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Abstract
In this study, the effect of kinetic energy of the shot peening process on microstructure, mechanical properties, residual 
stress, fatigue behavior and residual stress relaxation under fatigue loading of AISI 316L stainless steel were investigated to 
figure out the mechanisms of fatigue crack initiation and failure. Varieties of experiments were applied to obtain the results 
including microstructural observations, measurements of hardness, roughness, induced residual stress and residual stress 
relaxation as well as axial fatigue test. Then deep learning approach through neural networks was used for modelling of 
mechanical properties and fatigue behavior of shot peened material. Comprehensive parametric analyses were performed to 
survey the effects of different key parameters. Afterward, according to the results of neural network analysis, further experi-
ments were performed to optimize and experimentally validate the desirable parameters. Based on the obtained results the 
favorable range of shot peening coverage regarding improved mechanical properties and fatigue behavior was identified as 
no more than 1750% considering Almen intensity of 21 A (0.001 inch).
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1 Introduction

Fatigue failure mostly initiates from the surface layer of the 
components [1–3]. Therefore, applying severe plastic defor-
mation (SPD) methods such as shot peening (SP) have criti-
cal role for surface and structural integrity of the materials 
[2, 5–9]. Tow parameters of Almen intensity and surface 
coverage are specified as the main parameters of SP pro-
cess [10, 11]. Beneficial effects of conventional shot peen-
ing (CSP) and severe shot peening (SSP) which has higher 
severity than CSP (by increasing the values of intensity 
and coverage) were studied on improvement of mechani-
cal properties and fatigue behavior of the different metallic 
materials in the last decade. The results indicate that SSP has 
higher positive effects than CSP which caused by inducing 

of higher compressive residual stress and nanocrystalliza-
tion of the surface layer grains [8, 12–18]. However, over 
shot peening (OSP) which induces higher kinetic energy 
than SSP has detrimental influence on surface of the target 
material. OSP create surface defects such as overlaps and 
nano/micro cracks [19–21]. It was reported that fatigue life 
reduces after performing OSP compared to the severely and/
or conventionally shot peened material [22–24]. Determi-
nation of the boundary between SSP and OSP and there-
fore finding the maximum optimal conditions of SP is quite 
challenging. Maleki et al. [25] presented some experimental 
approaches for specification of the boundaries between CSP, 
SSP and OSP. Although the presented methods works, but 
because of their fully experimental nature, they are time and 
cost consuming.

On the other hand, artificial intelligence (AI) based meth-
ods such as neural networks (NN) are remarkably applied in 
different aspects of science and engineering [26–29], as well 
as their applications in fatigue behavior prediction and anal-
ysis [30–35] and modelling of SP process [28, 30, 36–38]. 
In general, a neural network has three major layers of input, 
hidden and output [39]. Shallow neural network (SNN), as 
the primary generation of artificial neural networks, were 
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mostly used in simulation of different processes. SNN has 
1 or 2 hidden layers which generally trained by back-prop-
agation (BP) algorithm [40]. These networks besides their 
beneficial applications have some limitations. The most 
important limitation of SNNs is the large number of data 
set required for their development [41]. Considering the 
improvements achieved in the developing of NNs by deep 
learning methods including restricted Boltzmann machine 
(RBM) and deep belief network (DBN) presented by Hinton 
et al. [42, 43] in 2006, it is feasible to develop deep neural 
network (DNN) using greedy layer-wised pre-training. After 
further improvements in this area, other alternative methods 
for pre-training of DNN such as stacked auto-encoder (SAE) 
were presented which helps to develop DNN with small data 
set and achieve higher efficiency by increasing the number 
of hidden layers and using SAE in between them [44–47].

In the present study, effects of different SP treatments 
with various severities were investigated on the microstruc-
ture, mechanical properties and axial fatigue behavior of 
the AISI 316L stainless steel. In addition, circumstance of 
residual stresses relaxation due to fatigue loading and initia-
tion of the fatigue crack growth were studied experimentally. 
Then different NNs including SNN, DNN and SAE assigned 
DNN (SADNN) were developed for modelling of the distri-
bution of hardness and residual stress from top surface to 
interior, residual stress relaxation and fatigue behavior. The 
developed NNs were assessed and the optimum structures 
were selected for parametric analyses. Afterward, based 
on the obtained results of NNs, further experiments were 
accomplished to optimize and experimental validation of 
the desirable parameters as well as the specification of the 
boundary between the SSP and OSP.

2  Experimental

2.1  Materials and Specimens

Fatigue test specimens of AISI 316L SS were prepared 
according to the ASTM E466 [48] standard using sheets 
of mechanically ground and polished material with mirror 
finishing. The chemical composition of the AISI 316L SS 
is C 0.22, Mn 1.34, Si 0.47, Cr 17.11, Cu 0.41, Mo 2.03, Ni 

10.15, Co 0.26, P 0.034, S 0.005 and the remainder is Fe (in 
wt%). Shape and dimensions of the fatigue test specimens 
are shown in Fig. 1.

2.2  Shot Peening Treatments

Four different SP treatments with identical Almen intensity 
of 21 A (0.001 inch) and coverages of 100, 1500, 2500 and 
3000% were performed on the specimens. Almen intensity 
was achieved according to SAE J443 standard on the A 
Almen strips [49]. Standard steel shots with average diam-
eter and hardness of 0.58 mm and 50 HRC respectively were 
used. SP treatments performed with perpendicular impact 
direction and the distance between nozzle outlet and surface 
of the specimens was about 10 cm.

