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Abstract
An artificial neural network (ANN) model was developed to predict the tensile properties as a function of alloying element 
and microstructural factor of ferrite-pearlite steels. The input parameters of the model were composed of alloying elements 
(Mn, Si, Al, Nb, Ti, and V) and microstructural factors (pearlite fraction, ferrite grain size, interlamellar spacing, and cement-
ite thickness), while the output parameters of the model were yield strength and tensile strength. Although the ferrite-pearlite 
steels have complex relationships among the alloying elements, microstructural factors, and tensile properties, the ANN 
model predictions were found to be more accurate with experimental results than the existing equation model. In the present 
study the individual effect of input parameters on the tensile properties was quantitatively estimated with the help of the 
average index of the relative importance for alloying elements as well as microstructural factors. The ANN model attempted 
from the metallurgical points of view is expected to be useful for designing new steels having required mechanical properties.

Keywords  Ferrite-pearlite steels · Artificial neural network · Index of relative importance · Alloying element · 
Microstructural factor · Tensile property

1  Introduction

Over the past decades, ferrite-pearlite steels with their 
advantages of low cost and simple manufacturing have 
been widely used for various industries [1–12]. The tensile 
properties of ferrite-pearlite steels are mainly affected by 
a number of alloying elements and microstructural factors 
[13–21]. For ferrite-pearlite steels with carbon content below 

the eutectoid composition, there are various microstructural 
factors such as phase fraction, ferrite grain size, interlamellar 
spacing, and cementite thickness that depend on alloying 
elements and heat treatment. In addition, the alloying ele-
ments that were incorporated to the ferrite-pearlite steels 
affect the tensile properties thorough solid solution and pre-
cipitation strengthening. Because the relationship between 
alloying elements, microstructural factors, and tensile prop-
erties is complex, more systematic studies are necessitated 
to understand this relationship.

Recently, artificial neural network (ANN) techniques that 
facilitate the learning of input–output parameter relationship 
for complex problems have been applied to predict and ana-
lyze various phenomena occurring in materials. The main 
feature of ANNs is that, unlike other analysis methods such 
as physical models and linear regression models, these do 
not require a specific equation form and only need suffi-
cient input–output parameter data to solve a problem. ANNs 
with the capacity for defining the relationship between inde-
pendent and dependent parameters have been used to eluci-
date unclear problems and have been successfully applied 
to numerous applications in materials science [22–25]. 
ANN models have been reported to design alloys [26] and 
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to predict microstructures [27], hardness [28], and tensile 
properties [27] according to chemical compositions and heat 
treatment conditions in carbon steels with a ferrite-pearlite 
structure. However, the relative importance of alloying ele-
ments and microstructural factors in determining the tensile 
properties of ferrite-pearlite steels has not been studied yet.

The primary objectives of the present study are: (i) to pre-
dict the tensile properties of ferrite-pearlite steels using vari-
ous alloying elements and microstructural factors, (ii) to deter-
mine the influence of alloying elements and microstructural 
factors on tensile properties individually as well in combina-
tions of two or more input parameters, and (iii) to quantita-
tively estimate the importance of input parameters on tensile 
properties by calculating the index of relative importance.

2 � Materials and Methodology

2.1 � Model Establishment

The experimental data used for this study were collected from 
published literature [14] on ferrite-pearlite steels with equiaxed 

grains and a pearlite fraction between 55 and 95%. The data 
sets consisted of the content of alloying elements such as car-
bon (C), manganese (Mn), silicon (Si), aluminum (Al), nio-
bium (Nb), vanadium (V), and titanium (Ti) and microstruc-
tural factors such as the pearlite fraction ( VP ), ferrite grain size 
( dF ), interlamellar spacing ( IS ), and cementite thickness ( tCM ) 
with the desired yield strength (YS) and tensile strength (TS). 
The microstructure of ferrite-pearlite steels was observed using 
an optical microscope and a field emission scanning electron 
microscope (FE-SEM; model JSM6700F, JEOL, Japan), then 
the pearlite fraction, ferrite grain size, and interlamellar spac-
ing were quantitatively measured, as shown in Fig. 1. The 
cementite thickness was calculated using equation [29].

