Pi − P

�2

(13)AARE =
1

n

n∑
i=1

||||
Ei − Pi

Ei

|||| × 100

respectively. For the strain-rate-independent results (Fig. 6c), 
R and AARE are 0.989 and 10.55, respectively, whereas, for 
the strain rate-dependent results (Fig. 6d), they are 0.997 and 
6.37, respectively.

3.3  DRX Kinetic Model

In high-temperature deformation, the kinetics of DRX are 
predominantly affected by the density and distribution of 
dislocations [38]. The key variables for modeling the vol-
ume fraction of DRX grains include the critical strain (εc), 
peak strain (εp), strain when the volume fraction of DRX 
grains reaches 50% (ε0.5), and steady-state strain (εss). As 
shown in Fig. 7a, εc is the strain at which the DRX begins 
to occur, and the corresponding stress value is denoted as 
σc. εp is the strain corresponding to the maximum stress, 
and εss is the strain at which work hardening and dynamic 

Fig. 6  Experimental and predicted stress–strain curves calculated 
using the a strain-rate-independent and b strain-rate-dependent con-
stants. Correlation between the experimental and predicted stresses 

calculated using the c strain-rate-independent and d strain-rate-
dependent constants. For simplicity, only the stress–strain curves for 
1200 °C are presented in a and b 
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softening are balanced such that the flow stress does not 
increase or decrease. The values corresponding to εc, εp, and 
εss (or σc, σp, and σss) can be obtained by plotting θ, which is 
the derivative of the stress with respect to strain, as shown 
in Fig. 7b. To calculate σc, which is the inflection point in 
the θ vs. σ graph, more accurately, -(dθ⁄dσ) vs. σ graphs are 
generally used [39].

Figure 8 shows plots of θ vs. σ and -(dθ⁄dσ) vs. σ for 
1100 °C. As shown, there are no σss values at strain rates of 
0.1 and 1  s−1. This is because, when the deformation tem-
perature is low or (and) the strain rate is high, DRX does not 
go to completion within the limited strain range, as shown in 
Fig. 2. Therefore, the εss values at all strain rates at 900 °C, 
0.01, 0.1, and 1  s−1 at 1000 °C, and 0.1 and 1  s−1 at 1100 °C 
could not be determined. Table 4 summarizes the εc, εp, and 
εss values under all conditions.

In general, the DRX kinetics can be modeled using the 
following exponent-type equation [40]:

 where XDRX and nd are the volume fraction of the DRX 
grains and material constant, respectively. The value of ε0.5 
can be obtained experimentally by plotting XDRX vs. ε using 
Eq. (15) [41].

Figure 9 shows the graph of XDRX for deformation at 
1000 °C at 0.001  s−1. The graph shows that a strain of 0.419 
resulted in a 50% volume fraction of DRX grains.

(14)XDRX = 1 − exp

[
−k

(
� − �c

�0.5

)nd
]
,

(15)XDRX =
� − �p

�ss − �p

Fig. 7  a Relationship between the stress–strain curve and DRX volume fraction ( XDRX ) and b θ vs. σ showing representative strain values

Fig. 8  Plots of a θ vs. σ and b –(dθ/dσ) vs. σ. For simplicity, only data corresponding to 1100 °C are presented
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By taking the natural logarithm of Eq. (14), we obtain 
Eq. (16).

Figure 10 shows the plot of ln[-ln(1-XDRX)] vs. ln(ε-
εc/ε0.5). The mean slope and y-intercept of the linear fitted 
line give nd and k, respectively, and nd and k were calcu-
lated to be 3.154 and 0.834, respectively.

(16)ln
[
−ln

(
1 − XDRX

)]
= ln(−k) + ndln

(
� − �c

�0.5

)

3.3.1  DRX Kinetic Models for FE Simulation

To verify the validity of the DRX kinetic model, process 
analysis of high-temperature compression was performed 
using a commercial FE simulation package (Forge, Trans-
valor Co.). To apply the DRX kinetic model to the FE sim-
ulation, Eqs. (17)–(20), as well as Eqs. (2) and (14), are 
required [42].

Here, α, δ, γ, B, n1, n2, and n3 represent the material con-
stants. DDRX is the average equivalent diameter of grains that 
have undergone complete DRX, as obtained from EBSD 
data of compression test specimens. To calculate each 
material constant, the above four equations were plotted, 
as shown in Fig. 11. Subsequently, the material constants 
were obtained by determining the slope and y-intercept of 
the fit to the data.