2.3  Microstructural Observations

Optical microscopy (OM) and field emission scanning 
electron microscopy (FESEM) were accomplished on the 
cross-sectioned samples using Olympus and Mira 3-XMU, 
respectively. Samples were impregnated in a Phenolic hot 
mounting resin and ground with a series of SiC papers up 
to P4000. Then samples were polished by polycrystalline 
diamond water-based suspensions and etched with Marble 
solution for 5 s.

2.4  XRD Crystallite Size Measurements

XRD measurements were performed for the determination 
of the grain size after applying SP treatments. For XRD 
analysis, X’Pert PRO MPD (PANalytical) X-ray diffractom-
eter and X’Pert High Score Plus (V. 3) analyzer which asso-
ciated with MATLAB R2015b were employed with CuKα 
radiation operating at 40 kV and 40 mA, scanning angles of 
30º–150º, and irradiating an area of 10 mm. The full width 
at half maximum (FWHM) of the diffraction θ peaks were 
also obtained and the crystallite sizes were calculated using 
using Williamson–Hall (W–H) method [50, 51].

Fig. 1  Shape and size of the 
fatigue test specimen
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2.5  Microhardness Measurements

Vickers microhardness measurements were carried out 
from surface up to 650 µm depth using Qness GmbH Q30 
A microhardness tester with a diamond Vickers indenter at 
a load of 10 gf for a duration of 7 s. The measurements were 
accomplished along three parallel paths from shot peened 
surface with same depth for each measurement through the 
core material and average of them were reported.

2.6  Surface Roughness Measurements

Before roughness measurements, samples were cleaned by 
means of acetone and distilled water in an ultrasound bath 
for 10 min per each step and then they were dried with warm 
air. Surface roughness was measured using SURFCORDER 
SE500 based on the definition of ISO 4287 [52]. Measure-
ments were applied on three random areas of each sample 
and the average values were reported.

2.7  Residual Stress Measurements

The distribution of residual stresses was assessed using XRD 
analysis by means of Xstress 3000 G2/G2R X-ray Stress 
Analyzer (radiation Cr Kα, λKα1 = 2.2898 Å, irradiated 
area of 4 mm diameter, sin2ψ method, and diffraction angle 
(2θ) ~ 156 scanned between 45 and − 45). Measurements 
were carried out from surface to depth of 320 µm by remov-
ing a very thin layer of material with 40 µm thickness via 

electro-polishing with a solution of acetic acid (94%) and 
perchloric acid (6%).

2.8  Fatigue Test

Fatigue behavior of the as-received (AR) and shot peened 
specimens were studied using SANTAMSAF 250 axial 
fatigue test equipment with frequency of 30 Hz and stress 
ratio of R = 0.1. Fatigue tests performed at room temperature 
and air relative humidity of 50%. 20 samples were used to 
obtain S–N curves in each series and average fatigue life of 
two different specimens was reported in each stress ampli-
tude. Only for the stress amplitude of 320 MPa, four samples 
of each series were used and average of them was reported.

3  Neural Networks

Inspired from performance of human’s brain, NNs are 
widely used for understanding complex problems and pre-
senting logical solutions by means of functional relation 
[53–55][56]. NNS can be employed for modeling and anal-
ysis of non-linear processes which have different effective 
parameters [57]. Schematic architecture of a single layer NN 
fed with r and s number of input p and output a parameters 
respectively, with corresponded weight matrixes w, bias vec-
tors b, linear combiner u and transfer function f, is presented 
in Fig. 2a. The methodology considered in this study is pre-
sented in Fig. 2b. Several SNNs and DNNs were developed 
via trial and error approach as there in no exact formula to 

Fig. 2  a Schematic illustration 
of structure of a NN with one 
hidden layer considering the 
weight matrixes w, bias vectors 
b, linear combiner u and transfer 
function f. b Employed method-
ology used in this study based 
on the investigation of the R2 
value as a factor for predicted 
results accuracy



115Metals and Materials International (2022) 28:112–131 

1 3

obtain high performance NN. In the collected data, 80% of 
them were considered for training and the remained 20% 
samples were regarded in order to test and evaluate the 
developed network structures. Random selection of data 
was used for training and testing processes. Performance 
assessment of the networks was determined in terms of the 
accuracy of the predicted results of NNS which calculated 
by means of correlation coefficient  (R2).  R2 can be calcu-
lated as follows [58]:

where, n is the number of fed samples, fEXP and fANN repre-
sent the experimental and predicted values respectively. The 
values of FEXP and FANN are determined as follows:

(1)R2 =

∑n

i=1
(fEXP,i − FEXP)(fANN,i − FANN)

�

∑n

i=1

�

(fEXP,i − FEXP)
2(fANN,i − FANN)

2
�

(2a)FEXP =
1

n

n
∑

i=1

fEXP,i

Figure 3a illustrates a typical SNN with two hidden lay-
ers. It is well know that number of neurons as computational 
nodes of NNs and the number of layers in a NN have critical 
role on the performance of modelling. Number of neurons is 
one of the major variable parameters of the network struc-
ture. Oftentimes, by increasing the number of neurons the 
performance of the NN is rising as well although it makes 
the computational time longer.