Sub-size plate-type tensile specimens with a gage length 
of 25.4 mm were taken along a rolling direction. The tensile 
tests were performed at room temperature and a strain rate 
of 3.3 × 10−3∕sec using a 10 ton universal testing machine 
(model; UT-100E, MTDI, Korea) according to the ASTM 
E8 standard testing method. The input parameters consid-
ered for the ANN model development were the C, Mn, Si, 
Al, Nb, V, and Ti contents, and the pearlite fraction, ferrite 
grain size, interlamellar spacing and cementite thickness; the 

Fig. 1   a Optical and b SEM 
micrographs showing the 
microstructural factors (pearlite 
fraction, ferrite grain size, inter-
lamellar spacing, and cementite 
thickness) of ferrite-pearlite 
steels (data set 54) Pearlite

(a)

Cementite

(b) 

Ferrite

Ferrite

1 μm25 μm

Table 1   Details of the input and 
output parameters of training 
and test data used for ANN 
model

Parameter Minimum Maximum Mean Standard deviation

Input
C (wt%) 0.38 0.41 0.39 0.01
Mn (wt%) 0.86 1.54 1.36 0.24
Si (wt%) 0.29 1.04 0.62 0.30
Al (wt%) 0 0.06 0.01 0.02
Nb (wt%) 0 0.05 0.01 0.02
Ti (wt%) 0 0.04 0.01 0.01
V (wt%) 0 0.11 0.01 0.04
Pearlite fraction (vol%) 56.1 92.7 74.5 10.7
Ferrite grain size (μm) 3.5 23.1 8.0 4.5
Interlamellar spacing (μm) 0.210 0.407 0.307 0.05
Cementite thickness (μm) 0.019 0.042 0.027 0.01
Output
Yield strength (MPa) 321 638 457 73
Tensile strength (MPa) 644 937 774 67
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output parameters were the yield and tensile strength. The 
details of the input and output parameters used in the study 
are presented in Table 1. All the parematers were converted 
between 0.1 and 0.9. The conversion process is expressed 
as follows:

where xn is the converted value of x ; xmax and xmin are the 
maximum and minimum value of x , respectively, in the 
entire data sets. Once the best-trained network was found, 
all the transformed data sets were put back into their original 
values using the following equation:

2.2 � Modeling Procedure

In this study, the ANN model was trained using a backpropa-
gation algorithm and the sigmoid function was used as an 
activation function [30, 31]. The ANN model training pro-
gram and the graphical user interface design of the present 
ANN model were written in C and Java, respectively. The 
ANN model consisted of 11 neurons (C, Mn, Si, Al, Nb, 
V, and Ti contents and pearlite fraction, ferrite grain size, 
interlamellar spacing, and cementite thickness) in the input 
layer and two neurons (yield and tensile strength) in the out-
put layer. The neural network training consisted of adjusting 

(1)xn =
((
x − xmin

)
× 0.8

)
∕
(
xmax − xmin

)
+ 0.1

(2)x =
(
xn − 0.1

)(
xmax − xmin

)
∕0.8 + xmin

the weights associated with each connection between the 
neurons until the computed output parameters for each data 
set of input parameter were as close as possible to the experi-
mental output parameter values. To determine the optimum 
architecture and to find the confidence of the ANN model, 
the data sets were split into training and testing data sets. 
The available 57 data sets were divided into 42 training data 
sets and 14 testing data sets.

The architecture of the ANN model consists of hidden 
layers and neurons in the hidden layers, as well as momen-
tum term, learning rate, and number of iterations. The opti-
mal parameters for the network were determined based on 
the average training error in the output parameter prediction 
( Etr ) of the trained data sets.

where Etr(y) is average training error in the training predic-
tion and testing data sets for output parameter y , N is the 
number of data sets, Ti(y) is the targeted output parameter, 
and Oi(y) is the calculated output parameter.

In this study, the momentum term, learning rate, and iter-
ations of the ANN model were optimized as 0.8, 0.3, and 
10,000 respectively at the initial state based on the Etr(y) . 
In order to find the suitable number of neurons and hidden 
layers, two basic structures of the neural networks are exam-
ined: one with single hidden layer and the other with two 
hidden layers. Each structure was train with different hidden 

(3)Etr(y) =
1

N

N∑

i=1

|||
(
Ti(y) − Oi(y)