The corresponding equations and material constants 
related to the DRX kinetic model for the FE simulation 
are summarized in Table 5. Figure 12 shows the XDRX 
graph obtained based on the values and equations listed 
in Table 5. The XDRX at 900 °C cannot be plotted because 
there is no steady state in the flow stresses. Furthermore, 

(17)�p = �Zn1

(18)�0.5 = �Zn2

(19)�c = ��p

(20)DDRX = BZn3

Table 4  Summary of the representative strain values for the DRX 
kinetic model with respect to deformation conditions

Temperature (°C) Strain rate  (s−1) ɛc ɛp ɛss

900 °C 0.001 0.088 0.195 –
0.01 0.146 0.212 –
0.1 0.045 0.36 –
1 0.130 0.464 –

1000 °C 0.001 0.062 0.151 0.746
0.01 0.068 0.189 –
0.1 0.172 0.237 –
1 0.284 0.401 –

1100 °C 0.001 0.043 0.089 0.599
0.01 0.052 0.153 0.768
0.1 0.060 0.159 –
1 0.181 0.314 –

1200 °C 0.001 0.040 0.082 0.503
0.01 0.048 0.108 0.617
0.1 0.043 0.123 0.815
1 0.132 0.26 0.696

Fig. 9  Relationship between the DRX grain volume fraction and true 
strain on deformation at 1000 °C at 0.001  s−1

Fig. 10  Calculation of nd by plotting ln[-ln(1- XDRX)] vs. ln(ε-εc/ε0.5)
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under deformation at 0.01  s−1 at 1000 °C and 0.1  s−1 at 
1100 °C, there is no steady state in the flow stress. How-
ever, it can be seen that XDRX reaches 100% when the strain 
reaches approximately 1.0, as shown in the XDRX graph. 
This is because the normalized data from Eqs. (17) to (19) 
were used.

3.4  Verification of the DRX Kinetics Model

Additional compression tests were performed for compari-
son with the FE simulations. Specimens with a diameter 
of 8 mm and a height of 12 mm were heated to 1100 and 
1200 °C and pressed at speeds of 5.1 and 5.14 mm  s−1, 
respectively, to a final stroke of 8 mm. The roughly esti-
mated strain rates for these two conditions are 0.425 to 
1.275  s−1 for 5.1 mm/s and 0.428 to 1.285  s−1 for 5.14 mm/s.

The FE simulations were performed under the same com-
pression conditions, and the results are shown in Fig. 13. 
To compare the results of the EBSD measurements and 
FE simulation, three regions, the center, middle, and edge, 
were selected. As shown, the strain and strain rates tend to 
decrease from the center to the edge. A high volume frac-
tion of the DRX grains was predicted at the center. On the 
other hand, a low value was estimated at the edge, similar 
to the trend in strain. Small and large DRX grain sizes were 
predicted at the center with a high strain rate and at the edge 
region with a low strain rate, respectively. This is because 

Fig. 11  Calculation of α, δ, B, n1, n2, and n3 by plotting a ln(εp) vs. ln(Z), b ln(ε0.5) vs. ln(Z), c εc vs. εp, and d ln(DDRX) vs. ln(Z)

Table 5  Summary of the equations and material constants for FE 
simulation

Equations Variables and values

Z = �́�exp
(

Q

RT

)
(2)

Q = 431,179, R = 8.314

XDRX = 1 − exp
[
−k

(
�−�c

�0.5

)nd
]
(14)

k = 0.834, nd = 3.154

�p = �Zn1(17) α = 1.54e−2, n1 = 0.06955
�0.5 = �Zn2(18) δ = 7.76e−2, n2 = 0.04725
�c = ��p(19) γ = 0.76
DDRX = BZn3(20) B = 2.081e3, n3 = -0.143
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the Zener–Hollomon parameters that determine the DRX 
grain size are functions of the temperature and strain rate. 
However, the difference in DRX grain sizes was as small as 
0.5 μm. With respect to the average grain size, a low value 
was estimated at the center with a high volume fraction of 
DRX grains because the coarse initial grains almost disap-
peared. Otherwise, a large value was predicted at the edge 
where the initial grains remained. Table 6 presents the effec-
tive strain according to the selected regions in Fig. 13 for all 
deformation conditions. Each effective strain was calculated 
by averaging the three node values around each point.

Figure 14 shows the EBSD results for the three selected 
regions. In the case of the center and middle under all defor-
mation conditions, homogeneous fine grains were evenly 
distributed, and these fine grains were newly formed by 
DRX. In contrast, partially heterogeneous coarse grains 
appeared in the edge regions. The coarse grains seem to be 
non-DRX grains (original grains), so a low volume fraction 
of DRX grains is expected.