Figure 3b illustrates architecture of a DDN schemati-
cally which is a modified SNN with more hidden layers and 
structurally they are so similar. DNN can be developed with 
or without pre-training process. In the presented image, 
SAE is assigned to DNN for pre-training. SAE is corre-
sponded in between each layers of DNN. Therefore to con-
struct SADNN with j layers and full inter-connection, j − 1 
SAEs are employed and for the presented model with total 

(2b)FANN =
1

n

n
∑

i=1

fANN,i

Fig. 3  Schematic illustration of: a SNN with 4 layers and b DNN with 6 layers with the assigned SAE. Three different considered models in this 
study with their relevant input and out parameters: c Modelling A, d Modelling B and e Modelling C
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6 layers consist of [input layer-4 hidden layers-output layer], 
5 SAEs are utilized. Considering the number of layers and 
neurons, 6 layers SADNN with L–(M–N–O–P)–Q structure, 
has 5 SAEs which have structures of L–(M)–L, M–(N)–M, 
N–(O)–N, O–(P)–O and P–(Q)–P.

Circumstance of assigning SAE to DNN according to 
number of neurons in each layer of DNN is shown in the 
right part of the Fig. 3b. The number of neurons in each SAE 
is similar to ones used in corresponded DNN layers. First 
SAE catches the input fed to DNN as its particular inputs 
and outputs data and after processing them the achieved out-
puts in its hidden layer are transferred to the second SAE as 
the new particular inputs and outputs. This process continues 
till to reach to the last SAE. After successfully training of 
SAEs, obtained initial weights and biases values of each 
layer wj(0), are assigned to DNN’s corresponding layer to 
initialize the modelling process with fine-tuned SADNN.

Figure 3c–e shows the three different considered models 
in the present study. Modelling A is used for investigation 
of the effects of SP severity on distribution of microhard-
ness and residual stress as outputs and depth from surface 
and surface coverage as inputs. In modelling B, besides the 
used inputs of modelling A, fatigue cycles in terms of fatigue 
life in particular stress amplitude is added to get the residual 
stress relaxation as output. Finally, in modelling C, param-
eters of surface coverage and stress amplitude are considered 
as inputs for modelling of fatigue life as output.

In the implementation of the NNs, based on the three 
considered models of A, B and C, different SNNs, DNNs 
and SADNNs were developed.

After achieving optimum structures of NNs with high-
est performance, chain rule based relation on the values of 
weights and biases are implemented to generate principle 
model function considering the results obtained in whole 
layers. For example the model function of modelling C con-
sidering 6 layers network can be determined as follows:

(3a)a1 = f 1
(

w1i + b1
)

(3b)a2 = f 2
(

w2i1 + b2
)

(3c)a3 = f 3
(

w3i2 + b3
)

(3d)a4 = f 4
(

w4i3 + b4
)

(3f)a5 = f 5
(

w5i4 + b5
)

(4)

a6 =M(m(1)) = f 6
(

w6i5 + b6
)

= f 6
(

w6f 5
(

w5f 4
(

w4f 3

(

w3f 2
(

w2f 1
(

w1i + b1
)

+ b2
)

+ b3
)

+ b4
)

+ b5
)

+ b6
)

where a1, a2, a3, a4 and a5are the outputs of the first to fifth 
layers respectively. The function M assigns the values of 
the 2 considered input parameters of surface coverage and 
stress amplitude to the output parameter of fatigue life m(1).

4  Results and Discussions

4.1  Experimental Results

OM observations of the shot peened specimens with × 300 
magnifications are shown in Fig. 4a that reveals the grain 
refinement in the surface layer of the treated materials which 
generated gradient structures. Also, it can be observed that 
by increasing the surface coverage, depth of the plastically 
deformed layer induced by SP is enhanced. Li et al. [59] 
classified engineering materials to structural and chemical 
gradient materials. Based on the mentioned category, shot 
peened materials are placed in the grain size structural gra-
dients. Figure 4b, depicts the schematic illustration of a shot 
peened specimen under the applied force of axial fatigue test 
with considering the applied force axis on the magnified part 
of the specimen.

In order to achieve the crystallite size (after applying 
severe plastic deformation by using coverages of 1500, 2500 
and 3000%) on the surface of the SP treated samples, XRD 
analysis were performed and the crystallite sizes were cal-
culated. Figure 5 depicts the XRD patterns of AR and shot 
peened samples in different diffraction angle intervals. It can 
be observed that peak height of the AR sample was slightly 
decreased after applying SP and the decreasing trend became 
more notable as the severity of the treatments increased. 
AR sample primary consists of γ -austenite phase about 
96.8% (in volume) and α-martensite phase about 3.2% (in 
volume). The amounts of α phase were increased up to 5.9, 
11.3, 11.8 and 12.1% after applying SP treatments in the 
shot peened samples with 100, 1500, 2500 and 3000% due 
to the high extent of induced deformation. Related informa-
tion obtained from XRD analysis for the three highest peaks 
in the high severity shot peened samples are illustrated in 
Table 1. It can be seen that by increasing of the surface cov-
erage, the crystallite sizes on the top surface are decreasing 
down to 22.7 ± 0.5, 21.8 ± 0.5 and 21.1 ± 0.5 nm for the shot 
peened samples with coverage of 1500, 2500 and 3000% 
respectively and the materials are become nano-structured. 
The average grain size of the AR sample was determined 
as 110 ± 5 µm by stereological methods based on the OM 
observations. Moreover, to find out the grain size in the shot 
peened sample with 100% coverage, a very thin layer of top 
treated surface was polished and etched for OM characteri-
zation and the average grain size was measured as 65 ± 5 µm.
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Figure 6a represents microhardness profiles of the AR 
and shot peened specimens. By increasing coverage caused 
by enhancing of peening duration and therefore rising of 
SP severity, microhardness is increased as well especially 
in the shot peened surface. From CSP with 100% cover-
age to SSP with 1500% coverage, the surface microhard-
ness enhanced significantly up to about 22%. Distribution 
of induced residual stress as a function of distance from 
the treated surface is shown in Fig. 6b. It can be observed 
that by applying SSP treatments, considerable compressive 
residual stresses (CRSs) are induced in depth of the mate-
rial due to the high energy impacts. However, by increasing 
coverage maintaining the same intensity, induced CRSs in 
the surface are not improved significantly and almost remain 
stable. Similar findings have been reported with analogous 
SP treatments on other metallic materials as well [60–63].