)|||

Fig. 2   Variation in average 
training error as a function of a 
hidden neurons with different 
hidden layers, b iteration, c 
momentum term, and d learn-
ing rate for yield strength and 
tensile strength
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neurons starting from 2 to 20. Figure 2a shows the variation 
in the average training error as a function of hidden layers 
and neurons for the yield and tensile strength. The mini-
mum average training error or the output parameters was 
obtained using two hidden layers with 14 neurons in each 
layer. The two hidden layers with 14 neuron architecture was 
selected to optimize the other parameters. The number of 
iterations executed varied from 5000 to 100,000 as exhibited 
in Fig. 2b. As the number of iterations increased, the average 
training errors from the output parameters decreased, and 
after 30,000 iterations, the average training errors from the 
output parameters were almost constant. Hence the num-
ber of iterations was fixed at 30,000. Once the number of 
iterations was selected, the momentum term and learning 
rate coefficients were varied from 0.1 to 0.9 in steps of 0.1, 
respectively, as provided in Fig. 2c and d. The minimum 
training errors for the output parameters were generated in 
a momentum term of 0.8 and a learning rate of 0.6. There-
fore, an optimum ANN model with 11–14-14–2 architecture 
that consisted of an 0.8 momentum term and a 0.6 learning 
rate with 30,000 iterations was selected in this study. The 

optimum ANN model was compared with an existing equa-
tion model, as follows [14]:

where VF is the ferrite fraction (vol%), dF is the ferrite grain 
size (μm), IS is the interlamellar spacing (μm), %Mn is the 
Mn content (wt%), and %Si is the Si content (wt%).

2.3 �  Index of Relative Importance ( �
��

)

The index of relative importance ( IRI ) is a vector quan-
tity. The direction and amount of the index of rela-
tive importance indicate the significance of the input 

(4)

Yieldstrength (MPa) = 15.4

[

V
1

3

F
⋅

(

2.3 + 3.8 ⋅ (%Mn) + 1.13 ⋅ d
−1

2

F

)

+

(

1 − V
1

3

F

)

⋅

(

11.6 + 0.25 ⋅ I
−1

2

S

)

+ 4.1 ⋅ (%Si)

]

(5)

Tensilestrength (MPa) = 15.4

[

V
1

3

F
⋅

(

16.0 + 1.18 ⋅ d
−1
2

F

)

+

(

1 − V
1

3

F

)

⋅

(

46.7 + 0.23 ⋅ I
−1
2

S

)

+ 6.3 ⋅ (%Si)

]

Table 2   Procedure of estimating the index of relative importance ( I
RI

 ) of input parameters on yield and tensile strength of data set 36

Description of the output properties of the steel

Tensile property Experimental value
(data set 36)

Predicted value
(data set 36)

Minimum value
(entire data set)

Maximum value
(entire data set)

Variation: 
Maxi-
mum-
Minimum

Yield strength (MPa) 321 321 321 644 323
Tensile strength (MPa) 666 666 638 937 299
Step by step calculation of I

RI
 for yield and tensile strength

Input parameter description Yield strength calculation Tensile strength calculation Index of relative 
importance

Inputs  − 3.0
offset

No
offset

 + 3.0
offset

Predicted Difference Predicted Difference Yield 
strength 
(MPa)

Tensile 
strength 
(MPa) − 3.0 offset  + 3.0 offset  − 3.0 offset  + 3.0 offset

C content (wt%) 0.39 0.40 0.40 318 321 3 683 666  − 17 0.004  − 0.007
Mn content (wt%) 0.85 0.87 0.89 319 322 3 664 668 4 0.010 0.014
Si content (wt%) 0.34 0.36 0.38 319 323 4 666 666 0 0.012 0.001
Al content (wt%)  − 0.00 0  + 0.00 323 319  − 4 668 664  − 4  − 0.010  − 0.012
Ni content (wt%)  − 0.00 0  + 0.00 322 320  − 2 666 666 0  − 0.005 0.002
Ti content (wt%)  − 0.00 0  + 0.00 321 320  − 1 666 666 0  − 0.003  − 0.002
V content (wt%)  − 0.00 0  + 0.00 320 322 2 665 667 2 0.007 0.006
Pearlite frac-

tion (vol%)
88.4 89.5 90.6 322 320  − 2 667 665  − 2  − 0.005  − 0.008

Ferrite grain size 
(μm)

22.5 23.1 23.7 322 319  − 3 667 665  − 2  − 0.009  − 0.005

Interlamellar spac-
ing (μm)

0.383 0.389 0.395 320 322  − 2 665 667 2 0.005 0.006

Cementite thickness 
(μm)

0.027 0.028 0.029 319 321 3 664 666 2 0.008 0.008
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parameters in the yield and tensile strength. In this study, 
the instantaneous importance of the input parameters on 
the output parameters has been estimated. In the equation 
Y = f

(
X1 + X2 + X3 + X4 ⋯X11

)
 , Y is the yield or tensile 

strength; X1 to X11 , represent the content of C, Mn, Si, Al, 
Nb, V, and Ti, and the pearlite fraction, ferrite grain size, 
interlamellar spacing, and cementite thickness, respectively. 
The procedure involved the calculation of the index of rela-
tive importance as shown below.