The GOS maps used to distinguish between the DRX and 
non-DRX grains are presented in Fig. 15. For the 1100 °C 
case, in the middle and center regions, most of the grains 
had a low GOS value of 3° or less. However, there were still 
some non-DRX grains. On the other hand, for the micro-
structure deformed at 1200 °C, the edge region shows the 
same trend as that 1100 °C. However, unlike the 1100 °C 
case, the middle and center regions contain no non-DRX 
grains. Notably, for the 1100 °C case, although the strain of 
the center region was 1.7, non-DRX grains were still present 
in the center. This is not consistent with our results consider-
ing that a steady state exists in the flow stresses at 1100 °C 
for all strain rates and volume fractions of the DRX grains 
in Fig. 12b.

Figure 16 shows the GOS values and grain size distri-
butions for each region to analyze the causes of the above 
results. In the case of the edge regions for the 1200 °C case 
(Fig. 16c), many coarse grains with a high GOS are present. 
For the middle and center regions, the grain size decreased, 

Fig. 12  Volume fractions of DRX grains at a 1000, b 1100, and c 1200 °C
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and the GOS values tended to converge to 3° or less. On 
the other hand, for the middle and center of the 1100 °C 
case, some grains are small but have high GOS values. 

This suggests that abnormal DRX did not occur despite the 
increase in the GOS value induced by the continued defor-
mation of the fine grains.

Figure 17 shows graphs comparing the results of EBSD 
measurement and FE simulation for the volume fraction of 
DRX grains, DRX grain size, and average grain size. With 
respect to the volume fraction of the DRX grains for the 
1100 °C case, there is a slight difference between the results 
of EBSD measurements and FE simulation in the center 
and middle regions because of the abnormal DRX behav-
ior at 1100 °C. However, the overall trend was accurately 
predicted in both deformation conditions. In the case of the 
DRX grain size and average grain size, although there is 

Fig. 13  Results of FE simulation performed at 1100 °C

Table 6  Effective strain in selected regions with respect to deforma-
tion conditions

Conditions Effective strain

Temperature Compression speed Position

Center Middle Edge

1100 °C 5.14 mm  s−1 1.7 1.17 0.75
1200 °C 5.1 mm  s−1 1.9 1.19 0.69
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a slight absolute numerical difference, the variation with 
respect to strain level for each region is also effectively 
predicted. Therefore, it was concluded that DRX behavior 

can be effectively predicted by combining the DRX kinetic 
model and FE simulation.

Fig. 14  Inverse pole figure (IPF) maps of measured regions at a 1100 °C and a compression speed of 5.14 mm  s−1 and b 1200 °C at a compres-
sion speed of 5.1 mm  s−1

Fig. 15  GOS maps of different measured regions at a 1100 °C and a compression speed of 5.14 mm  s−1 and b 1200 °C at a compression speed 
of 5.1 mm  s−1
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Fig. 16  Grain size distribution according to GOS values at a center, b middle, and c edge
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4  Conclusion

To analyze the high-temperature deformation behavior of 
nickel-based A230 alloy, high-temperature compression 
tests were conducted at strain rates of 0.001–1  s−1 and 
temperatures of 900–1200 °C. Based on the experimen-
tal results, the constitutive equations for the stress–strain 

curves and DRX kinetic model were established based 
on the Zener–Hollomon parameters. The analysis results 
obtained through various experiments and mathematical 
derivations conducted in this study are summarized below.

The Zener–Hollomon parameters were obtained to 
derive a constitutive equation for the stress–strain curves. 
Two types of Zener–Hollomon parameters, one derived 

Fig. 17  Comparison between EBSD and FE simulation results for the a volume fraction of DRX grains, b DRX grain size, and c average grain 
size
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using the strain-rate-independent activation energy and the 
other using strain-rate-dependent activation energy, were 
calculated. As a result, it was confirmed that the strain-
rate-dependent result can more accurately predict the flow 
stresses (AARE = 6.37). In the strain-rate-independent case, 
the AARE was 10.55.

A DRX kinetic model was established based on the 
obtained parameters. The DRX kinetic model was applied 
to the FE simulation to predict the microstructural changes 
according to the deformation history. EBSD analysis was 
performed using the material deformed at high temperatures. 
From the EBSD results, the volume fraction of DRX grains, 
DRX grain size, and average grain size were measured and 
compared with the FE simulation results. The results show 
that the DRX behavior can be effectively predicted by com-
bining the DRX kinetic model and FE simulation.
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