Surface roughness as a well-established side effect of SP 
treatment was measured. The average roughness values in 
terms of Ra are obtained as 3.43, 3.62, 3.65, and 3.60 µm for 
the treatments with 100, 1500, 2500 and 3000% respectively 

(roughness of AR sample: 1.88 µm). The results indicate 
that by enhancing coverage, firstly roughness of material is 
raised and then remained in a stable range. Figure 6c reveals 
the obtained S–N curves of all series. Fatigue behavior is 
improved in the shot peened samples with 100 and 1500% 
coverage. However, in the specimens treated with 2500 and 
3000% which have higher plastically deformed layer, det-
rimental effects of SP can be seen and they were over-shot 
peened. CRSs relaxation was investigated in the fatigued 
specimens treated with 1500, 2500 and 3000% coverage at 
different cycles of 1, 0.5  Nf and 0.7  Nf under 320 MPa stress 
amplitude (see Fig. 6d).

Almost half of the CRSs in the surface of the treated sam-
ples are released after  1st cycle and rate of CRS relaxation 
is decreased in the next cycles. Trend of CRSs relaxion in 
first cycle was reported similarly in previous studies [64, 
65]. In addition, maximum CRSs in the depth of the treated 
samples with 1500% coverage are released more than those 
with 2500 and 3000% coverages in both 0.5  Nf and 0.7  Nf 
cycles as well as the first cycle.

Fig. 4  a Cross-sectional OM observations of shot peened specimens with different surface coverages with magnification of ×300. b Schematic 
illustration of a shot peened fatigue test specimen under the applied force of axial fatigue test
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It was observed that although treated specimens with 
2500 and 3000% coverages had higher plastically deformed 
layer and a little bit higher CRSs in the initial state and lower 
CRSs relaxation in the fatigued conditions, these two SP 
treatments have detrimental effects on fatigue behavior. Also 
based on the OM observations no clear defects were seen on 

these samples. Therefore, FESEM observations with higher 
magnifications of × 3000–15,000 were applied to specify the 
generated defects caused by OPS.

Figure 7a, c and e depict the cross-sectional FESEM 
images of shot peened samples with 1500, 2500 and 3000% 

Fig. 5  Comparison of XRD patterns of the samples considering different peaks position with diffraction angle of 2θ between a 30–120, b 42.5–
45, c 49–52 and d 89–97

Table 1  Details of the 
XRD patterns for grain size 
measurements in severely shot 
peened samples

Coverage of shot 
peened sample (%)

Peak Position of 2θ (°) FWHM (°) d-spacing (Å) Crystallite 
size (nm)

Mean 
microsta-
rin (%)

1500 (1 1 1) 43.64 0.50 2.07536 22.7 0.27
(1 1 0) 44.48 0.43 2.03512 – –
(2 0 0) 50.44 1.00 1.80797 – –

2500 (1 1 1) 43.69 0.473 2.07498 21.8 0.24
(1 1 0) 44.51 0.41 2.03491 – –
(2 0 0) 50.61 0.98 1.80792 – –

3000 (1 1 1) 43.69 0.473 2.07498 21.1 0.20
(1 1 0) 44.51 0.41 2.03491 – –
(2 0 0) 50.61 0.98 1.80792 – –
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coverages. Generated micro-cracks in the surface of the 
treated specimens with 2500 and 3000% coverages can be 
clearly observed in the surface which confirms the OSP. By 
increasing severity in the OSP, length and number of the 
generated surface micro-cracks are increased. Nano-struc-
tured (NS) and ultrafine-grained (UFG) layers in the severely 
shot peened specimen with 1500% coverage are illustrated 
in Fig. 7a (left) with higher magnification of ×15,000. Fig-
ures 7b, d and f show the effects of applying axial fatigue 
load in the fatigued specimens at 0.5  Nf under 320 MPa 
stress amplitude. No fatigue crack initiation and/or growth 
is seen in the severely shot peened specimen with ×6000 
magnification up to its the half of fatigue life. However, in 
the over-shot peened samples generated micro-cracks in the 

surface are grown in the crack opening direction caused by 
force axis at 0.5  Nf clearly.

4.2  Modelling Results

In order to obtain the structure of NN with highest perfor-
mance and in order to compare the efficiency of SNN, DNN 
and SADNN various networks with different architecture 
and network parameters were developed for each consid-
ered modelling of A, B and C. In whole models logarith-
mic sigmoid (logsig) transfer functions were used in hid-
den and output layers and constant rate of training of 0.195 
was gathered. The digital data used for implementation of 
NNs are presented in Appendix. Accuracy of the results of 

Fig. 6  a Microhardness profiles of the AR and treated samples from 
top surface towards the core material. b Distributions of the induced 
residual stresses in the AR and shot peened samples. c S–N curves 

of the AR and shot peened samples. d Residual stress distributions 
at different number of cycles under 320 MPa stress amplitude in the 
shot peened specimens with 1500, 2500 and 3000%
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constructed SNNs with 1 and 2 hidden layers with different 
number of neurons in terms of considered output parameters 
of the three different models of A, B and C is shown in 
Fig. 8a, c and e (the results of Fig. 8a and b were presented 
in terms of output parameter of microhardness in model-
ling A). It can be observed that in developing SNNs, mostly 
by increasing the number of neurons, the performance of 
the network is enhancing as well. In Fig. 8b, d and f com-
parison of the accuracy of the developed SNNs, DNNs and 
SADNNs predicted with highest performance is presented. 