(a)	 The  % band  o f  i  t h  inpu t  pa ramete r 
=
((
Xi

)
Maximum −

(
Xi

)
Minimum

)
∕100

(b)	 The 6% band of each input parameter was considered 
i.e., + 3% and  − 3%

(c)	 As a result, input parameter X1 has two row 
m a t r i c e s  

[
+3 % X1 + X2 + X3 + X4 ⋯X11

]
 a n d [

−3 % X1 + X2 + X3 + X4 ⋯X11

]

(d)	 When these two row matrices were passed through the 
ANN model, (Y1)+3%X1

 and (Y1)−3%X1
 were predicted.

(e)	 The difference, Δ
(
y1
)
= (Y1)+3%X1

− (Y1)−3%X1
 was cal-

culated.
(f)	 The index of relative importance ( IRI ) of input param-

eter X1 was calculated from the formula:

The process (from step 1 to step 6) was repeated to calcu-
late the index of relative importance for the remaining input 
parameters, and the process for data set 36 is presented in 
Table 2. While one input parameter was varied by a ±3 % 
offset, the other input parameters were kept constant. After 
adding the ±3 % variation to all the input parameters, ten 
combinations of input parameter data sets were created. 
These data sets were fed to the ANN model to predict the 
respective output parameters and thereby to calculate the 
index of relative importance for each input parameter.

3 � Results and Discussion

The performance of the ANN model can be estimated by 
calculating the percent error for the output parameter of the 
testing data set. Figure 3 exhibits the comparison of predic-
tions and percent error in the yield and tensile strength using 
the ANN model and equation model. For the percent error 
of the yield and tensile strength (Fig. 3b and d), the ANN 
model for training data sets has a percent error of 0.1% and 

(6)IRI = Δ
(
y1
)
∕
((
y1
)
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Fig. 3   Performance of the ANN model and the existing equation model [14] for the prediction of the a yield strength and b tensile strength, and 
the percent error in the c yield strength and d tensile strength for 42 training and 14 testing data sets
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0.0%, respectively. However, the equation model for training 
data sets has percent error of 13.0% and 9.6% on the yield 
and tensile strength, respectively. Even in the yield and ten-
sile strength predictions of testing data sets, percent errors 
of the ANN model are lower than the equation model with 
percent errors of 24.3% and 20.7%, respectively, at 11.0% 
and 9.7%. These results indicate that the ANN model has 
better agreement with experimental data sets than the equa-
tion model. The ANN model that completed the validation 
can be used to determine the relationships between input 
parameters and output parameters.

In contrast, most of the carbon in ferrite-pearlite steels 
is precipitated as carbide and cementite of pearlite [12, 13]. 
Figure 4 presents the predicted yield and tensile strength 
of data set 36 as a function of an input parameter except 
C, keeping other input parameters. The variations in the 
yield and tensile strength changed more with Mn, Si, and V 
contents and ferrite grain size compared to the other input 
parameters. Increasing the Mn, Si, and V contents increases 
the yield and tensile strength, whereas increasing the fer-
rite grain size decreases the yield and tensile strength. It is 
well known that Mn and Si are effective elements for solid 

Fig. 4   Predicted yield strength and tensile strength of data set 36 as a function of a Mn, b Si, c Al, d Nb, e Ti, f V contents, g pearlite fraction, h 
ferrite grain size, i interlamellar spacing and j cementite thickness, keeping other input parameters
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solution strengthening, and Al, Nb, Ti, and V are stronger 
elements for precipitation strengthening by forming precipi-
tates such as carbide and nitride combined with C and nitro-
gen (N) [14–18, 32–37]. Furthermore, it has been reported 
that the precipitates decrease ferrite grain size and increase 
ferrite fraction by decreasing austenite grain size due to the 
pinning effect [32–37]. In the case of microstructural factors, 
the variations in the yield and tensile strength from each 
input parameter were mostly similar. The fine interlamellar 
spacing together fine ferrite grain size commonly increase 
the yield and tensile strength according to the well-known 
Hall–Petch relationship [38]. The results in this study indi-
cates that microstructural factors of ferrite-pearlite steels 
affect the yield and tensile strength by interacting with each 
other.