In all of the developed NNs for modelling A and C, 2 and 
1 neurons were used in input and output layers respectively 
and in the developed NNs for modelling B, 3 and 1 neu-
rons were used in input and output layers jointly. It can be 
observed that, by implementation of a SADNN in 4 hidden 
layers network which has the highest performance among 
whole developed NNs, accuracies of 0.99 were obtained for 
both training and testing processes that is quite acceptable. 
Details of the developed network performance evaluation 
are presented in Table 2.

Fig. 7  Cross-sectional FESEM images of shot peened samples in the 
initial state and fatigued condition of 320 MPa stress amplitude and 
0.5  Nf showing the generated NS and UFG layers and micro-cracks 

in the surface with Almen intensity of 21 A and coverages of a, b 
1500%, c, d 2500% and e, f 3000%
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Fig. 8  Influence of number of neurons in each layer of the developed 
SNNs in terms of accuracy for the developed models of a A, c B and 
e C. Comparison of the obatined values of  R2 as factor of accuracy in 

the developed NNs including SNN, DNN, SADNN for different con-
structed models of b A, d B and f C
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In order to survey the overfitting and performance inde-
pendency of the obtained optimum structure for each models 
of A, B and C from the used data fed to the network, repeated 
random sub-sampling cross validation (also known as Monte 
Carlo cross-validation) is applied. Three more orders of data 
set were generated using random function to select the other 
data for training and testing (80% samples for training and 

20% samples for testing). Performance evaluations of the 
other randomly selected data are shown in Table 3 (In model 
A, the results are presented in terms of output parameter of 
microhardness). It can be observed that in the whole consid-
ered randomly derived data sets, like the one already used, 
accuracies of at least 0.99 and 0.98 were obtained for train-
ing and testing processes, respectively.

After successful cunstructing of the SADNN with high-
est performnce and accuray, related model fucations of 
each considered models of A, B and C were generated for 
parametric analysis to figure out the influence of each pro-
cess paramters on the desired outputs. Figure 9 represents 
the results of the predicted values of parameric analysis in 
terms of surface coverage and deth of surface to the inte-
rior on the microhardness and induced residuals stresses. It 
can be observed that by increasing the coverage, depth of 
the enhanced hardness is rising as well altough form about 
1500% coverage the values of microhardness on top surface 
(depth of zero) are remained quasi stable (see Fig. 9a). These 
results have high agreement with the presnted OM observa-
tions of plastically deformed layer in Fig. 4a. Also a sudden 
jump can be seen after 1000% coverage from microhardness 
of about 400 to 440 Hv. In Fig. 9b the distribution of the 
induced residual stresses in depth can be seen clearly by 
vartions of coverage. It can be observed that, in depth of 

Table 2  Obtained  R2 for 
considered output parameters 
in both training and testing 
processes

Model Rate of training Layers structure Hidden trans-
fer function

Output trans-
fer function

Training Testing
R2 R2

A 0.195 2 + 30 + 20 + 10 + 4 + 2 Logsig Logsig 0.9933 0.9919
B 0.195 3 + 27 + 18 + 12 + 6 + 1 Logsig Logsig 0.9910 0.9909
C 0.195 2 + 25 + 15 + 10 + 5 + 1 Logsig Logsig 0.9924 0.9913

Table 3  R2 values for individual output parameters in both training 
and testing steps obtained by SADNN in the three different orders of 
randomly selected data considering repeated random sub-sampling 
cross validation

Model Randomly selected 
data set

Obtained  R2

Training Testing

A Data set 1 0.9921 0.9913
Data set 2 0.9905 0.9890
Data set 3 0.9951 0.9924

B Data set 1 0.9919 0.9911
Data set 2 0.9914 0.9907
Data set 3 0.9922 0.9920

C Data set 1 0.9917 0.9911
Data set 2 0.9912 0.9901
Data set 3 0.9904 0.9893

Fig. 9  Parametric analysis of the effects of surface coverage of SP and depth from surface to the interior on distribution of a microhardness and 
b residual stress obtained by NNs
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about 70–80 µm the highest amounts of CRSs are induced 
after surface coverage of about 750%. Also the the obtained 
results of NNs clearly show the effects of low surface cover-
ages between 0 to 100%; from 0 to 100% the values induced 
CRSs, gradually increase from 10 MPa to about − 250 MPa. 
In addition after about 225 µm depth, the SP process has not 
remarkable effects in inducing of CRSs. Figure 10 reveals 
the circumstance of CRSs relaxation in different surface 
coverages of 1500, 2500 and 3000%. Similar to experi-
ments, it can be seen that in the OSP treated samples with 
2500 and 3000% coverage, lower CRSs relacation occurred 
compared tho the severly shot peened sample with 1500% 
coverage by increasing of the relevant fatigue life cycles. 
This phenomenon depicts that, the stresses amplitudue due 
to axial fatigue loading are mostly used for crack propa-
gation of the existance micro-cracks of the OSP samples 

rather than employing for CRSs relaxation which makes 
the high amount of induced residual stresses useless. These 
results indicatade that absence of surface defects are more 
important than inducing high CRSs under condition of axial 
fatigue loading.