Based on the result in Fig. 4, which shows that Mn, Si, 
and V contents and ferrite grain size substantially change 
the predicted yield and tensile strength of data set 36, Figs. 5 
and 6 exhibit the predicted yield and tensile strength as a 
function of V content and ferrite grain size for different Mn 

and Si contents. The contour plots enable the selection of the 
condition for the desired yield and tensile strength by visual 
inspection. The range of Si, Mn and V contents relates to 
the amount to the usual ferrite-pearlite steels. Each point 
in Figs. 5 and 6 indicates one ferrite-pearlite steel system. 
The predicted yield strength tends to increase almost linearly 
with increasing the content of Mn, Si and V and decreasing 
ferrite grain size (Fig. 5). At 1.54 wt% Mn and above 0.67 
wt% Si, the regions of maximum predicted yield strength are 
observed for the fine ferrite grain size and high V content. 
In contrast, the predicted tensile strength increases based 
only on Mn and Si contents and shows an unclear tendency 
for V content and ferrite grain size (Fig. 6). The regions of 
maximum predicted tensile strength are observed at 1.54 wt. 
Mn and above 0.67 wt% Si. These predicted yield and ten-
sile strength maps will provide an insight into the absolute 
amounts of alloying elements and microstructural factors 
needed to make the desired ferrite-pearlite steel that has the 
required yield and tensile strength.
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Fig. 5   Contour of predicted yield strength as a function of V content and ferrite grain size at different Si and Mn contents
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There are numbers of reports regarding the effect of various 
alloying elements and microstructural factors on the yield and 
tensile strength of ferrite-pearlite steel [3–14]. In this study, to 
identify the quantitative influence of various alloying elements 
and microstructural factors, the index of relative importance 
was calculated. Figure 7 presents the average index of relative 
importance of the input parameters (alloying elements and 
microstructural factors) on the output parameters (yield and 
tensile strength). For the average index of relative importance 
for yield strength (Fig. 7a), Mn, Si, and V had a positive effect, 
while the ferrite grain size and interlamellar spacing had a 
negative effect, and the other input parameters were relatively 
insignificant. In particular, the V and ferrite grain size had a 
great effect than other input parameters. The yield strength is 
generally known to increase when the slip of dislocation is 
prevented by many factors such as stress field, grain boundary, 
precipitates, and dislocation [39]. The precipitates and grain 
boundary are effective inhibitors to the slip of dislocation. 
Since Al, Nb, and Ti prefer to reduce grain size and V rela-
tively contributes to precipitation strengthening element and, 

it is reasonable that the yield strength of ferrite-pearlite steels 
is greatly influenced by the V content and ferrite grain size.

Figure 7b presents the average index of relative importance 
of alloying elements and microstructural factors with regard to 
tensile strength. The Si, V, and pearlite fraction had a positive 
influence, while the interlamellar spacing had a negative influ-
ence, and the influence of other input parameters was minor. In 
particular, Si and pearlite fraction had the greatest impact. It is 
well known that tensile strength is related to work hardening 
after yielding. Precipitates with coherency boundaries with 
matrix and pearlite are effective at work hardening [40–42]. 
Furthermore, Si enhances the work hardening of the pearlite 
and precipitates because the solute Si stabilizes the pearlite 
and precipitates by diffusing to the interface of the cementite/
ferrite and precipitate/ferrite [43–45]. Moreover, the fine inter-
lamellar spacing of pearlite enhances work hardening [40]. 
Accordingly, it is valid that tensile strength is greatly affected 
by Si and V contents and pearlite fraction that are related to 
increasing work hardening.

Fig. 6   Contour of predicted tensile strength as a function of V content and ferrite grain size at different Si and Mn contents
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4 � Conclusions

Based on the present artificial neural network (ANN) anal-
ysis for modeling the tensile properties of ferrite-pearlite 
steels with equiaxed grains, the following conclusions can 
be drawn.

1.	 An ANN model has been developed to predict the yield 
and tensile strength of ferrite-pearlite steels in terms of 
alloying elements (C, Mn, Si, Al, Nb, Ti, and V) and 
microstructural factors such as pearlite fraction, ferrite 
grain size, interlamellar spacing, and cementite thick-
ness.

2.	 The yield and tensile strength predictions made using 
the ANN model with unseen data were in good agree-
ment the experimental values, as compared with the cal-
culated properties of the existing model, and the ANN 
model showed experimentally reliable trends by analyz-
ing the complex nonlinear relationships.

3.	 The effect of alloying elements and microstructural fac-
tors on tensile properties of ferrite-pearlite steels can be 
quantitatively estimated with the help of the index of 
relative importance based on the ANN model to under-
stand the complicated effects of input parameters on 
output parameters.

Supplementary Information  The online version contains supplemen-
tary material available  at https​://doi.org/10.1007/s1254​0-021-00982​-z.
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