Finally, as one of the major aims of this study, in Fig. 11, 
the paramteric analysis in terms of surface coverage and 
stress amplitued for prediction of fatigue life is presnted 
using obtaiend results of NNS from modelling C. It can be 
seen that by decreasing the stress amplitue as a parameter 
of fatigue test, the numbrer of cycles to failure are rising in 
each coverages. Considering fatigue life of 4.5 ×  106 cycles 
as maximum fatigue life  (Nf,max) and run-out factor, fatigue 
life of 3.3 ×  106 cycles (presented with yellow color in the 
countor) has about 0.7  Nf,max. By following of the 0.7  Nf,max 
in the countor in the related interval of 220–290 MPa stress 

Fig. 10  Circumstance of CRSs relaxtion in different surface coverages of a 1500, b 2500 and c 3000% by increasing the fatigue loading cycles

Fig. 11  Paramteric analysis of effects of stress amplitued and surface coverage of SP process on fatigue life variations
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amplitued, it can be observed that the variation of fatigue life 
has three main stages. Firstly, by increasing surface cover-
age from about 250 to 1000% the fatigue life is enhancing 
gradually as well. Secondly, from SP coverage of about 1000 
to 1700%–1800% the fatigue life is quasi stable. Finally, by 
increasing surface coverage from about 1700–1800 to 3000% 
the fatigue life is reducing significently which indicates the 
detrimental effects of OSP (see Fig. 11b). The experimn-
etal data used for development of modelling C, only had 
results of fatigue life for different coverages of 100, 1500, 
2500 and 3000%. Also, the the microstructural observations 
showed that applied SP treatments with 2500 and 3000% 
coverages have signs of the OSP. However, the obtained 
results of NNs reavel that OSP occurred in lower coverage 
than 2500% and also the posetive effects of SSP still can be 
seen upto surface covergae of about 1700%–1800% which is 
more than the experimntal data of 1500%. In the next section 
authenticity of the predited results by NNs will be assessed 
experimentally.

5  Experimental Validation and Specifying 
the Boundary Between SSP and OSP

In order to validate the authenticity of obtained results of 
NNS for fatigue life variation and specifying the boundary 
between SSP and OSP in the shot peened 316L steel with 
Almen intensity of 21 A, three more SP treatments with 
coverages of 1750, 2000 and 2250% were performed. Sur-
face microhardness and residual stress measurements were 
accomplished as well as axial fatigue. Figure 12a, illustrates 
the measured properties on the samples. It can be observed 
that as the difference of coverage between them are not high; 
the values of surface microhardness and residual stresses 
have not considerable differences. However, fatigue limit 
is decreased in the shot peened specimens with 2000 and 
2250% coverages which indicate that they are over-shot 
peened. The fatigue limit in the shot peened sample with 
1750% is increased compared to treated one with 1500%. 
The fatigue behavior results show that highest coverage for 
applying SSP with 21 A in the considered SP is 1750%. In 
addition, similar behavior in the CRSs relaxation is observed 
in the severely shot peened sample with 1750% and over-
shot peened ones with 2000 and 2250% compared to the 
firstly performed SP treatments.

Figure 12b, indicates the obtained fatigue lives of the 
all treated samples in comparison with AR samples in the 
same stress amplitude of 320 MPa. From CSP (SP with 
100% coverage) to SSP (SP with coverages up to 1750%) 
the average fatigue life is increased significantly. However, 
in the over-shot peened samples with 2000 and 2250% 
fatigue life decreased compared to severely treated sam-
ples and in the OSP treatments with coverages of 2500 and 

3000% the fatigue life reduced in comparison with conven-
tionally treated one. The obtained experimental results of 
fatigue tests approved the authenticity of obtained results 
of NNs for fatigue life variation which indicated after about 
1700%–1800% coverage the OSP can be occurred.

In addition, Fig.  13 reveals FESEM images of the 
fatigued specimens at 320 MPa stress amplitude and 0.7  Nf 
after applying SP treatments with 1750, 2000 and 2250% 
coverages. Fatigue cracks are initiated beneath and from the 
surface layer in the severely and over- shot peened samples 
respectively (Fig. 13a, c) which can be another approval 
for the authenticity of obtained results of NNs. Also, in the 
over-shot peened sample with 2000% coverage, generated 
micro-cracks are grown from surface in the NS layer and 
some other cracks are initiated under the surface. The ini-
tiation of fatigue crack are mostly shown by observing the 
fracture surface (fractography) after fatigue failure, but in 
this study, to the best of authors knowledge, the fatigue crack 
initiation in a shot peened material with fatigued condition 
and not totally failed is presented for the first time using 
cross-sectional view.

Figure 14 illustrates the OM image of the treated speci-
men with 1750% coverage that distribution of the CRSs 
and also depth of each generated layers after grain refine-
ment are shown on it schematically. Depth of the gener-
ated NS, UFG and refined grains layers after SSP were 
approximately measured by high magnification FESEM 
observations. Based on the obtained results, fatigue cracks 
initiated beneath the NS and UFG layers about 15 µm from 
the surface. By comparison with CRSs distribution, it can 
be observed that in the crack initiation site, the values of 
induced CRSs are close to their maximum. As there is no 
defect or micro-crack in the NS surface, the cracks must ini-
tiated under the surface layer which has high CRSs. There-
fore, it can be deduced that firstly most of the applied energy 
by fatigue test to undergo fracture is used to decrease and 
release the CRSs and secondly the remained energy is used 
for both crack initiation and CRSs relaxation. This phenom-
enon caused higher CRSs relaxation in the severely shot 
peened samples compared to the over-shot peened materi-
als. In the over-shot peened samples as the micro-cracks 
already exist in the surface, most of the applied energy is 
directly used for micro-crack growth which caused lower 
CRSs relaxation and faster fatigue failure. It is notable to 
mention that in the investigation of the crack initiation and 
growth, identical stress of 320 MPa was applied on all the 
severely and over-shot peened specimens that generate same 
energy to have better comparison.

By applying SSP and enhancing its severity, which 
resulted in generation of gradient structures in the surface 
layer from NS to refined grains, roughness alteration, micro-
hardness improvement and inducing CRSs, cracks initiation 
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and growth are delayed which caused fatigue behavior 
improvement. In the OSP, based on the total fatigue life 
relation which is equal to the summation of the number of 
cycles for the crack initiation and propagation, although SP 
has effects on mechanical properties improvement, existing 
of generated defects in the surface, remarkably reduced the 
required cycles for crack initiation. Therefore, after applying 
OSP, the fatigue life is decreased compared to CSP and SSP 
which indicates its detrimental influence on fatigue behavior.

According to the all mentioned above, schematic illus-
tration of the AR and generated gradient structures in the 
treated surfaces with CSP and SSP processes is presented 

in Fig. 15a based on the microstructural observations in this 
study and the previous studies [66–70]. Also, presentation 
of the crack initiation sites in the treated material with SSP 
and OSP is shown in Fig. 15b schematically.

6  Conclusion

In this study different types of shot peening including con-
ventional, severe and over shot peening processes were 
applied on 316L stainless steel. Effects of treatments 
were investigated through several experiments including 

Fig. 12  a Measured paramters 
of surface microhardness, 
surface CRSs and their relaxa-
tion and fatigue limit in the 
shot peened samples with 1750, 
2000 and 2250% coverages. b 
Fatigue life of the shot peened 
samples with 21 A Almen 
intensity and different coverages 
under 320 MPa stress amplitued
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microstructural characterization, measurements of micro-
hardness, surface roughness and residual stress as well as 
axial fatigue test. Also, residual stress relaxation and fatigue 
crack initiation were assessed in the fatigued samples. Then 
the achieved experimental data used for developing there 
different neural networks using deep learning approach and 
also the stacked auto-encoder for pre-training. Correlation 
coefficient as a parameter of accuracy was considered for 
networks performance evaluation. The networks assess-
ment results indicated that by using stacked auto-encoder 
assigned deep neural network very high accuracy of more 
than 0.99 can achieved in both training and testing process 
for the whole constructed models. In addition, in order to 
assess the authenticity of obtained results of neural networks 
and also to optimize the SP process and finding the bound-
ary between SSP and OSP, further experimental validations 

were performed which approved the predicted results. These 
outcomes reveal that deep learning approach can be used as 
an alternative method to pave the path for modelling of the 
complex and non-linear phenomena such as fatigue behavior 
using small data set. Overall, based on the obtained experi-
mental and modelling results it can be concluded that:

• Gradient structures from nano-structured to refined 
grains were generated in the surface layer by increasing 
the severity of shot peening compared to the conventional 
treatment.

• By increasing coverage and thus enhancing the shot 
peening kinetic energy, remarkable improvement in 
mechanical properties can be obtained.

• Due to the grain refinement, microhardness improvement 
and high compressive residual stresses, crack initiation 
and growth were delayed resulting in fatigue strength 
improvement.

• In the severely shot peened material, firstly most of 
the applied energy caused by fatigue loading is used to 
release the induced compressive residual stresses and 
then the remained energy is used for crack initiation and 
residual stresses relaxation.

• In the over-shot peened material, the required number 
of cycles for crack initiation was significantly reduced 
due to generation of micro-cracks in the surface after 
high shot impacts which resulted detrimental influence 
on fatigue behavior.

• Most of the applied energy of fatigue loading was directly 
used for micro-crack growth in resulted in lower com-
pressive residual stresses relaxation.

• In the shot peening of 316L steel with Almen intensity 
of 21A [0.001 inch], surface coverage of 1750% has the 
maximum beneficial effects on fatigue behavior improve-
ment.

Fig. 13  Crack initiation and grwoth sites in the fatigued samples at 320 MPa and 0.7  Nf in the shot peened specimens with a 1750%, b 2000% 
and c 2250% coverages

Fig. 14  Schematic illustration of CRSs distribution and depth of the 
generated layers after grain refinement in the severely shot peened 
sample with 21 A intensity and 1750% coverage
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• The absence of surface defects such as micro-cracks are 
more important than inducing high compressive resid-
ual stresses and increasing the surface layer hardness by 
grain refinement, under condition of axial fatigue loading 
for life improvements.

Appendix

See Tables 4, 5 and 6.

Fig. 15  Schematic illustration of a the AR sample and generated gradient structures in the treated surfaces with CSP and SSP processes and b 
crack initiation sites in the treated material with SSP and OSP
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Table 4  Experimental data used for developing modelling A

Sample no. Depth (µm) Coverage (%) Residual 
stress 
(MPa)

Microhard-
ness (Hv)

1 0 0  − 42 260
2 40 0  − 41 262
3 80 0  − 33 265
4 120 0  − 45 255
5 160 0  − 27 265
6 200 0  − 51 261
7 240 0  − 47 258
8 280 0  − 15 258
9 320 0  − 15 260
10 0 100  − 316 371
11 40 100  − 423 343
12 80 100  − 498 311
13 120 100  − 334 296
14 160 100  − 195 281
15 200 100  − 94 269
16 240 100  − 25 260
17 280 100 5 254
18 320 100 9 265
19 0 1500  − 353 454
20 40 1500  − 477 421
21 80 1500  − 569 388
22 120 1500  − 500 351
23 160160 1500  − 259 311
24 200 1500  − 139 288
25 240 1500  − 72 266
26 280 1500  − 43 258
27 320 1500  − 13 259
28 0 2500  − 331 471
29 40 2500  − 498 447
30 80 2500  − 601 414
31 120 2500  − 534 397
32 160 2500  − 248 344
33 200 2500  − 165 304
34 240 2500  − 91 274
35 280 2500  − 57 260
36 320 2500  − 22 257
37 0 3000  − 322 483
38 40 3000  − 515 471
39 80 3000  − 609 451
40 120 3000  − 571 417
41 160 3000  − 312 355
42 200 3000  − 211 310
43 240 3000  − 111 285
44 280 3000  − 51 271
45 320 3000  − 31 263

Table 5  Experimental data used for developing modelling B

Sample no. Depth (µm) Coverage (%) Fatigue cycles 
in terms of Nf

Residual 
stress 
(MPa)

1 0 1500 0  − 353
2 40 1500 0  − 477
3 80 1500 0  − 569
4 120 1500 0  − 500
5 160 1500 0  − 259
6 200 1500 0  − 139
7 240 1500 0  − 72
8 280 1500 0  − 43
9 320 1500 0  − 13
10 0 1500 0.5  − 141
11 40 1500 0.5  − 288
12 80 1500 0.5  − 355
13 120 1500 0.5  − 335
14 160 1500 0.5  − 220
15 200 1500 0.5  − 145
16 240 1500 0.5  − 95
17 280 1500 0.5  − 77
18 320 1500 0.5  − 61
19 0 1500 0.7  − 120
20 40 1500 0.7  − 177
21 80 1500 0.7  − 210
22 120 1500 0.7  − 175
23 160 1500 0.7  − 120
24 200 1500 0.7  − 75
25 240 1500 0.7  − 40
26 280 1500 0.7  − 20
27 320 1500 0.7  − 20
28 0 2500 0  − 331
29 40 2500 0  − 498
30 80 2500 0  − 601
31 120 2500 0  − 534
32 160 2500 0  − 248
33 200 2500 0  − 165
34 240 2500 0  − 91
35 280 2500 0  − 57
36 320 2500 0  − 22
37 0 2500 0.5  − 175
38 40 2500 0.5  − 348
39 80 2500 0.5  − 429
40 120 2500 0.5  − 389
41 160 2500 0.5  − 200
42 200 2500 0.5  − 133
43 240 2500 0.5  − 115
44 280 2500 0.5  − 87
45 320 2500 0.5  − 80
46 0 2500 0.7  − 155
47 40 2500 0.7  − 245
48 80 2500 0.7  − 315
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Table 5  (continued)

Sample no. Depth (µm) Coverage (%) Fatigue cycles 
in terms of Nf

Residual 
stress 
(MPa)

49 120 2500 0.7  − 260
50 160 2500 0.7  − 170
51 200 2500 0.7  − 110
52 240 2500 0.7  − 65
54 280 2500 0.7  − 35
55 320 2500 0.7  − 40
56 0 3000 0  − 322
57 40 3000 0  − 515
58 80 3000 0  − 609
59 120 3000 0  − 571
60 160 3000 0  − 312
61 200 3000 0  − 211
62 240 3000 0  − 111
63 280 3000 0  − 51
64 320 3000 0  − 31
65 0 3000 0.5  − 185
66 40 3000 0.5  − 372
67 80 3000 0.5  − 461
68 120 3000 0.5  − 405
69 160 3000 0.5  − 245
70 200 3000 0.5  − 156
71 240 3000 0.5  − 91
72 280 3000 0.5  − 75
73 320 3000 0.5  − 60
74 0 3000 0.7  − 165
75 40 3000 0.7  − 270
76 80 3000 0.7  − 345
77 120 3000 0.7  − 300
78 160 3000 0.7  − 180
79 200 3000 0.7  − 121
80 240 3000 0.7  − 77
81 280 3000 0.7  − 44
82 320 3000 0.7  − 50

Table 6  Experimental data used for developing modelling C

Sample no. Coverage (%) Stress amplitude 
(MPa)

Fatigue 
life,  Nf 
(cycles)

1 0 340 7825
2 0 320 15,619
3 0 300 30,552
4 0 280 97,292
5 0 260 204,789
6 0 240 293,326
7 0 230 910,416
8 0 225 1.59E+06
9 0 220 2.06E+06
10 0 220 2.51E+06
11 100 370 18,754.75
12 100 360 39,458.97
13 100 350 49,799.76
14 100 340 78,585.96
15 100 320 203,806.1
16 100 295 478,121.4
17 100 265 1.78E+06
18 100 268 1.50E+06
19 100 265 2.06E+06
20 100 270 968,397
21 1500 410 13,647.58
22 1500 385 27,241.1
23 1500 360 89,285.74
24 1500 330 169,687
25 1500 320 457,172.5
26 1500 310 711,589.9
27 1500 300 1.59E+06
28 1500 295 2.00E+06
29 1500 293 2.53E+06
30 1500 293 4.35E+06
31 2500 410 4824.425
32 2500 390 8076.651
33 2500 370 15,155.61
34 2500 320 176,593.1
35 2500 310 326,953.6
36 2500 290 683,156.3
37 2500 275 820,358.9
38 2500 265 1.21E+06
39 2500 260 1.48E+06
40 2500 260 1.64E+06
41 3000 410 2740.5
42 3000 370 3796.06
43 3000 330 23,712.48
44 3000 320 76,580.08
45 3000 285 111,121.9
46 3000 265 303,713.2
47 3000 245 819,939.8
48 3000 235 1.43E+06
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